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Abstract—The analysis of heart rate variability is based on 
the intervals between the successive heartbeats and thanks to it 
information about the functional state of the person can be 
obtained and the dynamics of its change can be traced. The 
nonlinear dynamics methods provide additional, prognostic 
information about the patient's health, complementing 
traditional analyses and are considered potentially promising 
tools for assessing heart rate variability. In this article, studies 
have been carried out to identify the mono- and multifractal 
properties of two groups of people: healthy controls and patients 
with arrhythmia using Wavelet Transform Modulas Maxima 
Method. The obtained results from the studies show that for 
healthy subjects the multifractal spectrum is broader than the 
spectrum of patients with arrhythmia. The value of the Hurst 
exponent is lower in healthy controls, and in patients with 
arrhythmia this parameter tends to one. For the healthy subjects, 
the scaling exponent showed nonlinear behaviour, while for 
patients with arrhythmia it was linear. This indicates that heart 
rate variability in healthy controls has multifractal behaviour 
while patients with arrhythmia have monofractal behaviour. The 
finding may be useful in diagnosing subjects with cardiovascular 
disease, as well as in predicting future diseases, as the heart rate 
variability changes at the slightest deviation in the health status 
of subjects before the onset of relevant signs of the disease. 
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I. INTRODUCTION  
The effectiveness of the modern medical technologies is 

closely linked to the improvement of the methods and the 
instruments for monitoring and analysing the condition of 
patients during their treatment. In medicine the problem with 
patients’ clinical surveillance occupies a special place, as the 
monitoring of their current state can be of vital importance. 

The use of electrocardiographic data for analysis of the 
cardiac activity of the patient is a generally accepted method. 
The presentation of heart rhythm as a dynamic row of RR time 
intervals (the distances between the R-tops of the 
electrocardiogram) and the mathematical analysis of this data 
[1] is widely used in the research of the cardiac activity. Based 
on the RR interval series, heart rate variability (HRV) is 
determined, which is one of the most accessible physiological 
parameters [2] reflecting the processes of autonomic regulation 
in the cardiovascular system. The dynamic characteristics of 
the heart rate make it possible to assess the severity of changes 
in the sympathetic and parasympathetic activity of the 

autonomic nervous system in changing the patient's health. The 
sympathetic branch reduces the intervals between heartbeats 
[3], while the parasympathetic branch increases them. 

In modern cardiology, more and more attention is paid to 
the analysis of heart rate variability and more specifically to the 
changes in heart rate intervals [4]. Heart rate is the most 
objective characteristic of the functional state of the human 
body and depends on several factors: age, gender, 
environmental conditions, stress, body temperature, etc. [5, 6]. 
HRV analysis is a unique diagnostic technique that allows not 
only to assess the functional state of the human body, but also 
to monitor its dynamics and to identify the occurrence of 
pathological conditions when they are at a very early stage. 
The heavy physical work, the psychological stress, as well as 
the disease states of the human body lead to an increase in 
heart rate and to a decrease in HRV. Conversely, when the 
body is at rest, the heart rate is usually lower and the HRV is 
higher. 

The mathematical methods for assessing the functional 
state of the human body through the study of HRV are 
combined into the following two groups: linear and nonlinear 
methods. 

The linear methods include time-domain analysis and 
frequency-domain analysis. These methods are standardized, 
knowing the reference values of the studied parameters, but 
this is often not enough to characterize the complex dynamics 
of the RR time series of heart rate. 

 The nonlinear methods such as: Poincare plot, Detrended 
Fluctuation Analysis (DFA), Multifractal Detrended 
Fluctuation Analysis (MFDFA), Wavelet Transform Modulas 
Maxima Method (WTMM), AppEn, SampEn [7, 8, 9, 10] and 
others are not standardized, which is the reason for their 
limited use in clinical practice. The nonlinear methods for 
HRV analysis are based on the theory of chaos and fractals. 
These methods are in the process of active research, and it is 
expected that in the near future they will be able to give a new 
idea of the dynamics of heart rate in the context of 
physiological changes in patients with cardiovascular disease. 
Practically, each cardio interval contains elements of 
nonstationarity (fractal components) and for their evaluation in 
recent years methods of nonlinear dynamics are actively 
applied. These methods provide additional prognostic 
information of the studied signals, which complements the 
traditional analyses in the time and frequency domains. 
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To be able to deal with the problem of the accurate HRV 
assessment of the studied cardiac signals, it is necessary to 
choose an appropriate method of analysis that represents the 
dynamics of the heart rate. 

The aim of this article is to analyse and evaluate HRV in 
two groups of people: healthy controls and patients with 
arrhythmia, using the Wavelet Transform Modulas Maxima 
method. The effectiveness of the method used was evaluated 
by statistical t-analysis. 

 The rest of the paper is organized as follows: Section II 
provides an overview of related research in the scientific 
literature. Section III focuses on the Wavelet Transform 
Modulas Maxima Method used in this paper for HRV analysis. 
Section IV describes the data used for the analyses performed. 
Section V presents the results and discussions. The final 
section (Section VI) of the article contains the conclusion that 
can be made from the obtained results. 

II. RELATED WORK 
In recent years, there has been an active introduction of the 

mathematical methods of analysis in the medical practice. 
Many scientists have studied the complex nature of the changes 
in the parameters of electrocardiographic (ECG) signals using 
nonlinear dynamic methods. The fractal and multifractal 
approach in the analysis of the cardiological data allows to 
obtain new knowledge and assessments that give an idea of the 
nonlinear dynamic processes taking place in them. As a result 
of the work of [11] on the heartbeat dynamics, the multifractal 
analysis has become a widely used tool for applied research, in 
cases where the non-stationary processes are limited by the 
application of the classical methods of analysis. 

The multifractal analysis expands the possibilities for 
cardio-diagnostics based on the wavelet theory. The proposed 
approach by [12] for multiresolution wavelet analysis of 
heartbeat intervals allows distinguishing healthy patients from 
those with cardiac pathology. This universal approach is 
applicable in the analysis of non-stationary processes in the 
physical and biological sciences, including the analysis of ECG 
signals. 

The authors in [13] proposed a technique for multifractal 
analysis to determine the degree of multifractality of the heart 
rate of patients suffering from partial seizures. The results 
show that the degree of multifractality varies depending on the 
severity of the disease. 

The authors of [14] advise physicians to interpret the results 
obtained from fractal and traditional methods with caution, as 
they are still in the process of research and the measurements 
obtained are not fully described as biomarkers for clinical use. 

In [15], the authors show how the entropy and the 
multifractal analysis can depict the dynamics of heart rate 
when students performed selective inhibition tasks. The results 
show that the entropy and the fractal markers outperform 
markers in the time and frequency range of the heart rate 
variability in distinguishing the cognitive tasks. 

The WTMM method presented by Arneodo et al. [16] can 
be used to study the structures of inhomogeneous processes of 
various natures, based on wavelet and multifractal analysis. 

Recent studies [17, 18] have shown that HRV changes in 
individuals infected with Covid-19 even before the onset of 
symptoms of the disease. This indicator can be useful for early 
detection of this disease. 

The need to study HRV through the application of 
mathematical methods is determined by the fact that it 
accurately reflects the state of regulatory processes in the 
human body and provides information that is important in the 
diagnosis, prognosis, treatment, and prevention of diseases of 
various kinds. 

III. METHODOLOGY 
The choice of an appropriate mathematical method for time 

series analysis is determined by its flexibility and ability to be 
effectively applied to real processes. Among such universal 
methods for time series analysis, the WTMM method, which is 
discussed in this article, can be applied. 

The WTMM method [19, 20, 21] is based on the 
mathematical tools of wavelet, fractal and multifractal analysis, 
which can reveal the hidden dynamics of the studied time 
series of heart rate in the context of mono- and multifractality. 

The wavelet theory allows the studied signal to be analysed 
in more detail than Fourier analysis [22]. The wavelets are 
localized at both frequency and time, while the standard 
Fourier transform has only frequency localization. 

The continuous wavelet transform (CWT) is used to 
decompose the continuous wavelet function. Unlike the Fourier 
transform, CWT provides the ability to build a time-frequency 
representation of the signal [23, 24], which achieves very good 
localization in time and frequency. 

The dynamic characteristics of the RR interval series have 
fractal and in some cases multifractal properties [25, 26]. The 
fractal concept is related to processes (objects) that meet the 
following two criteria: 

• Self-similarity: The process consists of many segments 
that are similar to each other and to the whole object. 

• Fractional dimension: According to this criterion the 
fractal objects are distinguished from Euclidean ones, 
which are characterized by a dimension that is an 
integer. 

The fractal processes are of two types: monofractal and 
multifractal [25]. The monofractal process is homogeneous in 
the sense that it has the same scaling properties, which both 
locally and globally can be characterized by a single scale 
indicator, such as: fractal dimension and Hurst exponent. 
Unlike the monofractal processes, the multifractal processes 
decompose into a large number of homogeneous fractal 
subsets, whose properties can be characterized by a spectrum 
of local fractal dimensions or Hearst exponents. 

23 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 12, 2021 

The behaviour of the studied signal by applying the 
WTMM method is performed in two stages [27, 28, 29, 30]. In 
the first stage, a continuous wavelet transform is performed 
according to the following formula: 

𝑊(𝑎, 𝑏) = 1
𝑎 ∫ 𝑥(𝑡)𝜓∗𝑇

0 �𝑡−𝑏
𝑎
� 𝑑            (1) 

Where: 

• W are the wavelet coefficients; 

• a is a scale parameter, 𝑎 ∈ 𝑅+; 

• b is the translation coefficient, 𝑏 ∈ 𝑅; 

• x(t) is the input signal; 

• ψ* is a continuous function in the field of time and 
frequency, called the mother wavelet, which is 
complexly conjugated. The main purpose of the mother 
wavelet is to provide a function to generate daughter 
wavelets; 

• T is the maximum value of time. 

The scale parameter a can stretch or contract the signal 
under study. When the value of this parameter is small, the 
signal is compressed, which in turn leads to a more detailed 
graph. On the other hand, when the scale parameter is higher, 
the signal is stretched, which means that the resulting graph 
will be presented in lower detail. 

To determine the singularity of the function, it is sufficient 
to use only the information about the maximum of the obtained 
wavelet coefficients, constructing the skeleton of the wavelet 
transform [31,32]. Following the lines of the skeleton, the 
behaviour of the singularities of the function x (t) can be traced 
[33]. 

The second stage of the WTMM method consists in the 
creation of partition functions Z(q, a), which allow to obtain 
reliable estimates of the characteristics of the studied process: 

𝑍(𝑞,𝑎) = ∑ (sup𝑎′≤𝑎|𝑊(𝑎′, 𝑥𝑙(𝑎′))|)𝑞𝑙∈𝐿(𝑎)            (2) 

Where: 

• L(a) is a set of all lines; 

• l are the local maxima of the modules of the wavelet 
coefficients that exist for the scale а. 

Equation (2) shows that the maximum value of the modulus 
is selected for each line at scales smaller than a set value of a. 
As a rule, it is expected that at small values of a, the partition 
function will have a power dependence, which will 
quantitatively characterize the scaling exponents τ(q): 

𝑍(𝑞,𝑎)~𝑎𝜏(𝑞)               (3) 

The scaling exponent τ(q) is defined by the following 
expression: 

𝜏(𝑞)~𝑙𝑜𝑔10𝑍(𝑞,𝑎)/𝑙𝑜𝑔10𝑎            (4) 

By selecting different values of the parameter q, a linear or 
nonlinear dependence of τ(q) can be obtained, depending on 
the type of the studied process [34]: 

• if the process is monofractal, then the function τ(q) is 
linear and the exponent h(q)=dτ(q)/dq=const; 

• if the process is multifractal, then the function τ(q) is 
nonlinear and the exponent h(q)=dτ(q)/dq≠const. 

By analogy with thermodynamic formalism, the spectrum 
of singularities is calculated on the basis of the Legender 
transformation: 

𝐷(ℎ) = 𝑞ℎ(𝑞) − 𝜏(𝑞)             (5) 

The spectrum D (h) is determined by the set of values of 
the fractal dimensions of the original time series. The 
maximum of the spectral curve corresponds to the Hurst 
parameter. The following conclusions about the signal 
behaviour can be made from the value of the Hurst parameter: 

• if  0<h<0.5, then the signal has anticorrelation 
dynamics; 

• if  0.5<h<1.0, then the signal has a correlation 
behavior; 

• if h=0.5, it lacks correlation in the signal. 

IV. DATA 
The application of wavelet and fractal analysis of the 

studied RR interval series is designed to determine and visually 
assess the degree of harmonization of the studied time series 
that have fractal-like structures. The purpose of this analysis is 
to identify functional and pathological changes, as well as to 
predict changes in the health status of patients. 

To test whether HRV can provide information outside of 
linear indices, the following two groups of people were 
examined in this study: 

• healthy controls (10 men and 10 women aged 56 ± 4). 

• patients with arrhythmia (10 men and 10 women aged 
58 ± 3 years). 

V. RESULTS AND DISCUSSION 
The software for the analysis of the fractal and multifractal 

properties of the test signals was created with MATLAB. 

On Fig. 1A and Fig. 1B are shown RR interval series 
corresponding to the heart rate variations in a healthy 
individual and a sick patient with arrhythmia. Variations in a 
healthy individual are greater than those of a sick patient. This 
property can be used as a criterion in cardiovascular diagnosis. 
In practice, heart rate dynamics can be investigated using the 
linear methods by applying methods in the time- and frequency 
domains. The obvious shortcomings of these methods are that 
they can only be applied only to stationary time series and the 
heart rate shows heterogeneity and non-stationary of its 
fluctuation. 

On Fig. 1C and Fig. 1D are shown the results of the 
wavelet transform and the graphics obtained have tree 
structures. The tree structure is more pronounced in the healthy 
patient. This property allows revealing the structure of the RR 
interval series and can also be used as a diagnostic criterion. 
The colour code of the graphics presents the values of wavelet 
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coefficients. The light colours correspond to the higher 
absolute values of the coefficients and darker colours 
correspond to the lower values. 

Important information about the behaviour of the studied 
RR interval series is also contained in the wavelet skeleton of 
the local maxima lines on each scale of wavelet coefficients 
matrix (Fig. 1E and Fig. 1F). The local maximum modules of 
wavelet transformation |W(а, в)| there are the greatest values in 
those points of the analysed function in which it undergoes the 
most significant changes (jumps). 

On Fig. 2A and Fig. 2B are shown the partition functions 
Z(q,a) for a healthy subject and for a patient with arrhythmia. 
The calculation of the Z(q,a) allow the signal fluctuations to be 
monitored. Positive values of the parameter q accentuate the 
large fluctuations of the signal (strong inhomogeneity), while 
the negative values of q accentuate on small fluctuations. 

 
Fig. 1. RR Time Series for Healthy Subject (A) and for Subject with 
Arrhythmia (B); CWT Coefficients Plot in the Case of RR Intervals for 

Healthy (C) and Subject with Arrhythmia (D); WTMM Skeleton Plots for 
Healthy Subject (E) and Subject with Arrhythmia (F). 

 
Fig. 2. Partition Functions for Healthy Subject (A) and for Subject with 
Arrhythmia (B); Scaling Exponent τ(q) for Healthy Subject (C) and for 

Subject with Arrhythmia (D); Multifractal Spectrum for for Healthy Subject 
(E) and for Subject with Arrhythmia (F). 

The function τ(q) characterizes the fractal properties of the 
RR time series investigated. The graphics of the scaling 
exponent τ(q) have been shown on Fig. 2C and Fig. 2D for a 
healthy subject and for a patient with arrhythmia. For the 
healthy subject, the τ(q) spectrum has nonlinear behaviour and 
for the patient with arrhythmia this function is linear. 

The statistical differences for multifractal spectrum 
between the RR time series of the two investigated subjects 
have been shown on Fig. 2E and Fig. 2F. The key 
characteristics are: the width of the spectrum of the singularity 
and the value of the exponent corresponding to the maximum 
value of the spectrum (Hurst exponent). For healthy people, the 
singularity spectrum is wide with non-zero singularities. On the 
other hand, for the patient with arrhythmia the singularity 
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spectrum is a very narrow range. In Table I is shown the values 
of the multifractal spectrum parameters: hmax, hmin, Δh=hmax-
hmin and the value of the Hurst exponent observed for healthy 
subjects and patients with arrhythmia. The results show that the 
width of the multifractal spectrum of the group: healthy 
controls are greater than the group: patients with arrhythmia. 
The value of the Hurst exponent is lower in healthy subjects. 
The studied parameters determined by t-test have statistical 
significance (p-value <0.05), therefore with these parameters 
the two studied groups can be distinguished. 

The obtained results show that the heart rate of the healthy 
people is characterized by uneven dynamics in the form of 
multifractal behaviour, which cannot be detected by traditional 
methods, but can be observed using the WTMM method. In the 
pathological cases, the uneven dynamics of HRV is destroyed, 
which reflects the state of the cardiovascular system. 

The results demonstrate the effectiveness of applying the 
WTMM method for HRV analysis as an additional measure 
that can expand and improve the information obtained from the 
RR time series in the diagnosis and prognosis of cardiovascular 
disease. 

TABLE I. MULTIFRACTAL SPECTRUM PARAMETERS AND HURST 
EXPONENT 

Parameter 
healthy controls 
N=20 

patients -arrhythmia 
N=20 p-value 

mean±std mean±std 
hmax 1.42±0.12 1.31±0.15 0.01 
hmin 0.30±0.20 0.8±0.14 0.0001 
Δh=hmaxhmin 1.0±0.22 0.6±0.20 0.0001 

Hurst 0.72±0.10 0.93±0.3 0.01 

VI. CONCLUSION 
The results obtained in this article confirm the hypothesis 

that monofractality is a marker of pathological dynamics of 
heart rhythm in the case of cardiovascular disease such as 
arrhythmia. Conversely, it has been shown that multifractality 
is an indicator of a healthy individual. Therefore, HRV analysis 
using the WTMM method can be a useful approach to 
distinguish healthy controls from patients with arrhythmia, as 
the parameters studied have statistical significance (p-
value<0.05). Interpretation of the results of this type of analysis 
may be useful before the possibility of using this method for 
physiological or clinical studies. 
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