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Abstract—At present, breast cancer survival rate significantly 
varies with the stage at which it was first detected. It is crucial to 
achieve early detection of malignant tumors to reduce their 
negative effects. Magnetic resonance imaging (MRI) is currently 
an important imaging modality in the detection of breast tumors. 
A need exists to develop computer aided methods to provide 
early diagnosis of malignancy. In this study, I present machine 
learning models utilizing new image histogram features using the 
pixels least significant bit. The models were first trained on an 
MRI breast dataset that included 227 images captured using the 
short TI inversion recovery (STIR) sequence and diagnosed as 
either benign or malignant. Three data classification methods 
were utilized to differentiate between the tumor’s classes. The 
examined classification methods were the Discriminant Analysis, 
K-Nearest Neighborhood, and the Random Forest. Algorithms’ 
testing was performed on a completely different dataset that 
included another 186 MRI STIR images showing breast tumors 
with verified biopsy diagnostics. A significant tumor 
classification efficiency was found, as judged by the pathological 
diagnosis. Classification’s accuracy was calculated as 94.1% for 
the DA, 94.6% for the KNN and 80.6% for the RF algorithm. 
Receiver operating curves also showed significant classification 
performances. The proposed tumor classification techniques can 
be used as non-invasive and fast diagnostic tools for breast 
tumors, with the capability of significantly reducing false errors 
associated with common MRI imaging-based diagnosis. 

Keywords—Tumor classification; histogram analysis; magnetic 
resonance imaging; breast cancer; machine learning 

I. INTRODUCTION 
Breast cancer is the most common cancer type in women 

worldwide. It is the fifth cause of female deaths due to cancer 
[1]. Around 300,000 new female cases is estimated to occur 
each year in the United States alone [2]. The survival rate for 
breast cancer have generally improved over the past few years, 
as diagnosis at an early and localized stage is now possible, 
because of the progressive improvement in treatment strategies 
[3]. Early diagnosis of malignant tumors is crucial to avoid 
tumor metastasis and subsequently elevate the survival rate of 
diseased cases. If the tumor was not diagnosed early, it may 
spread beyond the original breast organ to other distant organs. 
Currently the routine method for diagnosing suspected breast 
tumors is imaging using Mammography, the main imaging 
modality for the breast organ that is then followed by 
pathological diagnosis through extraction of a biopsy sample 
from the tumor invasively. Mammography breast cancer 

detection sensitivity is generally high [4], however, this 
sensitivity goes down to near 62% when imaging females with 
dense breasts [5]. Additionally, the costly biopsy procedure, 
the gold standard for diagnosis, is routinely performed under 
ultrasound guidance. However, about 75% of the performed 
biopsy procedures yield a benign diagnosis [6, 7], which is 
considered an unnecessary, costly, and time consuming and 
painful procedure to patients. In order to reduce the wasted 
biopsy procedures, other imaging modalities were proposed, 
such as magnetic resonance imaging (MRI) and ultrasound 
elastography [8-13]. 

Lately, MRI has become a useful and important modality to 
visualize and detect breast tumors in today’s clinical practice 
[8, 14, 15]. This imaging modality is becoming increasingly in 
use to preoperatively evaluate DCIS tumors and define their 
extent [16, 17]. MRI has the advantages of not producing 
ionizing radiation, exhibiting high imaging contrast, good 
sensitivity rate, ability to show auxiliary nodes, and enjoying 
3D imaging capabilities [18]. Additionally, Short inversion 
time Inversion Recovery (STIR) MRI scanning sequence 
provides a means for suppressing fat and inflammatory tissue 
from the normal tissue in the resultant images [19, 20]. If MRI 
is used in daily routine examinations, specific types of cancer 
would have been significantly diagnosed with higher 
sensitivity rates at an earlier stage [8], but cost remains a major 
impediment. Nevertheless, breast imaging using MRI exhibit 
relatively moderate specificity rates (down to 79%) that 
increase the erroneous false positive diagnostic percentages 
[15, 21-23]. 

One of the MRI imaging characterization methods is 
histogram analysis that is usually used to distinguish different 
anatomical and morphological regions, in addition to its more 
fundamental usage as an image enhancement tool [24, 25]. 
Some previous studies used histogram methods to illustrate the 
relation between the tumors physiological changes and their 
associated histogram parameters to achieve improved 
utilization of these histogram parameters as substitutive and 
representative markers describing heterogeneity of the tumor 
compositions [15, 26, 27]. In the past years, several studies 
have exploited histogram approaches in various imaging 
modalities [24, 27-32] with a growing emphasis on different 
MRI techniques and imaging sequences. Histogram processing 
methods showed its value for investigating various tumor 
parameter distributions, for example, in dynamic contrast-
enhanced MRI (DCE MRI) it was possible to differentiate 
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between responder and non-responder groups in brain tumors 
radiotherapy [33], and in apparent diffusion coefficient (ADC) 
using diffusion MRI, it was also possible to detect specific 
types of cervical cancer [34] and endometrial cancer [35]. 
Despite that, information related to tumor’s heterogeneities 
remain not fully scrutinized [15]. Along with the advances in 
high resolution MRI and its associated signal processing 
methods, histogram analysis of cancer tumors scanned using 
MRI will be used to a greater extent. 

In this research, breast tumor’s heterogeneity was 
investigated and described by the least significant byte 
histogram parameters calculated from STIR MRI imaging 
sequences for a number of clinically and pathologically 
verified patients diagnosis. The aim of this study is to 
differentiate between the two main breast tumors’ classes; 
benign and malignant, with higher accuracy rates. Computer 
aided diagnosis was achieved using three classification 
algorithms to categorize the acquired data. Following that, the 
classification efficiency was calculated and compared with the 
outcomes of pathological tumor’s diagnosis; consequently, the 
classification errors and receiver operating curves were 
calculated using two MRI data sets; one dataset for training the 
classifiers and the other dataset was utilized for testing. 
Throughout this study, it will be demonstrated that the 
proposed breast tumor classification technique has the potential 
as a noninvasive early diagnosis tool. This may lead to earlier 
and faster tumors characterization, and also may reduce the 
number of unnecessary biopsies performed pathologically to 
determine benignancy or malignancy; the applicable criteria 
that follow. 

II. MATERIALS AND METHODS 
In this research, the used training dataset was an online 

imaging dataset made available for scientific studies. It was 
published by the Cancer Imaging Archive (TCIA) [36] under 
the Breast-Diagnosis collection [37]. Table I lists the mass 
types included in this training dataset and their pathologic 
diagnosis, as published in the clinical, pathology, and 
radiologist reports [37]. A different MRI dataset was used for 
classification testing purposes. This testing dataset was 
previously acquired from different health care faculties, where 
tumors diagnosis was also verified with histopathology, as it 
was used in a previously published study of the research team 
[38]. The dataset included 186 tumor images, as listed in 
Table I, and their biopsy results were also available. 

TABLE I. PATHOLOGIC DIAGNOSIS OF THE EXAMINED CASES 

Case 
Diagnosis 

Pathological Diagnosis (count) 
Training Dataset Testing Dataset 

Benign 

Fibroadenoma (27) 
Fibrocystic Change (22) 
Fibrosis (25) 
Stromal Hyperplasia (8) 

Fibroadenoma (43) 
Fibrocystic Change (15) 
Cystic Lesion (14) 

Malignant 
Invasive Ductal Carcinoma (91) 
Ductal Carcinoma In Situ (19) 
Invasive lobular Carcinoma (35) 

Invasive Ductal 
Carcinoma (114) 

Total 
Numbers  Training Dataset Testing Dataset 

Benign 82 72 
Malignant  145 114 

A. Generating Histograms 
The presented analyses in this study focus on obtaining 

tumor’s histograms and identify the important classification 
features. Apparently, obtaining the whole image’s histogram 
will degrade the classification overall accuracy by including 
imaging features that represent the surrounding non-tumorous 
tissue and healthy organs. Selection of the region of interest 
(ROI); i.e., delineating only the tumor, is a common practice in 
the routine radiology analysis. This is a particularly necessary 
step in this study to exclude non-tumorous features from the 
classification process. 

Tumors’ locations and pathological diagnosis were already 
determined in the training dataset’s pathological reports. This 
information was used to manually select ROIs for all 
independent breast tumors in the dataset. Fig. 1(a) and Fig. 1(c) 
show selected ROIs for malignant and benign breast tumors, 
respectively. Following that the histogram for the selected 
image ROIs was generated for the least significant byte (LSB) 
only; the reason for that will be explained shortly. The 
corresponding histograms are presented in Fig. 1(b) and 
Fig. 1(d), in which the horizontal axes represent gray scale 
level variations, and the vertical axes represent the number of 
pixels for a specific gray scale level. 

After generating all tumors’ ROI imaging histograms, their 
classifying features were then computed. The classifying 
features were chosen to be ten histogram parameters. Those 
parameters were used to describe the shape and profile of a 
histogram. The ten histogram parameters were generally used 
in similar studies found in the literature [15, 26, 34, 38, 39] that 
aimed to differentiate tumors or identify various morphological 
regions based on imaging data. The used histogram features 
were: maximum, median, mean, mode, entropy, standard 
deviation, kurtosis, skewness, 75 percentile and the 25 
percentile values. Entropy measures the degree of uniformity 
of a histogram. Kurtosis represents a measure of the histogram 
general shape. Skewness represents a histogram’s data 
asymmetry about the mean value. Percentile values represent a 
value below a specified limit of the calculated histogram data. 

 
(a)    (b) 

 
(c)    (d) 

Fig. 1. MRI Imaging Examples of Breast Tumors’ ROI and their Least 
Significant Byte (LSB) Associated Histograms: (a, b) Malignant Tumor; (c, d) 

Benign Tumor. 
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Statistically speaking, this study is an observational study, 
with no control over the classification features. Statistical 
testing was used to examine the classification significance of 
the chosen histogram parameters/features. First normality test 
had to be applied to select a suitable significance test. The 
Jarque–Bera normality test was utilized to examine the features 
normality. All features failed the normality test; therefore, the 
parametric t-test could not be used and the non-parametric 
Wilcoxon rank sum test was used instead. This test showed that 
some features had a significant classification power, provided 
that the alternative testing hypothesis of different features 
distribution medians for the two classes (benign and malignant) 
were different. Statistical significance level α of 0.05 was 
considered throughout this study. 

For both training and testing data sets, only Short TI 
Inversion Recovery (STIR) MRI imaging were examined, 
which is an imaging procedure that aims at highlighting the 
breast mass’s morphology and facilitates visualization of 
tumor’s heterogeneity. Each pixel of the studied MRI images 
consists of two bytes; least significant bytes (LSB) and most 
significant bytes (MSB). Two types of histograms were 
generated: histograms based on the whole pixel size; LSB and 
MSB, and histograms based using LSB only. As shown in 
Table II, the number of significant histogram features using the 
full pixel size were only 6, compared to 8 significant features 
when using the LSB. Kurtosis and skewness were the 
additional significant features in the second case. For the full-
length histograms, the mode was the most significant feature 
with P value of 0.0026, while for the LSB case, skewness was 
the most significant feature with 8.35E-05 P value. 

Evidently, features based on the LSB histograms would 
provide more classification power between the two tumor 
types. The LSB’s histogram information may have magnified 
the tumor’s image heterogeneity and adherence pattern with 
the surrounding normal tissue. Fig. 1 shows benign and 
malignant examples along with their LSB histograms. The 
malignant LSB histogram has a greater content of low pixel 
values, in contrast to the benign LSB histogram that has larger 
content of high pixel values that has been truncated in the 
calculation of the LSB histograms. Therefore, this interesting 
and useful effect was encouraging to proceed the classification 
process using LSB histograms rather than full pixel length 
histograms, which according to my knowledge, has not been 
reported before. 

B. Data Classifiers 
Three classifiers were exploited to automatically categorize 

the examined images as either malignant or benign, according 
to the corresponding histogram features. The used classifiers 

were the discriminant analysis (DA), K-Nearest Neighbor 
(KNN), and Random Forest (RF) classifiers. The 227 data 
points were utilized to train and validate the three classifiers, 
judged by their consequent resubstitution error, and the leave-
one-out analysis. The three classifiers were chosen for their 
popularity, implementation simplicity, and prior use in similar 
applications [40-42]. 

The DA classifier tries to find a combination of the 
classifying features that divides the two disease main classes; 
benign and malignant. The discriminant analysis as a 
parametric method, attempts to estimate a categorical or 
grouping dependent variable based on a number of continuous 
independent variables; i.e. predictor variables using a 
preselected discriminant function. The dependent variable in 
our application was the tumor diagnosis outcome, while the 
independent variables were the MRI imaging features. 
Previous studies show that this classification method has 
shown an acceptable classification performance, even with 
inappropriate features selections [41, 43]. 

KNN is a nonparametric classification method. A data 
point is classified according to the distance between it and its 
neighbors in the feature space, with the point being assigned to 
a class that is closest to its K nearest neighbors. The main 
parameter controlling the performance of such classifier is the 
number of neighbors, K. A common tradeoff in selecting the 
right value of the parameter K exists, where larger K values 
make classification outcomes less vulnerable to the effect of 
noise or data outliers but results in less distinct classification 
boundaries. On the other hand, lower values of K produce 
uneven and irregular classification boundaries [44]. Therefore, 
the classification analysis was repeated in the training phase for 
different values of the K parameter, and the resultant 
classification error was reported accordingly. 

The third used classifier in this study was the RF which is 
also a nonparametric classification method. In this method, a 
group learning model is constructed using a large number of 
decision trees. Classification is performed according to the 
mode of the decision trees. Classification trees have the 
advantage of making a good fit to the training data [45, 46]. 
The main parameter in this method is the number of trees T 
used to build the classification model. Therefore, the 
classification analysis was repeated in the training phase for 
different values of the T parameter, and results were compared 
at each selected value. It is worth mentioning that it has been 
reported by Lin and Jeon [47], that a relationship exists 
between RF and KNN methods, where both belong to the 
weighted neighborhoods schemes. 

TABLE II. STATISTICAL TESTING OF HISTOGRAM CLASSIFICATION FEATURES USING TWO IMAGING PIXELS SIZES 

P-values based on LSB+MSB # Significant 
features Entropy Max Median Mean STD Mode Kurtosis skewness prctile75 prctile25 

0.1077 0.0135 0.013 0.0034 0.59 0.0026 0.1077 0.4112 0.0125 0.0063 6 

P-values based on LSB  

Entropy Max Median Mean STD Mode Kurtosis skewness prctile75 prctile25  

0.847 0.0468 1.34E-04 0.0071 0.327 0.0251 1.47E-04 8.35E-05 1.71E-04 0.0011 8 
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After training each classifier using the training MRI 
dataset, the associated resubstitution error was calculated. 
Additionally, leave one out analysis (LOO) was performed as a 
validation step. In leave one out analysis each classifier was 
trained on the whole data set except for one data point, and 
classification was then predicted for this data point. This 
process is repeated until all points were diagnosed based on the 
model generated using the other trained data points. Both 
resubstitution and LOO analysis data were used to select the 
classifiers’ parameters that generate the lowest false negative 
error with a high level of accuracy. Achieving low false 
negative errors is very crucial, as misclassifications of positive 
malignant tumors are so severe, as they lose the early detection 
and treatment privileges. 

Following training, testing of the classification model 
follows using another independent dataset that consists of 186 
testing images. Classification accuracy and receiver operating 
characteristic (ROC) curves were plotted for each classification 
model and analyzed accordingly. A flowchart summarizing the 
tumor’s classification process is shown in Fig. 2. 

 
Fig. 2. Flow Chart of the Breast Tumor’s Classification Process. 

III. RESULTS 
Application of the described approach resulted in labeled 

histogram data points. The points were used for training and 
evaluation of the three classifiers. The classifiers where then 
tested, and classification was found to be significant, with 
different efficiencies according to the used classifier, as will be 
shown in the following subsections. 

A. Classifiers Training Evaluation 
1) DA classifier: Five DA discriminant functions were 

evaluated and the results of resubstitution error and leave one 
analysis are shown in Table III. The table lists the True 
Negative (TN), True Positive (TP), False Negative (FN) and 
False Positive (FP) values for each discriminant function. 
Sensitivity, specificity, and accuracy values are used to 
determine the classifier’s performance. The sensitivity value 
provides a very important indication, as higher sensitivity 
values point out the classifier’s ability to identify malignant 

tumors as malignant. It is ideal to have a false negative value 
of zero (sensitivity of 1). The Positive and Negative 
Likelihood Ratios (PLR and NLR respectively) are also 
reported in Table III. It is desirable to have a classifier with 
higher positive likelihood ratio > 2 and NLR < 0.5 for a better 
discriminatory classification [48]. 

From the table, it is evident that the Mahalanobis 
discriminant function provides satisfactory classification 
results with high sensitivity and low NLR reflecting the low 
possibility of producing false negative errors. Although the 
other functions provided a lower FP error, yet the severity of 
FN errors is much higher than FP errors. 

2) KNN classifier: The KNN classifier was trained using 
the standard Euclidean distance metric. This classifier requires 
determination of the number of neighboring points; K 
parameter, to be included while creating the model decision 
boundary. A good value of K would provide a suitable 
compromise between the classifier’s sensitivity to noise at low 
values of K form one hand, and the reduced classification 
accuracy at high values of K on the other hand. Therefore, 
different K values were examined, as shown in Fig. 3. 

In Fig. 3, both the resubstitution and LOO analysis were 
performed for K values ranging from 1 to 100, to explore any 
potential useful values of K. Only the classification accuracy is 
being graphed to show the overall performance of the 
classifiers, but specificity and sensitivity are also reported and 
analyzed in Table IV. The resubstitution accuracy profile in 
Fig. 3(a) shows a rapid accuracy decline as K increases with a 
small peak that appears at K=15, then the curve declines again 
until it settles at an accuracy of 79% approximately. The LOO 
accuracy profile in Fig. 3(b) shows two peaks at K=5 and 
K=15, then the curve settles at about 79 % accuracy level. 
From both curves, it is rational to select the value of 15 rather 
than 5, to make the model more generalized and less sensitive 
to data outliers and data irregularities. For this value of K = 15, 
an overall training classification sensitivity of about 85.5% was 
achieved with a low NLR; which is an indication of a low 
possibility of producing false negative diagnosis. 

3) Random Forest Classifier: In this classifier, the main 
parameter is the number of trees (T) composing the forest. The 
resubstitution and LOO analyses were performed for T values 
from 5 to 300, to explore potentially useful T values, as 
illustrated in Fig. 4. The resubstitution accuracy profile shown 
in Fig. 4(a), exhibits a steady accuracy of 100% for T values 
larger than 40 trees. The LOO profile in Fig. 4(b) shows 
accuracy fluctuations around the 79% accuracy level for 
almost all values of T. It can be noticed from the figure that 
the resubstitution error is infinitesimal and only occurs for 
small tree numbers. Nevertheless, the LOO analysis reveals 
the actual performance of the RF algorithm when data points 
not included in the training are tested, which indicates a model 
overfitting effect. Based on these results, a classifier with a 
decision trees number T of 100 was chosen for further testing, 
and the corresponding training evaluation calculations are 
listed in the second section of Table IV. 
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TABLE III. TRAINING AND EVALUATION OF THE DISCRIMINANT ANALYSIS CLASSIFIER USING DIFFERENT DISCRIMINANT FUNCTIONS 

A- Resubstitution Analysis 
Discriminant function TN TP FN FP Count Sensitivity Specificity Accuracy PLR NLR 
Mahalanobis 52 137 8 30 227 0.945 0.634 0.832 2.583 0.087 
Linear 56 134 11 26 227 0.924 0.683 0.837 2.914 0.111 
Diagonal Linear 68 106 39 14 227 0.731 0.829 0.767 4.282 0.324 
Quadratic 73 107 38 9 227 0.738 0.89 0.793 6.723 0.294 
Diagonal Quadratic 72 81 64 10 227 0.559 0.878 0.674 4.58 0.503 
B- Leave One Out Analysis 
Discriminant function TN TP FN FP Count Sensitivity Specificity Accuracy PLR NLR 
Mahalanobis 52 136 9 30 227 0.938 0.634 0.828 2.564 0.098 
Linear 54 133 12 28 227 0.917 0.659 0.824 2.686 0.126 
Diagonal Linear 68 104 41 14 227 0.717 0.829 0.758 4.20 0.340 
Quadratic 69 107 38 13 227 0.738 0.841 0.775 4.655 0.311 
Diagonal Quadratic 72 81 64 10 227 0.559 0.878 0.674 4.580 0.503 

TABLE IV. EVALUATION OF THE KNN AND RF CLASSIFIERS’ TRAINING PERFORMANCE 

 TN TP FN FP Count Sensitivity Specificity Accuracy PLR NLR 

KNN Resubstitution Analysis 

K = 15 62 126 19 20 227 0.869 0.756 0.828 3.563 0.173 

KNN Leave One Out Analysis 

K = 15 61 122 23 21 227 0.841 0.744 0.806 3.285 0.213 

RF Resubstitution Analysis  

T = 100 82 145 0 0 227 1 1 1 Inf 0 

RF Leave One Out Analysis  

T = 100 58 127 18 24 227 0.876 0.707 0.815 2.993 0.176 

 
(a) 

 
(b) 

Fig. 3. KNN Classifier: (a) Training Accuracy for different Values of K 
Parameter using Resubstitution Analysis. (b) Training Accuracy for different 

Values of K Parameter using LOO Analysis. 

 
(a) 

 
(b) 

Fig. 4. Random Forest Training Evaluation: (a) Training Accuracy for 
different Values of T Parameter using Resubstitution Analysis. (b) Training 

Accuracy for different Values of T Parameter using LOO Analysis. 
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B. Classifiers Testing Evaluation 
One contribution of this study is exploitation of trained 

classification models to classify an entirely different testing 
dataset that was not included in the models training. No further 
tuning or post processing was applied on the models, and 
testing was performed directly resulting in the following tumor 
diagnosis outcomes. 

1) Testing DA classifie: A summary of DA testing 
outcomes is presented in Table V. The DA classified the 
tumors with a sensitivity of 99.0%, specificity of 87.8%, and 
accuracy of 94.1% with a very low NLR ratio. 

2) Testing KNN classifier: The KNN classifier testing 
results are summarized in Table V for the same K value used 
in the training process. The testing accuracy of the algorithm 
was calculated for all values of K; from 1 to 100, as shown in 
Fig. 5(a). Two accuracy peaks appear at 15 and 23 and giving 
the same exact classification accuracy. 

It is apparent that the KNN has a very close performance to 
the DA classifier, yet the sensitivity measure was found to be 
better using the KNN, as the calculated NLR was almost zero 
with no FN errors. 

 
(a) 

 
b) 

Fig. 5. (a) Accuracy of Classification Testing for all Values of K Parameter 
for the KNN Classifier. (b) Accuracy of Classification for all Values of T 

Parameter for the RF Classifier. 

3) Testing random forest classifier: The RF algorithm 
tumor categorization outcomes were summarized in Table V 
for the same T value used in the training process. Once more, 
the testing accuracy of the algorithm was calculated for all 
values of T; from 5 to 300, as shown in Fig. 5(b). The 
accuracy profile does not show specific peaks or range of T 
values with higher accuracy levels. A fluctuating, yet steady 

performance is noticed for T values of more than 25, around 
the 77.5 % accuracy level. Yet, a sensitivity level of only 76% 
was noted, as the classifier failed to correctly categorize 25 
malignant tumors. The RF testing profile is very similar to the 
RF LOO training profile. This observation is interesting, as it 
shows that the RF classifier performance can be accurately 
predicted based on the LOO training curve profile. 

To compare the three classifiers’ performance at the 
selected classification parameters, a combined ROC curve was 
plotted in Fig. 6. It is clear that the DA and KNN classifiers are 
superior to the RF classifier, in terms of sensitivity and 
specificity. The areas under the curves (AUC) were 0.956 and 
0.953 for the DA and KNN, respectively, indicating a very 
good and significant classification performance. The AUC 
value for the RF model was calculated to be only 0.845 
reflecting a moderate classification performance. 

 
Fig. 6. ROC Curves showing Performance of the Three Breast Tumor 

Classifiers. 

IV. DISCUSSION 
In this article, breast tumor classification methods based on 

MRI LSB histogram parameters were demonstrated. The 
selected histogram features were used to train three different 
machine learning methods as tumor classifiers, and their 
corresponding performances were compared. Previous studies 
in the literature used histogram parameters to characterize 
breast cancer and its response to therapy [27, 41, 49-51]. Their 
main goal was finding the statistical significance of histogram 
features to categorize the examined breast tumors, yet the 
usage of machine learning techniques for such a purpose was 
limited in the literature. The study reported by Vidić and 
coworkers presented a support victor machine algorithm to 
evaluate breast tumors classifications [50]. Although the 
authors showed an overall classification accuracy of up to 0.96, 
they reported only accuracy values without considering 
specificity nor sensitivity ratios, therefore, no information were 
provided about false positive or negative classification errors. 
Lee and associates reported five machine learning algorithms 
to predict prognostic biomarkers of breast cancer [51]. The 
authors reported an AUC value of 0.8 using a random forest 
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model, which is quite close to the RF AUC value we report 
herein, although higher AUC values were achieved using other 
algorithms, as demonstrated in the paper in hand. Additionally, 
usage of histogram features calculated using only the LSB 
imaging pixels has never been reported, according to my best 
knowledge, which have shown more significant differences 
between benign and malignant tumors. This effect can be 
explained as follows: important information pertaining to the 
tumor’s heterogeneity, adherence to the surrounding normal 
tissue, and response to magnetic excitations may have been 
emphasized in the image’s low gray scale values, due to the 
scanning nature of STIR MRI sequence that suppresses the 
fatty normal tissues, i.e., it nulls the signal from fat. 

Herewith, two different breasts MRI dataset were 
exploited: one for training the classifiers and the other for 
independently testing them. One main contribution in this 
study is the application of a trained machine learning method 
on a totally different dataset from a different source. This 
strengthens the hypothesis that the described methods are 
generalized classification methods that could be efficiently 
used to classify any given STIR MRI breast tumor images. 
Furthermore, the described methods can be easily repeated and 
validated by other research groups on their own datasets. 

Statistical analysis of the selected histogram features 
showed skewness as the most significantly different parameter 
between benign and malignant tumors, with a P value of 
8.35E-05. In general, skewness represents the shape and 
asymmetry of a given histogram. Based on the training MRI 
dataset, the average skewness value for the benign images was 
5.866, while for the malignant tumors the value was 2.001; 
approximately 3 folds. This indicates that benign histograms 
were quite asymmetric around the mean and more right-
skewed towards the higher image pixel values as compared to 
malignant histograms. 

As mentioned earlier the selection of the three classifiers 
was based on their inherent implementation simplicity and 
prior use in similar applications [40-42]. The aid of machine 
learning algorithms to improve diagnostic accuracy is of 
significant interest and utility, as human interpretation of MRI 
breast data is neither 100% sensitive nor 100% specific. Even 
though the DA algorithm assumes a multivariate normal 
distribution between the used features, which is not the case 
here, yet it was successful in categorizing the testing tumors 
data. It has been reported that violations of the normality 
assumption can be permitted in certain cases, and the algorithm 
outcomes can still be considered reliable, given that the non-
normality violations are not caused by data outliers [52]. The 
other two algorithms; KNN and RF, do not assume normality 
for the input data points. 

The KNN classifier was also very successful and specific in 
classifying the examined breast tumors. Selection of a certain 
K parameter was a compromise between good classification 
performance and robustness against noise and data outliers. 
Optimization techniques can be used to find the optimum KNN 

parameters by minimizing the cross-validation loss error. 
Readily available hyperparameter optimization methods 
(MATLAB, The MathWorks Inc., Natick, Massachusetts, US) 
was attempted using the training data and tested as well using 
the testing dataset. The optimization process recommended 
using the Spearman distance function (instead of the standard 
Euclidean method used throughout this study) and a K value of 
38. In this case, the classification error occurred only for 1 FP 
and 1 FN data points out of the 186 testing points (sensitivity 
of 99% and specificity of 98.8%), which is a remarkable 
classification performance. Yet, the goal of this paper is to 
demonstrate the feasibility of using different machine learning 
techniques to categorize breast tumors and compare between 
their performances in a pilot study. The task of finding an 
optimal classifier for that purpose would need more 
investigation and testing using larger datasets, which is 
considered future work. 

The DA and KNN classification performance metrics 
showed significantly better outcomes in categorizing testing 
data over the training data. Training outcomes showed an 
accuracy of approximately 83%, while testing data showed 
about 94% accuracy; more than 10% of accuracy increase. This 
effect can be explained by the fact that the training dataset was 
larger and more diverse than the testing dataset. As 
demonstrated in Table I, the training dataset included 227 
independent images with 7 different tumor types, while the 
testing dataset included 186 images showing 4 types of 
common breast tumors. The training dataset included more 
tumor types, however, some of them were uncommon and rare 
tumor types, such as stromal hyperplasia and Ductal 
Carcinoma in Situ [53, 54]. The trained algorithms used a more 
generalized data than the testing data, which was the main 
cause behind the accuracy differences between the two 
situations. The lack of a more generalized testing dataset is 
considered another limitation of this study. Despite the 
encouraging results that have been shown in this study, testing 
the developed classification methods on a larger and more 
diverse MRI dataset is an ongoing work. 

The RF algorithm had though a moderate classification 
performance with an utmost accuracy ratio of 80%. It has also 
the disadvantage of being expensive regarding the 
computational time. RF LOO analysis was completed in 
approximately 70 minutes to run using MATALB (The 
MathWorks Inc., Natick, Massachusetts, US) on a modern 
computer (Windows 10, 10th Generation Core I5, 2.11 GHz, 
16GB RAM), while DA LOO and KNN LOO were completed 
in 2 and 6 seconds, respectively. Nevertheless, this method’s 
testing performance may be directly predicted from the training 
LOO data analysis, as the RF algorithm behaved in a very 
similar and consistent way in both cases, with slight accuracy 
degradation under the testing mode. This was clear from the 
demonstrations in Fig. 4(b) and 5(b). Another interesting 
observation is that the three unoptimized algorithms had very 
close specificity ratios though; 87.8 for DA, 87.8 for KNN and 
85.4 for RF, respectively. 
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TABLE V. TESTING RESULTS FOR THE BREAST TUMOR’S CLASSIFICATION USING THE THREE ALGORITHMS 

Algorithm Parameter TN TP FN FP Count Sensitivity Specificity Accuracy PLR NLR 

DA Algorithm 

Mahalanobis 72 103 1 10 186 0.990 0.878 0.941 8.121 0.011 

KNN Algorithm 

K = 15 72 104 0 10 186 1 0.878 0.946 8.2 0 

RF Algorithm 

T = 100 70 79 25 12 186 0.76 0.854 0.801 5.191 0.282 

V. CONCLUSION AND FUTURE WORK 
New breast tumors’ classification methods based on MRI 

imaging were presented. The methods showed the potential to 
provide more accurate tumor’s diagnosis non-invasively and 
timely efficient. This method may provide an alternative 
approach to the unnecessary biopsy procedures routinely 
performed to verify a breast tumor preliminary diagnosis. From 
the demonstrated results, it has been shown that the 
discriminant analysis and K nearest neighborhood methods can 
provide good tumor categorization performance with a 
significant sensitivity and accuracy levels. The random forest 
method proved to provide a moderate degree of classification 
accuracy, however, it showed consistent outcomes in both the 
training and testing data. The reported least significant byte 
histogram-based algorithms may be applied on other tumor 
types, but this requires further investigation to prove being 
valid. Future research projects include applying the described 
methods on larger and diverse STIR MRI imaging datasets to 
find an optimized tumors classification scheme. 
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