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Abstract—The immense popularity of smartphones has led to
the constant use of these devices for productive and entertainment
purposes in daily life. Among the different operating systems, the
Android system plays a very important role in the development
of mobile technology as it is the most popular operating system.
This makes it a target for cyberattack, with severe negative
effects in terms of monetary and privacy costs. Thus, this study
implements a detection scheme using effective deep learning
algorithms (LSTM and MLP). Also, it tests their ability to detect
malware by employing private and public datasets, with accuracy
of over than 99%.
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I. INTRODUCTION

The current century has witnessed various inventions such
as smartphone devices. These devices are characterized by
advanced features in terms of sophisticated operating systems
and gigabytes of memory. They are equipped with advanced
sensors such as accelerometer, magnetometer, global posi-
tioning system (GPS), and biometric sensors. Due to these
developed features, the owner of smartphones can perform
various activities, such as sending/ receiving electronic emails,
performing financial transactions, contacting with others, tak-
ing photos and recording videos, etc. [1]. Statistics show
the number of smartphone users surpassed 6.4 billion users
globally in 2021, and it is expected to reach 7 billion in 2026
[2].

Mobile applications (apps) are implemented to perform
one or more tasks. They are available in official markets and
third parties. As of 2021, the popular mobile market apps
are: Google Play (3,482,452 apps), Apple app store (2,226,823
apps), Windows store (669,000 apps), and Amazon App store
(460619 apps) [2]. Smartphones and mobile market apps are
targets for attackers in terms of privacy and security. According
to [3], the instances of mobile cybercrime surpassed 14.4
million attacks in the second quarter of 2021, 95% of Android
devices can be hacked using a simple text message, and 87%
are exposed to serious vulnerability. In September of 2020, the
Apple store has pulled 40 apps infected by the XcodeGhost
botnet attack [4], which indicates that the malware apps
might be found in official apps. Therefore, several approaches
from academic and industrial fields have been proposed using
machine learning algorithms.

Machine learning is an effective method for intelligent
detection of malware on smartphones. Malware detection on
smartphones is based on feature analysis by static, dynamic,

and hybrid methods [2]. The detection and prediction effec-
tiveness of any machine learning algorithm relies on selecting
suitable data and understanding malware behavior.

Problems and Motivation

Previous studies have been proposed to detect known and
unknown malware samples using public and private datasets.
However, most of utilized public datasets are collected between
2010 and 2017, which raise an important question about
how they can detect recent implemented malware while the
behavior of mobile malware is changeable. Therefore, there
is need to collect updated apps . Besides that , understanding
the malware patterns and classifying them into families is an
effective way to detect unknown malware.

This study proposed a sustainable and cost-effective mal-
ware detection scheme with respect to collecting an updated
dataset, classifying malware families , and observing malware
behavior .

Contributions

This work address the above-mentioned issues related to
detecting Android malware. Its contributions are listed below.

1) A dataset is build with 30,000 samples at the present
time, plan to expand to be larger and make it publicly
available

2)  An Android malware detection approach is proposed
using machine and deep learning algorithms with
respect to sustainability metrics.

The remaining part of this article is organized as follows:
Section II summarizes recent studies in this field. Sections III
and IV introduce the proposed methodology and describes the
dataset used. Finally, the conclusion of this research work is
presented in Section V.

II. PRIOR RESEARCH

Detecting Android malware has gained attention last two
decades. There are several proposed approaches employed
machine and deep learning. Alzubaidi [2] provides a compre-
hensive survey in terms of static, dynamic and hybrid feature
analysis methods using machine learning algorithms, while Qiu
et al. [5] review recent deep learning approaches and addressed
challenges like the architecture of deep learning. This sections
discusses sustainable Android malware detection approaches
then summarizes common public datasets.
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A. Sustainable Detection Malware Approaches

Onwuzurike et al. [6] introduced a static approach to
detect Android malware, which is known as MaMaDroid.
This approach is comprised of three phases. The authors first
acquired a dataset with size of 43,940 apps (35,493 malware
apps from Drebin and 8,447 normal apps from the Google
Play store). Second, they extracted the API calls for each
feature, then used principal component analysis (PCA) [7]
to rank them. Third, they employed random forest (1f) [8],
1-Nearest Neighbor (1-NN), 3-Nearest Neighbor (3-NN) [9],
and support vector machine (SVM) [10] to construct their
approach. The authors performed two experiments on detecting
unknown malware samples and examined the sustainability
of their approach. For the first experiment, they achieved
accuracy of 0.99. For the second experiment, they examined
the sustainability of the samples in terms of one-year and
two-year periods and obtained accuracies of 0.87 and 0.75,
respectively.

Zhang et al. [11] developed a method to detect Android
malware employing sustainability analysis, which they called
APIGRAPH. To construct APIGRAPH, a private dataset was
collected consisting of 322,594 samples (290,505 normal
apps and 32,089 malware apps). The authors extracted API
calls, exceptions, and permissions features and employed RF
[8], Model Pool, SVM [10], and deep learning neural net-
works (DNNG5s) [12] classifiers. They evaluated their developed
method using MamaDroid [13], DroidEvolver [14], Drebin-
DL [15] and Drebin [16], based on sustainability, and found
that the average enhancement for [13], [14], [15] and [16] was
19.2%, 19.6%, 15.6% and 8%, respectively.

Cai and Jenkins [17] investigated how Android app be-
havior might change over time. For this purpose, the authors
used 155 predefined metrics from [18], which are based on
general, ICC and security perspectives. They added the extent,
frequency, and distribution for the source and sink invocations
of sensitive API calls. A dataset was built including 6432
apps (3431 normal apps and 3001 malware apps). In order
to evaluate their approach, they constructed two groups of
datasets, based on the year, then performed a comparison using
the predefined metrics to rank the most informative metrics
and found 52 features to be most informative, which were
used for further evaluations. They employed RF and obtained
an accuracy of 93% while achieving an accuracy of 82% for
their sustainability metric.

Cai et al. [19] implemented a scheme called Droidcat
to detect Android malware in terms of systemic app-level
profiling. The authors created a private dataset consisting of
34343 apps (17,365 normal apps, 16,978 malware apps). Then,
they reduced the samples to 271 apps (136 normal apps,
135 malware apps) meeting their requirements. A total of
122 metrics were defined based on structure (method calls,
declaring classes, callback), ICC (Intent, carrying data through
URI only), and security (distributions of sources, sinks). The
authors utilized RF to detect unknown malware samples, and
obtained Precision, Recall and F1 of 97.96%, 97.91%, and
97.84%, respectively. Another experiment was carried out to
evaluate the sustainability and obtained results with small
standard deviations of 1.34-2.38% in terms of F1.

An approach was introduced by Cai [20] called DroidSpan
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based on behavioral profiling features. The author collected
a total of 26382 samples (13,627 normal apps and 12,755
malware apps), then extracted 52 features based on the ex-
tent of sensitive access, categorization of sensitive data and
operations accessed, and sensitive method-level control flows.
Then, the approach employed RF [8], k-NN [9], SVM with
both linear and radial basis function kernels [21] , decision
trees [22], naive Bayes [23] with three models (Gaussian,
Multinomial, and Bernoulli), AdaBoost [24], Gradient Tree
Boosting [25], Extra Trees, and the Bagging classifier, and
evaluated DroidSpan in terms of Fl-measure, recall and pre-
cision. Among all classifiers, RF obtained the best results.
Then, another experiment was performed to examine the
sustainability based on same-period detection and obtained
92.88%, 92.68% and 92.61% for precision, recall and F1-

SCore.

B. Common Public Datasets

Current approaches rely on two types of data: private
and public datasets. This section summarizes common public
datasets.

1) Drebin: Arp et al. [16] built a dataset called Drebin
between 2010 and 2012 and comprised of 123, 453 samples
for normal applications and 5560 abnormal samples from 179
different families. It is available on https://www.sec.cs.tu-bs.
de/~danarp/drebin/.

2) AndroZoo: Allix et al. [27] began building a public
dataset in the latter part of 2011, called AndroZoo. The authors
implemented a crawling tool to examine the application if it
had not been downloaded previously. Then, they installed the
application, calculated the s SHA256 checksum, and stored
the sample. These samples were submitted to VirusTotal, a
portal that allows users to analyze potential malware us-
ing various antivirus scanners, including several commercial
products, such as McAfee, Symantec, and Avast. The total
instances of AndroZoo is 10,774,100 samples and available
on https://androzoo.uni.lu/.

3) Malgenome: Malgenome was introduced by Yajin and
Xuxian [28] with total of 1260 malware samples cover-
ing 49 Android malware families between 2010 and 2011.
Malgenome is available on http://malgenomeproject.org/.

4) Contagio Mobile Mini-dump: Contagio Mobile Mini-
dump was developed by Mila [29]. Data collection involved a
blog published in 2008 that allowed researchers to upload and
download malware. As of April 2020, 370 malware samples
had been collected. We tested this dataset and found some
samples cannot be installed. Contagio can be found on http:
/lcontagiodump.blogspot.com/?m=1.

5) PRAGuard: PRAGuard is a publicly available dataset
introduced by Maiorca et al. [30]. The dataset con-
tains 10479 malware samples from on 50 malware fami-
lies. PRAGuard is available on http://pralab.diee.unica.it/en/
AndroidPRAGuardDataset.

6) Android Malware Dataset (AMD): The AMD was com-
piled by Wei et al. [31], and consisted of 24,650 samples
collected between 2010 and 2016. The dataset includes various
types of malware, such as Trojan, backdoor, and ransomware.
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TABLE I. SUMMARY OF UTILIZED PUBLIC DATASET

Dataset # of samples Years of collection
Drebin [16] 5560 2011 - 2012
CICAndMal2017 [26] 10854 2015 - 20017
AndroZoo [27] 16,487,972 Late 2011- 2016

The authors employed antivirus scan results as well as automa-
tion methods to classify these samples based on behavioral
semantics (135 varieties), and 71 malware families. It is
available on http://amd.arguslab.org/ .

III. PROPOSED SCHEME

The proposed scheme categorizes into two parts: first part
relies on examining how feature engineering might affect on
obtained results. The machine learning classifier extracts static
and dynamic features, finds most informative features and
employs state of the art machine classifiers, while the deep
learning scheme studies how deep learning might enhance the
gained performance. We performed several scenarios to present
the effectiveness of developed scheme.

A. Machine Learning Classifiers

The Machine Learning classifiers scheme consisted of four
parts. First, we build a dataset comprised of public and private
datasets. Then, two types of features are extracted: permission-
based and network traffic features. Once the features are
extracted, the most informative features are ranked for further
analysis in the third phase. Finally, the developed scheme is
evaluated among four scenarios: detecting malware in terms
of binary classification, classifying the samples based on their
packages and families, and finally considering sustainability
metrics in our scheme. Fig. 1 depicts the structure of the
proposed scheme.

Feature Building scheme
engineering

Collecting Preprocessing
data

Fig. 1. Architecture of the Implemented Scheme.

1) Acquiring Data: Since the commonly used public
datasets were collected between 2008 and 2017 [2], we started
to construct a public dataset to be available in the near future
for academic research purposes. For this purpose, we picked
three public datasets: Drebin [16], CICAndMal2017 [26] and
AndroZoo [27], which are summarized in Table 1. We, then,
targeted the official market for Android devices: the Google
Play store to download up to 500 popular apps for 30 different
categories using 15 different smartphone devices. Finally, we
analyzed and stored downloaded apps in a local database. The
process of collecting apps started November 2020 and we are
continuing to build our dataset.
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2) Pre-processing the Data: Once the data was collected,
we performed a pre-processing step for the data which aims to
observe any possible noise, remove duplicate apps and keep
the updated version of the app, as well as to find missing,
redundant and invalid data. For normalization, we used Min-
Max scaling [32], and One Hot Encoding [33] to transform
non-numeric data into numeric values. After performing this
process, we had a total dataset of 15,000 malware apps, and
16500 normal apps. For balance, we constructed an updated
dataset with a total of 30,000 samples (15,000 normal apps
and 15,000 malware apps) and continued working to make the
dataset larger.

3) Extracting Features: To extract the features from our
dataset, we developed a tool called AndroAPKF Analyzer,
installed it on our devices, ran each app, then extracted
permission-based and network traffic features. We extracted
two types of features: permission-based (280 extracted fea-
tures) and network traffic (80 extracted features).

Once the features are extracted, they are stored temporarily
in the phone, then sent to the local database for further process.
The final stored data had a CSV file extension.

4) Selecting Features: Finding the most informative fea-
tures is a subsequent phase during construction of the scheme.
Using selected features will help to reduce evaluation time and
over-fitting and improve the obtained results. There are several
approaches that can be used to find most informative features
such as mutual information (MI), which is a method to measure
the mutual independence of the amount of information that a
variable contains about the occurrence of another variable [34].

MICXGY) =30 3 Playlogp-sls (D
yeY zeX

where X, Y are discrete or continuous random variables,
p(x)p(y) is the product of marginal distributions. For our ap-
proach, we adopted the implemented ranking scheme proposed
by Alzubaidi et. al [35] to find the most informative features.
We ranked permission features and network traffic individually
in terms of the top 10, top 50, and all features. Tables II and III
present highest informative extracted permission and network
traffic features, respectively.

TABLE II. TOP 10 PERMISSION-BASED FEATURE RANKING USING [35]

Feature set Rank
Android.permission.INTERNET 0.937
Android.permission.READ_PHONE_STATE 0.925
Android.permission. ACCESS_NETWORK_STATE 0.909
Android.permission.SEND_SMS 0.886

Android.permission. WRITE_EXTERNAL_STORAGE 0.881
Android.permission.RECEIVE_BOOT_COMPLETED 0.867
Android.permission. ACCESS_WIFI_STATE 0.852
com.Android.launcher.permission.INSTALL_SHORTCUT 0.834

Android.permission.INSTALL_PACKAGES 0.785
com.android.alarm.permission.SET_ALARM 0.748

B. Experimental Setup

We ran experiments using Microsoft Windows 10 on a 2.11
GHz Intel Core i7 178 processor with 16 GB RAM dGPU
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TABLE III. TopP 10 NETWORK TRAFFIC FEATURE RANKING USING [35]
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TABLE V. CHARACTERISTICS OF THE CLASSIFIERS EMPLOYED

device. We also used a virtual machine p2.xlarge EC2 instances
to perform further experiments and a local database for storing
the data.

C. Performance Evaluation Metrices

Common evaluation metrics that can be used to examine
the performance of the implemented methods for detecting
malware such as true positive, false positive, accuracy, recall,
precision and sustainability are summarized in Table IV. In our
implemented scheme, the data are evaluated using accuracy,
precision, recall and fl-score.

TABLE IV. COMMON EVALUATION METRICS

Metric

True positive

Definition

A sample is a true positive if the sample is labelled positive
as well as prediction being positive

False positive A sample is a false positive if the sample is labelled negative

while it is predicted as a positive

False negative A sample is called false negative when the sample is labelled

positive and is predicted as a negative class

Precision It is the proportion of correctly classified instances to the
instances predicted as positive
Recall It is the proportion of instances predicted to be positive to
the total positive instances
Sustainability Indicates how the model is adopted for new samples with

retraining (re-usability) and without retraining (stability)
over times

D. Experimental Evaluation

We initially utilized four machine learning classifiers to
examine the effectiveness of the ranking features: J48 [36],
rotation forest [37], AdaboostM1 [38], and XGBoost [39].
Table V outlines these classifiers with respect to their definition
and platform.

We evaluated the machine learning classifiers using ranking
features with the top 10, 50 and all features for the detection
of unknown malware (binary classification) using permission
and network traffic features.

Using Permission based Feature: We compare the utilized
classifiers using top 10,50 and all features in terms of accu-
racy, precision, recall and fl-score. Among all three feature
sets, rotation forest achieved better results with accuracies of
94.4%,98.6% and 96.5%. The rest results are illustrated in
Tables VI, VII, and VIII.

Feature set Rank Classifier Definition Availability

Source IP address 0.913

Source Port 0.906 J48 [36] Implememed classifier of C4.5 decision Weka 3.8.5
ree

Destination IP address 0.883 - — -

— Rotation Forest [37] Ensemble classifier, categorizes features Weka 3.8.5

Destination Port 0.876 into subsets, then run Principal Compo-

Flow Duration 0.833 nent Analysis on each subset

Total Foward Packets 0.795 AdaBoostM1 [38] An ensemble classifier used for boosting | Weka 3.8.5

Total Length of Forward Packets 0.792 a nominal-class

Total Backward Packets 0.748 XGBoost [39] A boostgd Qecision }ree, which asso- R 4.00
ciates objective functions based on the

Total Length of Bakward Packets 0.741 gradient of the loss optimized function

Maximum Forward Packet 0.705

TABLE VI. MALWARE DETECTION BASED ON PERMISSION FEATURE SET
(TOP10 FEATURES)

Classifier Accuracy Precision Recall F1-score
J48 91.8 91.8 91.7 91.7
Rotation Forest 94.4 94.5 94.3 94.5
AdaBoostM1 89.6 88.6 89.7 89.5
XGBoost 93.7 93.6 93.5 93.7

1) Using Network Traffic Feature: We also evaluated the
proposed approach using network traffic with respect to top
10,50 and all features. Among employed aforementioned clas-
sifiers,XGBoost is able to gain the best results with accuracies
of 89.8%, 94.2% and 91.6%. The rest results are illustrated in
Tables IX, X, and XI.

IV. DEEP LEARNING SCHEME

Deep learning algorithms are a subset of machine learning
algorithms based on artificial neural networks, which can be
applied to various fields such as computer vision, speech
recognition, natural language processing, and lately malware
detection. We employed two deep learning classifiers: long
short-term memory (LSTM) [40] and multilayer perceptions
(MLPs) [41] to enhance the obtained results.

A. Long-Short Term Memory

A brief definition Long short-term memory (LSTM) con-
siders recurrent structures having the ability to learn a se-
quence of data. Generally, the sequence of features for the

Android apps are z = (x1,%2,23,.....2¢), which represent
the input values to the LSTM. Then, the calculated output
will be denoted as ot = (0¢1, 012, 013, ... o) with respect to

continuous calculation of the forget state vector, input/update
gate activation vector, output vector, and cell state vector for
time 7' = 1,2,3,....... t . The calculation of the hidden layer
can be calculated as listed below.

ft = Ug(fot + Ufht_lbf)

’it = U(Wil‘t + Uiht—l + bl)

Oy = Ug(WO.’L't + Uoht—l —|— bo)
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TABLE VII. MALWARE DETECTION BASED ON PERMISSION FEATURE
SET (TOP50 FEATURES)

Vol. 12, No. 12, 2021

TABLE IX. MALWARE DETECTION BASED ON NETWORK TRAFFIC
FEATURE SET (TOP10 FEATURES)

Classifier Accuracy Precision Recall F1-score Classifier Accuracy Precision Recall F1-score
J48 97.3 97.2 97.3 97.3 J48 87.7 87.6 87.6 87.7
Rotation Forest 98.6 98.5 98.4 98.5 Rotation Forest 88.6 88.5 88.6 88.5
AdaBoostM1 95.4 95.5 95.4 95.4 AdaBoostM 1 83.3 832 83.2 833
XGBoost 98.5 98.5 98.6 98.5 XGBoost 89.8 89.6 89.7 89.6

TABLE VIII. MALWARE DETECTION BASED ON PERMISSION FEATURE
SET (ALL 280 FEATURES)

TABLE X. MALWARE DETECTION BASED ON NETWORK TRAFFIC
FEATURE SET (TOP50 FEATURES)

Classifier Accuracy | Precision Recall F1-score Classifier Accuracy | Precision Recall F1-score
J48 95.4 95.3 95.2 95.4 J48 90.4 90.4 90.3 90.3
Rotation Forest 96.5 96.6 96.4 96.5 Rotation Forest 92.6 92.5 924 92.5
AdaBoostM1 91.2 91.1 91.2 91.3 AdaBoostM1 86.5 86.5 86.4 86.5
XGBoost 96.4 96.3 96.3 96.4 XGBoost 94.2 94.1 94.2 9.1

C~t = O'C(chl't + Uchtfl + bc)

¢y = froci_1 + i10C;

ht = OtOO'h(Ct)

where ft, it, ot,ct, ht, and xt denote the forget state vector,
input/update gate activation vector, output vector, cell state
vector, hidden state vector, and input vector, respectively.

B. Experimental Result

We evaluated the deep learning scheme in three scenarios,
as listed below.

1) Detecting unknown Malware using Binary Class Classi-
fication: We initially performed a comparison among: LSTM,
MLP and XGBoost in terms of detecting unknown malware
using accuracy, precision, recall and f1-score using permission-
based features. The obtained results show the superiority
of LSTM compared to MLP and XGBoost, which achieved
accuracy, precision, recall and fl-score higher than 99%. Fig.
2 depicts the results.

2) Detecting Categories of Malware : Another comparison
was performed to examine how these classifiers are able to
detect malware based on malware categories. Our malware
samples belong to four categories: Adware, Ransomware,
Scareware and SMS Malware. We performed four multi-
class classifications to examine to which malware family each
malware belong to. Comparing LSTM, MLP and XGBoost,
LSTM is achieved the better results with accuracy of 97.5%.
Fig. 3 outlines the comparison among these classifiers in terms
of accuracy, precision, recall and Fl-score.

3) Detecting Malware Families: A third comparison was
performed to detect which package the malware belongs to. In
our evaluation, we defined 45 malware families; therefore, we
performed 45 class- classification procedures to examine the
samples. We compared LSTM, MLP, and XGBoost and found
LSTM achieved best accuracy of 99.5%. Fig. 4 illustrates the
obtained results.

4) Examining the Sustainability Performance: Third evalu-
ated of our scheme is examined how our scheme is sustained.
We divided the datasets into normal and malware apps based
on implemented year with a span of nine years (2010 to 2019)
. Then, we trained and tested apps that developed in the same
year. The average obtained accuracy is 92.21%. Table XII
presents the obtained results in terms of accuracy, precision
and recall metrics.

C. Discussion

Although previous studies have obtained promising results
in terms of sustainable detecting malware, there are some
limitations, which are:

1)  Choosing an updated dataset and selecting informa-
tive features are vital methods to detect unknown
malware and improve obtained results. For example,
Onwuzurike et al. [6] utilized a dataset collected
between 2010 and 2017, neglected feature selection
during building their scheme, and obtained accuracy
between 75- 87% .

2)  Studying mobile malware in terms of detecting un-
known malware families, and categories using multi-
class classifications has not covered from Onwuzurike
et al. [6], Zhang et al. [11], Cai and Jenkins [17], Cai
et al. [19], and Cai [20]

Table XIII presents a comparison between the proposed
approach and prior studies. The introduced approach achieved
accuracies of 99.2%,99.5%, 97.5%, and 92.2% for detecting
unknown malware, detecting malware families, detecting mal-
ware categories, and sustainable malware detection, respec-
tively.

V. CONCLUSION

Since the amount of mobile malware increases annually,
it is important to implement malware detection that is able to
detect possible threats to smartphone devices. This study lever-
aged machine and deep learning to detect unknown malware
apps with accuracy over 99%. We also employed multi-class
classification to detect the packages and families of mobile
malware, and finally we examined the sustainability of our
implemented scheme.
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TABLE XI. MALWARE DETECTION BASED ON NETWORK TRAFFIC
FEATURE SET (ALL 80 FEATURES)

Classifier Accuracy Precision Recall F1-score
J48 88.7 88.6 88.5 88.5
Rotation Forest 90.5 90.4 90.5 90.3
AdaBoostM1 82.3 82.2 82.3 82.4
XGBoost 91.6 91.4 91.5 91.5
Accuracy
100 Recall
1 — Precision
89 F1-score
98
o) 97 ]
D g6
= 96 1
c
0 954
"(g' 1
s 94
> j
W g3
92
91 4
90
LSTM MLP XGBoost

Machine/Deep Learning Classifiers

Fig. 2. Performance Evaluation Metrics based on Detecting unknown
Malware.

For future work, we aim to extend our dataset to download
more apps, then make it available for academic use. We also
plan to use various deep learning classifiers with different
dynamic and static features to detect unknown malware, as
well as assess datasets over a period of years for sustainability
purposes.
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