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Abstract—The Intrusion Detection System (IDS) is the main
element to prevent malicious traffic on the network. IDS will
quickly increase the ability to detect network threats with the
help of Deep Learning algorithms. As a result, attackers are
finding new ways to evade identification. Polymorphic attacks,
search for the attackers, as they can bypass the IDS. Generative
Adversarial Networks (GAN) is a method proven in generating
various forms of data. It is becoming popular among security
researchers as it can produce indistinguishable data from the
original data. This work proposed a model to generate DDoS
attacks using a GAN. Several techniques have been used to
regenerate the feature selection to identify the attack and generate
polymorphic data. The data will change feature profile in every
cycle to test if the IDS can detect the new version of attack
data. Simulation results from the proposed model show that with
constant changing attack profiles, defending arrangements that
handle incremental knowledge will yet stay exposed to current
attacks.
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I. INTRODUCTION

The Internet is being used in many fields, like data transfer,
e-learning, and many more, and its growth has impacted
all aspects of life. This increasing usage of the Internet
causes concerns about network security and needs constant
improvements in securing Internet technologies from various
attacks. Examples of these attacks include DDoS attacks, Man-
in-the-middle attacks, Phishing, Password-based attack, SQL
injection, and many more. Network vulnerabilities can cause
damage to small or large organizations. According to one
survey, 98% of businesses in the UK depend on Information
Technology services. Over 43% of small scale and 72% of
large-scale organizations suffered from cyber-attacks in the
past years. There are many tools available to secure or prevent
cyber-security attacks, including but not limited to: Intrusion
Detection Systems (IDS), Intrusion Prevention Systems (IPS),
Anti-malware, Network Access Control, Firewalls. Among
those, one of the most commonly used and effective tool is
the Intrusion Detection System.

IDS analyzes the data traffic is to be distinguished from the
malignant and the normal traffic, and to generate a warning,
so that all the necessary precautions must be taken to avoid
damage [1]. With the development of network attacks and
security, improved detection and prevention systems. Artificial
intelligence (AI) is now widely used for security tools in the
IDS [2],and activists have begun to use artificial intelligence

techniques to malicious attacks [3] [4] . AI and deep learning
algorithms require a large amount of data to train and test
the models. Some of the techniques that can be used for the
production of large data sets to finish the malware detection
[5] [6] and security orchestration, [7].

One of the frameworks to generate adversarial data is
Generative Adversarial Networks (GAN). It is an architecture
of two neural networks: the Generator and the Discriminator.
The Generator uses gradient descent or the response from the
discriminator and generates adversarial data. The discriminator
distinguishes between the original and the adversarial data. The
Generator and the discriminator compete in this way, and, in
the end, the Generator produces synthetic or adversarial data
[8].GAN has been utilized in research to generate various types
of datasets like images [9], sound [10], text [11], and network
attack data [12].

II. RELATED WORKS

The recent development in deep learning, intrusion de-
tection systems are getting advanced with these methods.
However, there is limited research testing the integrity of the
advanced IDS against adversarial data.

According to a study by [13], the authors created a
framework that generates adversarial malware using GAN to
bypass the detection system. The objective of this research
is to use a black-box malware detector because most of the
attackers are unaware of the detection techniques used in the
detection system. Instead of directly attacking the black-box
detector, researchers created a model that can observe the target
system with corresponding data. Then this model calculates
the gradient computation from the GAN to create adversarial
malware data. With this technique, the authors received a
model accuracy of around 98%.

This section covers some previous works on generating ad-
versarial attack data using the Wasserstein GAN. The Wasser-
stein GAN model was introduced in [14], and it improves
upon the traditional GAN. Wasserstein GAN is an extension
of traditional GAN that finds an alternate method of training
the Generator. In WGAN the Discriminator provides a critic
score that depicts how real or fake the data generated.

To generate a malicious file [12] proposed a method that
uses WGAN so that a detection system signifies the adversarial
malicious file as a regular file. They have achieved an accuracy
of around 99%, proving that their method can generate adver-
sarial malicious files that can bypass the detection system.
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A recent study in [15] uses Wasserstein GAN to generate
simulated attack data. According to the authors, many tools can
generate simulated attack data. However, this process could
take a long time and a lot of resources. Using the proposed
technique, they have produced millions of connection records
with just one device and within a short period. They used the
KDD Cup 1999 dataset as the training set. Their experiment
suggests that as compared to GAN, the Wasserstein GAN
learns faster and generates better results. A paper published
by Ring et al. [16] proposed a method that produces flow-
based attack data using Wasserstein GAN. This research uses
the CIDDS dataset to test and train the proposed method.
They have suggested that the flow-based dataset consists of
categorical features like IP address, port numbers, etc. The
GAN is unable to process categorical data. They have also
proposed a method to preprocess the categorical data and
transform them into continuous data. Lastly, they have used
several techniques to evaluate the quality standard of the
adversarial data. Results suggest that it is possible to generate
real network data using this method.

A recently published paper by Lin et al. [17] discussed
the benefits of WGAN. It proposed a technique IDSGAN to
generate adversarial attack data and test the attack against the
Intrusion Detection System. They have utilized the NSL-KDD
as the benchmark dataset to generate an adversarial attack on
an IDS. They have tested this technique with various machine
learning classifiers like Support Vector Machine, Naı̈ve Bayes,
Multilayer Perceptron, Linear Regression, Decision Tree, Ran-
dom Forrest. They have used four types of attacks, Probe, DoS,
User to Root, Root to Local to generate adversarial attack data.

This research aims to create a framework that detect attacks
using GAN, motivated by [17].

• This work begins with the important feature selection
method using SHAP. This work identified the most
critical features from the dataset that contribute to a
DDoS attack.

• The next goal is to Generate adversarial data using
the selected feature set and evaluate the IDS if it can
detect the adversarial attack, followed by preparing the
IDS with the produced adversarial data.

• This work propose a polymorphic engine that updates
the feature profile of the attack by Manual feature
update and Automated feature update.

• The research work have conducted a comprehensive
simulation and analyzed the results to compare the
Reinforcement Learning method against the Manual
Feature profile attacks and presented how many cycles
an attacker can bypass an IDS with polymorphic
adversarial DDoS attacks.

The primary objective of the Generative Model is to
learn the unknown probability distribution of the population
from which the training observations are sampled from. The
most popular GAN architectures are DCGAN[18], Conditional
GAN[19], BiGAN[20], Cycle GAN[21].

III. METHODOLOGIES

A. Datasets and Feature Selection

Datasets: This work uses a dataset published by the Cana-
dian Institute of Cyber Security, CIC-IDS2017, published in
[22] by Lashkari et al., which, according to the authors,
supersedes the datasets generated earlier by the institute. CI-
CIDS2017 consists of eight different files that contain regular
traffic and attack traffic data. Moreover, this dataset consists of
various types of attacks along with the normal network flow.
This dataset also covers all the available standard protocols like
HTTP, HTTPS, FTP, SSH, and email protocols. The dataset
consists of more than 70 features that are important as per the
latest network standards, and most of them were not available
in the previously known datasets.

Feature Selection: Feature selection is an essential aspect
of the Deep Learning technique. SHAP (Shapley Additive ex-
Planations) [23] is one of the new feature selection techniques.
The goal of the proposed method is to signify the contribution
of each feature to the predicted value. Two critical measures
to define feature importance are Consistency and Accuracy.
The authors of the paper discuss that SHAP is the method
that satisfies these qualities. The SHAP values explained by
the authors are based on Shapley values that are a concept
from game theory. The idea behind Shapely values is that the
outcome of each possible combination (or coalition) of each
feature needs to be examined to determine the importance of
a single feature. The mathematical explanation of this is as
follows in Equation 1:

g(z′) = ϕ0 +

M∑
J=1

ϕjZj
′ (1)

Here, g represents the overall result of the Shapely values,
z′ϵ{0, 1}M is a coalition vector, M is the max coalition size,
and ϕ represents the presence of feature j that contributes
towards the final output. The authors have described a coalition
vector as simplified features in the paper. In coalition vector,
0 means the corresponding value is not present” and 1 means
it is “present.” Equation 1 can be called a power set and can
be explained as a tree as follows.

Equation 1 can be called a power set and can be explained
as a tree shown in Figure. 1 as follows

Fig. 1. Power Set of Features.
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Each node here represents a coalition of features. Edges
represent the inclusion of a feature that was not present in
the previous coalition. Equation 1 trains each coalition in the
power set of the features to find the most critical feature from
the dataset.

The following results were obtained as shown in Fig. 2 by
running the SHAP explainability model on the CICIDS2017
data file that shows the list of essential features responsible for
the DDoS attack in the most important to least important order.
Furthermore, the dark red color represents a higher impact of
a feature, and the blue color represents a lower impact of a
feature on the output value.

Fig. 2. Summary Plot with Feature Impact using SHAP.

So, from the results obtained in the Fig. 2, This work used
these features like functional features that contribute to the
DDoS attacks.

B. Adversarial Attack Generation using Wasserstein GAN

The methodologies used in this research involves the Gen-
erative Adversarial model that produces adversarial attacks,
training IDS by earlier generated polymorphic datasets, poly-
morphic engine to generate polymorphic DDoS attacks, and
use the polymorphic data to attack the IDS. DDoS attack data
from the CICIDS2017 [22] used to Generate the adversarial
attack by combining a random noise vector of the same size
as the selected features from the dataset to train the model.
The framework is a feed-forward neural network that consists
of 5 linear layers. The input layer consists of neurons as per
the selected number of features, and the output layer consists
of 1 neuron as shown in Fig. 3.

Fig. 3. Neural Network of the Generator.

Fig. 4. Training the Black-box IDS.

The input layer receives several numbers of features ac-
cording to the experiment, and the output layer generates the
desired data. The Generator consists of 3 hidden layers that
are optimal for this scenario; the results showed fewer layers
would underfit the training data. Anything more than that
overfits the training data.

In the next step, the generated adversarial attack combined
with the benign or normal network flow data will be fed to
the Intrusion Detection System.

The IDS will detect the attack and sends predicted labels to
the Discriminator as shown in Fig. 4, the detection success rate,
and the Discriminator will send the critique to the Generator
using the backpropagation so that in the next cycle, the
Generator can improve the production of adversarial DDoS
attack. The IDS consists of 4 layers, from which the input and
output layer consists of 2 neurons each. The IDS consists of 2
hidden layers that are ideal because it only detects if the test
data consists of an attack or benign.

The signature-based black-box intrusion detection system
used to test the detection rate of the adversarial DDoS attacks.
The reason for using this is that most of the time, the type of
attack detection system is unknown to the attackers. Attackers
rely on the responses received from the detection system, and
black-box IDS is the right choice for this model as shown in
Fig. 5. The input layer accepts two types of data from the
black-box IDS. The output layer provides two critics, one for
the Generator and one for itself.
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Fig. 5. Neural Network of the IDS and the Discriminator.

Fig. 6. Generating Adversarial DDoS Attack.

Loss functions used to calculate the Loss[17] for the Gen-
erator and the discriminator, shown in the Equation Equation
2 as follows.

PG = EMϵSattack,N
−D(G(M,N)) (2)

Figure 6 depicts that the generated adversarial data is
DDoS attack or abnormal or normal. Here, PG represents the
Penalty to the Generator in attack vector, and in noise vector.
E is calculated random inputs value to the model. Sattack

represents. If the penalty is less to the model means the model
is performing well and produces attack datasets that can bypass
IDS shown in Equation 3.

PD = ASϵBbengine
D(S) +ASϵBattack

−BSϵBattack
D(S) (3)

Here,PD represents the Penalty to the discriminator. “E” is
overall calculated feature values of the models attack datasets.
“A” is the actual feature value of benign and the attack
data. The lesser the penalty to the discriminator means the
discriminator performs well. It calculates if the generated data
is closer to the DDoS attack or benign or regular data.

Algorithm – 1 shows the process that was represented in
figure 5.

Algorithm 1 Adversarial Attack Generator

Require: Input:
Initiator-noisy vector N, DDoS Attack Datasets
Critic / Discriminator - Sattack, and Sbenign
Output: Trained Critic / Discriminator and Generator
1: for epochs = 1, . . . , Maximum EPOCHS do
2: for N-iterations, do
3: Initiator create adversarial intrrrusion attack using Sat-
tack, and
Revise the penalty by PG once it receives the critique.
4: end loop
5: While generating adversarial DDoS data and feed the data
to IDS to test if it
detects the attack.
6: for D-iterations, do
7: receive detected labels from the IDS and sends a critic
to the Generator.
Update the penalty using PD function.
8: end loop
9: end loop

C. How the Generator Fabricate an Adversarial Attack

This section specifies the details about the learning process
of the Generator and how it produces adversarial data. If the
generator continuously generates random data, the data will
be unmeaningful, which can change the entire network flow
data. So, the Generator needs to produce the data to maintain
the intensity of an attack. To ensure that, the work need to
maintain the feature values constant that have higher SHAP
values as shown in Fig. 2.

Here is a sample of how the Generator produces an
adversarial attack by the proposed technique. In this diagram,
the darker shade explains the feature values of the features that
are contributing to the attack. Whereas non highlighted values
depict the feature value of a regular or non-attack feature.

Fig. 7. The Process to Generate Adversarial DDoS Attack.

This Fig. 7 explains that to maintain the attack’s intensity,
the study need to keep that functional attack features static and
only change the feature values that are not contributing to the
attack

D. Training an IDS with the Earlier Created Adversarial Data

Fig. 8 depicts IDS training process to evaluate IDS perfor-
mance with the adversarial data. In this section, the study I will
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discuss the training of the IDS to evaluate the performance of
IDS. Following diagram that depicts the training process.

Fig. 8. Training the Black-Box IDS.

This research work considered three inputs to train the IDS:
normal or benign data, new adversarial data, and previously
generated adversarial data. The IDS learns about the adversar-
ial data and tries to detect the DDoS attack data. Algorithm 2
suggests the overall process for the same.

Algorithm 2 Training IDS by Adversarial DDoS datasets

Require: Generator – N noisy error data + Initial Attack Data
IDS – Benign or Normal Data, Adversarial Datassets, and
Earlier Generated Attack Data
Critic / Discriminator – Sattack and Sbenign
Output:
Critic / Discriminator, Generator, and trained IDS
1: for each epochs = 1 , . . . , MAX EPOCHS do
2: for G-repetitions, do
3: The generator generates attacks from datasets using
Sattack and Renew loss applying PG function
4: end of the loop
5: for D-repetitions, do
6: Critic / Discriminator distinguishes this data to Bbenign
and Battack
7: Renew loss applying PD function
8: Feed Battack (attack data) and Earlier Generated attack
Data
9: end loop

E. Polymorphic Engine to Generate Polymorphic Attack

Three different methods used for the Polymorphic engine
to generate Polymorphic Attack are as follows.

1. Update new features in the attack profile after the IDS
detects previous adversarial attacks. Algorithm 3 will discuss
the process.

Algorithm 3
Require: Input – Use five functional attack features with a

high impact score from the
Ensure: shortlisted features and five normal features.

1: Generate adversarial DDoS data and attack the IDS.
2: Train the IDS so that it can detect previously generated
adversarial DDoS data.
3: Use the same set of features to generate an adversarial
DDoS attack. Again, go to step – 2.
If the Generator fails to evade the IDS, choose one func-
tional feature with a high
feature score, one normal or benign feature from the prede-
fined set of features, and swap
them with the used features.
4: Go to step – 1.
5: In the end, the IDS will detect all the Polymorphic
adversarial DDoS attacks;
the program will stop.

2. Add new features from the predefined list of features
in the current attack profile after the IDS detects previous
adversarial attacks, and the following algorithm 4 will discuss
the process.

Algorithm 4
Require: Input – Use five functional attack features with a

high impact score from
the shortlisted features and five normal features.

Ensure: shortlisted features and five normal features.
1: Generate adversarial DDoS data and attack the IDS.
2: Train the IDS so that it can detect previously generated
adversarial DDoS data.
3: Use the same set of features to generate an adversarial
DDoS attack. Again, go to step – 2.
If the Generator cannot deceive the IDS with the same set
of features, choose one new
functional feature with a high impact score, one feature that
represents benign
data, and add them to the previous attack profile.
4: Go to step – 1.
5: At the end, the IDS will detect all the Polymorphic
adversarial DDoS attacks. The program will stop.

Fig. 9. Manual Process to Generate Polymorphic Adversarial Attack.

In the above methods shown in Fig. 9, the research work
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assumed that an attacker would manually modify the feature
profile and train the model with the new feature profile
every time the ISD detects a polymorphic attack. This study
considered using only a total of 20 features that were provided
by the SHAP method.

3. It will be challenging to keep manually changing the
feature profile if the study will use more than 20 features. So
as an alternative a Reinforcement Learning method has been
used to automate the feature profile selection for generating a
polymorphic attack as shown in Fig. 10.

Fig. 10. Function of RL in this Framework.

Fig. 11. Automated RL that Generates Polymorphic Adversarial Attack.

The Reinforcement Learning method is an ML-based tech-
nique that focuses on retraining the algorithm following a trial-
and-error approach. The agent in this architecture evaluates
the current IDS attack detection score. Then the agent takes
action and receives feedback from IDS. Positive feedback is
a reward, and negative feedback is a penalty to the agent.
The following algorithm will explain the process. The overall
process of generating a polymorphic attack is explained in the
following algorithm 5 and Fig. 11.

Algorithm 5
Require: Input – Use any five features with a high impact

score and any 5 with the lowest score from the shortlisted
features.

Ensure: shortlisted features and five normal features.
1: Generate adversarial DDoS data and attack the IDS.
2: Train the IDS and check if the adversarial attack evades
the IDS. Continue using the current feature set to generate
an attack.
3: Get the attack success rate; if the attack FAILS to evade,
The RL algorithm adds new features in the existing feature
set to
generate a polymorphic attack.
4: If the new polymorphic attack fails to evade the IDS, the
RL algorithm will get a penalty. The RL will ignore these
features, and
if the new polymorphic attack evades the IDS, the RL will
get a reward.
5: The RL agent will learn combinations of the attack feature
profile and generate a new polymorphic adversarial DDoS
attack.
6: The algorithm stops when the Generator can no longer
generate a polymorphic adversarial attack.

F. Performance Evaluation

To evaluate the performance and the results of this work,
the research work used the following parameters.

Accuracy - Represents the fraction of precisely classified
data in comparison to the total processed data. The formula to
calculate accuracy is as follows

Accuracy =
TP + TN

TP + TN + FN + FP
(4)

Precision – a ratio between True Positive values and all the
positive values received from the Deep Learning model.

Precision =
TP

TP + FP
(5)

Recall – a ratio between correctly detected samples over
total sample data. It is also known as a ratio between True
Positives and the sum of True Positives and False Negatives.

Recall =
TP

TP + FN
(6)

F1-Score – a calculation of a mean of precision and recall.

F1− Score = 2X
PrecisionXRecall

Precision+Recall
(7)

IV. RESULTS AND DISCUSSION

The experimental setup has done by using libraries like
PyTorch, Scikit-learn, Pandas, Numpy, Matplotlib. Hyper-
parameters are essential properties that define the character-
istics of the training process of the Deep Learning model.
The hyper-parameters used in this research are BatchSize,
learningrate, CriticIters, Optimizer, Epochs to the optimization
and training process of the model.

This section describes the results of various experiments
for different scenarios and analyses of findings.
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A. Attack Generation

The first step of the research is to generate an adversarial
DDoS attack to evade this Black-box IDS. As seen in Fig.
12 graph initially, Generator produces data that is unable to
bypass the IDS. However, after training the Generator for 100
epochs, it discovers to create adversarial data to deceive IDS.

Fig. 12. Adversarial DDoS Attack Generation.

B. Training IDS by Adversarial DDoS Information

This section describe the result of the discovery time of
IDS after training. As shown in Fig. 13, in initial cycles, IDS
struggles to detect the attacks. However, after training it for
100 epochs, it detects almost all the attacks.

Fig. 13. Detection Rate after Training the IDS.

C. Polymorphic Adversarial DDoS Attack Generation

This section illustrates the detection rate of the Black Box
IDS under the generation of polymorphic adversarial attacks.

In the first experiment, new features have been selected
manually to produce polymorphic attacks. For this test, limited
features from the datasets have been used. The following is the
initial result using algorithm 3.

Fig. 14. Polymorphic Adversarial DDoS Attack using Algorithm 3.

Fig. 15. IDS Detection Rate for Each Attack Cycle (using algorithm 3).

In the Fig. 14, above result, a red-colored graph suggests a
polymorphic attack being generated and proceed towards the
BlackBox IDS. As seen, the polymorphic attack can deceive
the IDS. The green-coloured graph depicts the training of IDS
by earlier generated polymorphic adversarial DDoS datasets.
After 100 epochs, IDS detects the polymorphic adversarial
DDoS attack. The following result indicates all the cycles of
polymorphic attacks on the IDS. The Generator utilizes the
same combination of the features to generate attacks until an
IDS detects all the previous attacks.

Each data point in Fig. 15 depicts the IDS detection
rate. Once the IDS detects all the previous versions of the
polymorphic DDoS attack that uses the same feature set (as
seen in Fig. 15), the generator manually selects new predefined
features and generates a new polymorphic adversarial DDoS
attack. For this test, only a group of 10 features have been
used.

In the next test, the research work used a technique
that follows algorithm 4 to revise the attack to generate a
polymorphic adversarial DDoS attack. For this experiment, the
work has been began with ten features to generate polymorphic
attack data. To generate a new polymorphic attack, two new
features have been added in the existing attack data and used a
total of 20 features. The Fig. 16 is the first result of the initial
polymorphic attack.
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Fig. 16. Polymorphic Adversarial DDoS Attack using Algorithm 4.

Each data point in Fig. 17 depicts the IDS detection
rate. Once the IDS detects all the previous versions of the
polymorphic DDoS attack that uses the same feature set,
the generator manually selects new predefined features and
generates a new polymorphic adversarial DDoS attack. For
this test, a group of 20 features have been used. In this test,
the Generator can deceive the IDS for a total of 18 cycles
using this technique.

Fig. 17. IDS Detection Rate for Each Attack Cycle (using algorithm 4).

The first two experiments focus on testing if the Generator
can produce polymorphic adversarial DDoS attack data by
updating the feature profile manually. After confirming the
possibility of doing so, the next step is to automatically select
features and manipulate the attack feature profile to generate
polymorphic adversarial attack data. To automate this task,
the Reinforcement Learning technique has been applied. It
receives an IDS detection rate and learns to select new features,
add them to the old feature set, and create a new feature set.
This experiment also indicates the number of times a generator
can produce polymorphic adversarial DDoS data. To examine
this,four sets of feature combinations have been used for each
test to generate the automated Polymorphic adversarial DDoS
attack.

• The first test includes a total of 40 features from the
dataset

• The second test includes a total of 50 features from
the dataset

• The third test includes a total of 60 features from the
dataset

• The fourth test includes a total of 76 features from the
dataset...

The above experiments begin with ten features, from which
5 are a functional feature with a high impact score, and 5 are
usual or benign.

D. Test Evaluation

The Table I describes the overall values for the Precision,
Recall, and F1-score for each test.

TABLE I. NONLINEAR MODEL RESULTS

Sl.
No.

TEST ACCURACY PRECISION RECALL F1-
SCORE

1 Manual Test – 1 (using Al-
gorithm 2)

98.58 96.24 92.91 0.953

2 Automated Test using 40
features (using Algorithm
4)

98.27 94.41 92.44 0.935

3 Automated Test using 50
features (using Algorithm
4)

96.97 93.58 91.69 0.928

4 Automated Test using 60
features (using Algorithm
4)

96.34 93.22 91.43 0.921

5 Automated Test using 76
features (using Algorithm
4)

94.42 91.79 91.58 0.916

E. Analysis

This research work ran 5 test scenarios with different fea-
ture combinations. 2 experiments consist of a manual feature
selection technique to generate polymorphic adversarial DDoS
attack data and four tests with an Automated feature selection
technique. A manual feature selection technique utilized as
a benchmark and compared this technique to the automated
feature selection technique to analyze for how many cycles
the polymorphic attack evades the Black-Box IDS.

The following Fig. 18 graphs will be useful to compare
these five different scenarios.

Fig. 18. Test - 1 Polymorphic Adversarial Attacks using Manual Feature
Selection.
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Fig. 19. Test - 2 Polymorphic Adversarial Attacks using Automated Feature
Selection.

Fig. 20. Test - 3 Polymorphic Adversarial Attacks using Automated Feature
Selection.

Fig. 21. Test - 4 Polymorphic Adversarial Attacks using Automated Feature
Selection.

Fig. 22. Test - 5 Polymorphic Adversarial Attacks using Automated Feature
Selection.

In all the above results shown in Fig. 18, 19, 20, 21, 22,
the Polymorphic DDoS adversarial attack successfully evading
the IDS; the orange bar suggests the polymorphic attack is
becoming weak once the IDS detects them. By counting the red
bar, It has been observed that how many times the Generator
produced a polymorphic attack in each cycle. Fig. 19 suggest
that when the Generator uses a small number of features,
more than 90% of the polymorphic attack evades the IDS.
By noticing these figures, it is clear that using fewer features
to generate a polymorphic attack has a higher evasion rate but
fewer chances of generating more polymorphic attacks.

Fig. 20, 21, 22 suggest that initially, more than 90% of
the polymorphic attacks can evade the IDS. However, results
propose that if the Generator utilizes more features to generate
a polymorphic DDoS attack, the success rate gets lower each
time. Comparing all the results confirms that while using a
fewer number of features to generate polymorphic adversarial
DDoS attacks, the attack success rate stays up to the acceptable
amount. However, when more features have been used, the
attack success rate depletes after certain cycles.

Now the Table II describes the total runtime for each
experiment.

TABLE II. MODEL EVALUATION

Sl. No. TEST TOTAL
RUNTIME

1 Test – 1 Manual Feature profile update (with
a total of 10 features)

30.43 minutes

2 Test – 3 Automated Feature profile update
(with a total of 40 features)

75.31 minutes

3 Test – 5 Automated Feature profile update
(with a total of 50 features)

90.45 minutes

4 Test – 6 Automated Feature profile update
(with a total of 60 features)

145.37 minutes

5 Test – 5 Automated Feature profile update
(with a total of 76 features)

173.55 minutes

As observed from the above table, if the test uses a small
number of features, it takes less time to run the simulation.
The run time rises upon increasing features to generate a
polymorphic DDoS attack.
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V. CONCLUSIONS AND FUTURE WORK

The work proposed a framework to create polymorphic
adversarial DDoS attacks using a CICIDS2017 dataset using
a Wasserstein GAN. To generate polymorphic attacks, three
different techniques have been proposed that change the feature
profile of the attack. New features have been selected manually
each time to generate polymorphic adversarial attacks in the
first two techniques. Furthermore, to automate the feature
selection to generate polymorphic attacks, a Reinforcement
Learning technique has been applied in each technique; the
Generator creates a polymorphic attack until no more new
features are remaining to choose from the feature set.

From the results, it has been observed that the Generator
can produce polymorphic adversarial DDoS. Results also de-
pict that while using a small number of features to create a
polymorphic attack, the attacks were successfully deceiving the
IDS with more than a 90% success rate while using a manual
selection of features.

In the future, it could be interesting to consider using other
variants of GAN like DCGAN, Conditional GAN, BiGAN,
Cycle GAN to generate adversarial network attack data and
evaluate the detection systems. Another limitation of this
research is that it focused on generating only one type of
attack, as every attack has different functional features. It
would be difficult to use one Generator to create other types
of attacks with the same generator. So it would be interesting
to use multiple generators for each type of attack and evaluate
the performance of the IDS against all types of polymorphic
adversarial network attacks.
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