
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 12, 2021

297 | P a g e

www.ijacsa.thesai.org

Leveraging Artificial Intelligence–enabled Workflow

Framework for Legacy Transformation

Abdullah Al-Barakati

Faculty of Computing and Information Technology

King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—The rapid advancement of web technologies

coupled with evolving business needs make legacy

transformation a necessity for enterprises around the world.

However, the risks in such a transformation must be mitigated

with an approach that is flexible enough to allow for a gradual

and low risk transformation process. This paper presents a

Service Oriented Architecture (SOA) workflow-based legacy

transformation approach that allows for phased transformation

in which a legacy system is first transformed into self-contained

modular services accessible via a dedicated service layer. These

modular services are managed through an AI-enabled workflow

management layer that interacts with improved UI frontend for

the system’s end users. This paper presents a hypothetical

prototype in which an Oracle 5 legacy system is transformed

using the proposed architecture. ASP .NET Core MVC as well as

Pega business process management platform are utilized to

practically assess the feasibility of the proposed approach.

Keywords—Legacy systems; service oriented architecture;

workflow management; legacy transformation; digital

transformation; artificial intelligence (AI)

I. INTRODUCTION

Legacy systems can be defined as applications that were
built with old technology but are still in use in many business
environments [1]. Despite the apparent advantages of
transformation from legacy systems to modern web-based
solutions, government and private enterprises consider the
process risky and challenging and, therefore, show reluctance
in initiating the change. Such reluctance can be attributed in
part to the heavy investments that were associated with
developing legacy applications [2]. Furthermore, enterprises
incur heavy costs to train their employees and tailor their
processes to benefit from legacy systems [3]. On the other
hand, the legacy transformation and modernization process
itself can be lengthy and costly. Major risks include the
inherent complex designs of legacy systems [4], tightly
coupled components, system performance issues, and
difficulties in mapping current systems to target architectures
and platforms [5]. Additionally, the underlying knowledge
about such systems is usually scanty due to limited
documentation and the unavailability of the developers who
originally built these systems [4]. As a result, most legacy
modernization tenures tend to begin with lengthy reverse
engineering periods to document current systems before paving
the way for technology transformation.

It can be argued that legacy transformation is inevitable
with the rapid advancements that technology is witnessing,
especially the digital transformation phenomenon. Digital

transformation places special emphasis on legacy
transformation as one of the cornerstones of successful
transformation strategies [6]. While legacy transformation and
modernization processes can be lengthy and costly as
mentioned earlier, they can offer long term cost savings,
increased efficiency, better resource utilization and the ability
to adapt to the dynamic business needs of any given enterprise
[7]. Therefore, enterprises need an optimal transformation
approach that will enable them to part with legacy systems and
take advantage of the possibilities offered by modern web-
based technologies [8].

In this paper, we propose a legacy modernization approach
that aims for gradual technology upgrade from legacy systems
to modern web-based solutions without disturbing business
operations. It is based on a Service Oriented (SO) architectural
approach that wraps exciting legacy applications with an AI-
enabled workflow management layer. The workflow
management layer acts as a service orchestrater that reduces
the risks of inadequate service mapping when migrating from
legacy systems to target modernized systems. Workflow
management functionality is achieved via Business Process
Management Solutions (BPMS) that can sit on top of the
legacy system services. This approach emphasizes service
orientation where business logic is captured and managed in a
dedicated middle service layer that can potentially integrate
with any future core systems that may replace current legacy
systems. While this approach can be technology agnostic, we
are showcasing a hypothetical case study where Pega BPMS is
utilized to manage the workflows of an Oracle 5 form-based
legacy system while having ASP.Net Core MVC as the main
technology for a dedicated service layer.

The reminder of this paper is organized as follows.
Section II sheds light on some of the research in legacy system
transformation approaches. Section III outlines the overall
architectural approach, its layers, and the integration points
with legacy systems. Section IV introduces the suggested
technology stack related to the proposed architecture.
Section V showcases a practical implementation of the
proposed approach as a hypothetical proof of concept.
Section VI presents the findings of this paper and highlights
possible areas of future work.

II. LEGACY TRANSFORMATION APPROACHES

Due to the importance of legacy system transformation,
several studies have focused on finding the best way for a safe
and fast transformation process. In this context, the work
produced by [9] examines several options for legacy system

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 12, 2021

298 | P a g e

www.ijacsa.thesai.org

transformation in which replacement is considered the best
option for old systems which are undocumented, outdated, or
not extensible. However, authors in [9] note that the
replacement of such systems is often a resource-intensive and
risky process. On the other hand, [6] present a lightweight agile
approach for effective low-risk legacy transformation as
opposed to waterfall-based transformation approaches. Such an
approach can potentially address the technical and procedural
complexities associated with legacy transformation.

In the work presented by [10], the authors showcased the
process of transforming a legacy social services information
system to a modern digital platform. This platform capitalized
on advanced technologies (Artificial Intelligence [AI] and
Machine Learning) for analyzing and processing big data.
From an architectural perspective, this transformation was
enabled via the utilization of cloud computing, big data
innovations, and the emerging microservices architectural
principles. In a similar manner, [8] proposed a tiered
architectural approach for legacy system transformation. In this
approach, component configuration is specified in Extensible
Markup Language (XML) files to facilitate legacy service
wrapping and integration. The work presented by [11] is in
conformity with the approach presented by [8] as the author
argues that legacy systems can be transformed by exploiting
modern, faster, and cheaper technologies such as Java and
XML. He also indicates that such an approach can shift focus
to functionality not technology, hence allowing for better
response to the evolving business requirements of any given
enterprise. Furthermore, [11] presented a legacy transformation
software tool (RescueWare) that acts to decompose business
knowledge into self-contained e-components tasked with
performing certain business functionalities. These components
are defined within standard Application Programming
Interfaces (APIs) which can be accessed by other systems and
interfaces that can potentially replace the legacy system in
question.

The work done by [1] emphasized a component-based
approach for legacy transformation. Their methodology
includes a reengineering process to transform legacy systems
into new components with upgraded software architecture
design. They adopted a reverse engineering approach that is
based on the extraction of architectural information from the
existing codebases of legacy systems. Based on the extracted
information, in conjunction with business domain knowledge,
modular system components were to be developed to replace
the existing legacy system. Similarly, [12] present an
interactive tool to extract database and business logic
components from legacy systems. The aim is to minimize the
complexity of the migration process by introducing a
decomposition step. This step can help slice the legacy system
into encapsulated components that can be migrated into a
client-server platform.

The work in [13] encompasses a legacy migration approach
based on the conversion of legacy system architecture into
Service Oriented Architecture (SOA) within a systematic
predefined process. The process that they suggest is feature
oriented as it focuses on a reengineering approach to transfer
existing legacy services into web services facilitated by the
Web Services Composition Language (WSCL). The author in

[13] validated their approach with a case study which presented
a prototype based on a layered architecture comprising three
main layers: Interaction Layer, Translation Layer, and
Repository Layer.

Much of the previous research focused on the concepts of
modularity and service orientation for successful
transformation. However, to our knowledge, integration of
workflow management layers as a part of the legacy
transformation process is an area that is not yet fully examined.
For this reason, we propose an AI-enabled workflow-based
approach for legacy system transformation.

III. PROPOSED ARCHITECTURE

To counter the risks and complexities that accompany
legacy transformation tenures, a layered SOA-based
architectural approach is proposed. SOA can play the role of a
transformation and integration enabler for legacy systems [7].
Exposing legacy services in a service-oriented manner will
provide for modular services that can be exploited by a variety
of interfaces. Such interfaces can be frontend systems or other
core systems that benefit from the services of the legacy
system. Furthermore, Service Orientation - as a concept and a
transformation enabler - will allow for greater interoperability
for legacy services. More importantly, business logic
transformation to a service layer will lead to decoupling the
services of the core system to further facilitate legacy
replacement/enhancement.

In addition to the advantage of transformation to service-
oriented components, this model is complemented with a
dedicated workflow management layer which is tasked with
orchestrating the different business services of the legacy
system in transformation. Such a model aims to facilitate the
process of managing the usually complex services and
workflows of a typical legacy system. Additionally, by having
a dedicated workflow management layer, it will be possible to
gradually move the legacy services from the core system to a
service layer. In such a scenario, the workflow management
layer will orchestrate uninterrupted business operations by
managing the right mix of legacy services, external integration
on the one hand and user interactions on the other.

Two main architectural principles will govern and shape
the proposed legacy modernization architecture. Firstly, a
microservices approach will allow for rapid delivery of the
system’s business services [14]. Microservices will also be an
enabler for a robust technology stack that can be enhanced or
modified when and if needed. Enhancement can be achieved
by plugging in more service layers to cover any evolving
business needs. In conjunction with the utilization of
microservices architecture, the proposed solution focuses on
the development of domain-specific services. Hence, the
legacy application's services will be divided into self-contained
modules based on business areas. This approach adheres to the
principles of Domain Driven Design (DDD). Thus, business
context will be divided into individual areas that can be
developed and managed separately. Greater modularity and
manageability can be considered as important advantages of
this approach. Based on the proposed approach, the following
architectural layers will be required as illustrated in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 12, 2021

299 | P a g e

www.ijacsa.thesai.org

Fig. 1. Proposed Architecture.

A. Core Legacy System Layer

In the initial phases of transformation, the core legacy
system will be considered as a backend system that the other
system layers will be interacting with. As is the case with
typical legacy systems, this layer will comprise application
software and any associated databases.

B. Service Layer (Middle Layer)

To be able to adopt a service-oriented approach, most
business logic should be separated from the core system into a
dedicated API-based Service Layer (middle layer). This layer
will contain the business logic such as all validations and
custom roles related to the core legacy system. The service
layer will be divided into the following sub-layers:

1) Interface Layer (API): This layer will be dedicated to

exposing the services of the core legacy system into

Representational State Transfer (RESTful) APIs that are

consumable by the Workflow Management Layer.

Furthermore, RESTful APIs will be exposed as web services

that can be accessed by either internal or external systems.

2) Domain services layer: Following the principles of

Design Driven Design (DDD), the Domain Services Layer will

contain a number of business-oriented modules. These modules

will correspond to the respective business areas in the core

legacy system. Hence, each module will encapsulate several

microservices that provide business-specific functions. In line

with DDD implementation patterns, each module will have a

service manager to manage its microservices. Moreover, the

service manager will enable collaboration among the business

modules as required. Service calling in this instance is achieved

via the communication between the service managers of the

different system modules.

3) Common layer: The Common Layer will provide

generic services required by the application. For example, user

management and authentication, integration with external

parties, and data access. This layer will also comprise a

dedicated Data Access Layer (DAL) that will provide all the

data connectivity and access functionalities. Having a separate

DAL is vital in the context of legacy transformation as it will

enhance the adopted SOA approach by avoiding native access

to databases.

C. Workflow Management Layer

One of the important elements of the proposed architecture
is based on wrapping legacy solutions with Business Process
Management (BPM) functionality. BPM functionality will be
managed via a Workflow Management Layer that will act as an
orchestration tool to manage the interactions between the
legacy core system and its related end points. Following the
proposed layered approach, a workflow management software
component will sit on top of a dedicated service middle layer.
Hence, the Workflow Management Layer will comprise three
main components as follows:

1) Process workflows: The process workflows capture the

workflows of the legacy system and manage the system

services accordingly. It should be noted that domain driven

workflows will not only capture the business-level models of

the legacy system, but the approach adopted by [15] will be

employed in which IT-level models will also be captured for

effective workflow management. Hence, in addition to

capturing the workflows of business processes, IT-level models

will also be captured to address specific technical requirements

such as infrastructure considerations and user access and

authentication.

2) Workflow and data views: Workflow models constitute

process models (views) that capture the actual sequence of

activities/validations that a typical workflow process contains

[16]. Workflow views will be used to create and manage the

workflows that map the legacy system’s functionality. Another

layer of workflow modelling within the proposed architectural

model is the data models (views). Data views contain the data

objects required to define data fields, data field mapping, and

connections to database. Hence, they bridge the connection

between the backend database systems.

3) Artificial intelligence (AI) Layer: This layer will aim to

streamline the system’s workflows, reduce redundancies by

intelligently handling large amounts of data, reduce user errors

and increase the efficiency of routine tasks. It will offer the

greater advantages of the legacy transformation process.

D. User Interface Layer

The User Interface (UI) Layer will provide users with the
ability to interact with the backend legacy system to achieve
the required business functionality. Frontends can be in the
form of purpose-built desktop applications communicating
with the Workflow Management Layer. They can also be in the
form of web-based applications whether it be a website, web
portal, tablet, or mobile applications.

IV. TECHNOLOGY STACK

There is a variety of technology solutions that can support a
gradual transformation from legacy systems to modern web-
based solutions. Based on the proposed workflow-managed
SOA approach, the following software technologies can be
utilized for a prototype implementation:

A. Pega Platform

Since one of the pillars of the proposed approach is the
utilization of a Workflow Management Layer, the use of Pega

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 12, 2021

300 | P a g e

www.ijacsa.thesai.org

as a Business Process Management (BPM) platform is
suggested. The low-code nature of Pega coupled with its App
Studio that allows for business and IT cooperation in the
design stage makes it a powerful tool for transformation and
modernization projects [17].

Another reason to choose Pega is its wide range of data and
integration capabilities that allows connecting Pega
applications with distributed backend systems. The Pega
platform also supports a wide spectrum of integration standards
and protocols allowing for high connectivity levels with
external systems [18]. Additionally, Pega offers a wide range
of AI and machine learning tools that allow for optimized
workflows and increased efficiency [19]. These capabilities are
particularly important in relation to the proposed architecture
which emphasizes communication with legacy systems via
dedicated integration layers.

B. ASP.Net Core MVC

ASP.Net Core MVC is a modular and cross-platform
development framework for developing web-based
applications [20]. It provides a concrete framework for
developing RESTful web services that can expose data
operations [21]. This development framework was selected for
the prototype implementation due to its ability to expose
backend services as RESTful web services that can be
consumed by other software layers (namely, the Workflow
Management Layer in our proposed architecture).

Developing a middle layer using ASP.Net Core MVC can
provide the required flexibility in terms of transforming a
legacy system to a web-based system. Within this context, the
main advantage of ASP.Net Core MVC is its ability to provide
headless web services [21]. Headless API services do not have
User Interface (UI) as they are meant to be consumed by other
systems that may have their own UI elements. This approach
provides the necessary flexibility to expose system services via
different interfaces such as websites, web portals, and mobile
applications.

C. Devart

Devart is a database connectivity tool that supports a
variety of database platforms. To avoid direct (native) access to
the legacy database, Devart can be a good tool for building
Data Access Layers (DAL) that can provide the necessary
interfaces to the service layer to access legacy databases.
Furthermore, Devart’s developer tools support reverse and
forward engineering which makes it a suitable tool for legacy
modernization implementation [22].

V. SOLUTION IMPLEMENTATION

To identify the exact components of the proposed
architectural approach, a hypothetical proof of concept is
presented in this paper. We examine the effectiveness of the
proposed approach through a prototype based on one of the
common legacy transformation scenarios. This scenario is
represented in the transforming of an Oracle forms-based
system (Oracle 5) to a web-based application. In this proof of
concept, the scenario of exposing a legacy HR system to the
web is highlighted through the implementation of the proposed
transformation approach.

A. Transformation Steps

A piece-by-piece transformation process is followed as
opposed to a risky big bang approach where all system
components are migrated at once to a new system/platform.
Based on this gradual approach, two main transformation
stages can be envisaged:

1) Phase I: Transformation to Service Orientation (SO):

The main goal of this phase is to transform legacy services into

modular services that can be accessed from a service-oriented

middle layer (service layer). To achieve this goal, the legacy

system will be analyzed and documented on an as-is basis.

Then, business logic will be captured in the service layer that

will directly interact with the legacy system and its database

(acting as a backend system in this instance).

2) Phase II: Legacy system replacement: Since Phase I

will separate business logic from the legacy core system, it will

be relatively a lower risk process to replace the backend legacy

system with a new system that will interact with the existing

service layer. In such a scenario, business operations and end-

user experience will not be interrupted as they will still be

interacting with the same frontend systems. Such frontend

systems can be either a workflow management interface as

manifest by the proposed architecture, customized desktop

applications or web-based applications.

B. Case Study

The prototype system includes four layers (Core Legacy
System, Service Layer, Workflow Management Layer and UI
Layer). In this context, it is assumed that the Legacy System’s
services were mapped into several clearly defined APIs that
can loosely integrate with other systems. As illustrated in
Fig. 2, the API services act as an entry point and perform the
required services using the business modules’ service
managers. Furthermore, the API service layer will use the
Common Layer for generic functions such as the management
of user authentication, getting database context, etc.
Additionally, API services will share the database context with
all business services allowing the system activities to be
handled in a few database transactions.

Fig. 2. Modules and Service Managers’ Interactions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 12, 2021

301 | P a g e

www.ijacsa.thesai.org

C. System Services

Table I summarizes the main API Layer services that
require the basic HR system functionality. If we take the
example of a simple service to enter the details of a new
employee, several RESTful API services can be used to
populate the dropdown menus used in the data entry form
within the system’s UI. These services will be called via the
designated service manager to pull the required data for use in
the UI. Furthermore, business validation can be performed
using services from several modules based on the action being
performed by the end user.

D. Workflow Management

The legacy system functionality is decomposed into
service-oriented workflows managed by the Workflow
Management Layer. In our prototype, the Workflow
Management Layer is represented in Pega BPMS, which is a
low code workflow management platform that has the
flexibility to integrate with a variety of backend systems. Fig. 3
illustrates the Pega-designed workflow for the employee
addition process within the prototype HR system. This
workflow contains three main steps: identification of employee
details, employee addition, and closure.

TABLE I. API LAYER SERVICES

System

Functions

Service APIs

(CommonDBContext =

InfraSrctureManage.GetDatabaseContext)

Search

Function

API. Search Employee

In this service, the user inputs the search attributes and then

calls the following service to fetch the required results:

HRSrvcMngr.GetEmployeeList

Add New

Employee

API.NewEmployee:

A data entry form allows the user to enter the attributes

related to a new employee. The following services are used to

fill the dropdown lists associated with employee attributes.

For example:

RefSrvcMngr.GetEmployeeTypes(CommonDBContext)

RefSrvcMngr.GetContractTypes(CommonDBContext)

RefSrvcMngr.GetContractTypes(CommonDBContext)

RefSrvcMngr.GetDepartmentsList(CommonDBContext)

Update

Employee

Details

There are two steps in this process:

1. Show employee details, attributes are initiated by fetching

the current employee data by using the service:

HRSrvcMngr.GetEmployeeByID

2. Users can update the employee’s details and then either

save the record or cancel the process.

 Delete

Employee

Details

API. DeleteEmployee

The API.SearchEmployee can be used to fetch the employee

details. Once an employee record is selected, it can be deleted

by using the following service:

SgnSrvcMngr.DeleteEmployee(CommonDBContext)

Save Details

API. SaveEmployee

Saving an employee’s details can be done through either of

two processes:

1. Adding a new employee:

HRSrvcMngr.CreateEmployee(CommonDBContext)

2. Updating employee details:

HRSrvcMngr.UpdateEmployee(CommonDBContext)

Cancel

Operation

This functionality will be achieved via the UI level by

clearing the data entry form

Fig. 3. Proposed Architecture.

The first step in the workflow involves the verification of
the employee’s identity before adding his details to the system.
To verify the identity, it is assumed that Pega will integrate
with a third-party provider to validate the employee’s ID. In
our prototype implementation, Pega capabilities are utilized to
create the system’s frontend in the form of a series of
HyperText Markup Language (HTML) pages that correspond
to the designed workflow.

Once the employee’s identity is validated, the “Add
Employee Details” step is invoked which will involve
displaying the employee addition data entry form shown in
Fig. 4. The different drop downs in the entry form will be
populated with dynamic values pulled from the legacy system
database. For example, the following services will be called to
fetch Employee Types, Contract Types and List of
Departments:

RefSrvcMngr.GetEmployeeTypes(CommonDBContext)

RefSrvcMngr.GetContractTypes(CommonDBContext)

RefSrvcMngr.GetDepartmentsList(CommonDBContext)

Once the employee details are added, they can be saved by
invoking another service from the Service Layer:

HRSrvcMngr.CreateEmployee(CommonDBContext)

Fig. 4. Employee Addition Form.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 12, 2021

302 | P a g e

www.ijacsa.thesai.org

E. Integration

Pega integration capabilities with RESTful APIs were
utilized to integrate with the services provided by the Service
Layer. In this scenario, Pega acted as a client application that
uses HTTP protocols to access GET or POST methods to
achieve the required functionality. An example of RESTful
service consumption is the process by which the list of contract
types is fetched to populate the relevant dropdown list in the
employee addition form. HTTP GET requests are passed
through service HTTP query strings that contain the required
operations. In this example, GetContractTypes service is used:

https://www.legacyhr.com/GetContractTypes.php?operatio
n=fetchtypes

The fetched data is formatted into JavaScript Object
Notation (JSON) string that can be easily used in the system’s
frontend as illustrated in Fig. 5. Similarly, when there is a need
to write data to the legacy system’s database, HTTP POST
operations can be used to pass the required data (for example,
new employee’s details) to the core system.

Fig. 5. Contract Types JSON Sample.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

The rapid advancement of web technologies coupled with
evolving business needs make legacy transformation inevitable
for enterprises around the world. However, the risks of such a
transformation should be mitigated with an approach that is
flexible enough to allow for a gradual and low risk
transformation.

The proposed SOA workflow-based transformation
approach offers several benefits in terms of legacy system
transformation into web-based applications. The key advantage
here is the adoption of a microservices architecture where the
legacy system’s functionality is decomposed into self-
contained functional units. On top of that, an AI-enabled
Workflow Management Layer orchestrates the system’s
functionality by calling the required legacy services from a
dedicated Service Layer (middle layer). In our prototype
implementation, we utilized ASP.Net Core MVC for the
Service Layer implementation and Pega BPMS for the
Workflow Management Layer.

B. Future Work

Future work will involve progressing further with the
transformation approach by examining the process of replacing
the legacy backend system with a new core system. The aim
here will be to validate the success of full transformation by
utilizing the suggested architectural approach and
transformation steps.

REFERENCES

[1] H. Kim and Y.-K. Chung, "Transforming a Legacy System into
Components," In: Gavrilova M. et al. (eds) Computational Science and
Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in
Computer Science, vol. 3982, pp. 198-205, 2006.

[2] H. M. Sneed, "Planning the reengineering of legacy systems," IEEE
Software, vol. 12, no. 1, pp. 24-34, 1995.

[3] A. D. Ionita, M. Litoiu and G. Lewis, Migrating Legacy Applications:
Challenges in Service Oriented Architecture and Cloud Computing
Environments, 1 ed., IGI Global, 2012.

[4] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen and J. Hage, "How
do professionals perceive legacy systems and software modernization?,"
in ICSE 2014: Proceedings of the 36th International Conference on
Software Engineering, Hyderabad, 2014.

[5] P. Gordon, R. Seacord, D. Plakosh, G. Lewis and J. Fuller, Modernizing
Legacy Systems: Software Technologies, Engineering Processes, and
Business Practices, 1 ed., Addison-Wesley Professional, 2003.

[6] D. Goerziga and T. Bauernhansla, "Enterprise Architectures for the
Digital Transformation in Small and Medium-sized Enterprises," in
Procedia CIRP, Naples, 2018.

[7] H. M. Hess, "Aligning technology and business: Applying patterns for
legacy transformation," IBM Systems Journal, vol. 44, no. 1, pp. 25-45,
2005.

[8] Y. Zou and K. Kontogiannis, "Migrating and Specifying Services for
Web Integration," Lecture Notes in Computer Science, vol. 1999, pp.
253-270, 1999.

[9] S. Comella-Dorda, K. Wallnau, R. C. Seacord and J. Robert, "A Survey
of Legacy System Modernization Approaches," Defense Technical
Information Center, 2000.

[10] S. B. Popov and P. V. Khripunov, "Digital Transformation Legacy
Social Service Information System," in Journal of Physics: Conference
Series, Britsol, 2019.

[11] L. Erlikh, "Leveraging legacy system dollars for e-business," IT
Professional, vol. 2, no. 3, pp. 17-23, 2000.

[12] G. Canfora, A. Cimitile, A. De Lucia and D. L. Giuseppe,
"Decomposing legacy programs: a first step towards migrating to client-
server platforms," The Journal of Systems and Software, vol. 54, no.
2000, pp. 99-110, 2000.

[13] S.-H. Li, S.-M. Huang and D. C. C. C.-C. Yen, "Migrating legacy
Information," Journal of Database Management, vol. 18, no. 4, pp. 1-25,
2007.

[14] P. Krivic, P. Skocir, M. Kusek and G. Jezic, "Microservices as Agents in
IoT Systems," in 11th KES International Conference, KES-AMSTA
2017, Algarve, 2017.

[15] M. C. Branco, J. Troya, K. Czarnecki, J. K¨uster and H. V¨olzer,
"Matching Business Process Workflows," in Model Driven Engineering
Languages and Systems, Innsbruck, 2012.

[16] W. Yang and F. Li, "Workflow modeling: a structured approach," in 8th
International Conference on Computer Supported Cooperative Work in
Design, Xiamen, 2004.

[17] Gartner, "Gartner Magic Quadrant for Enterprise Low-Code Application
Platforms," 2019. [Online]. Available: https://www.gartner.com/en/
documents/3991199/magic-quadrant-for-enterprise-low-code-
application-platf. [Accessed 30 10 2021].

[18] S. Mangu, "Business Process Management: Robotic Process Automation
Approach," International Journal of Advanced Research in Engineering
and Technology (IJARET), vol. 11, no. 11, pp. 831-840, 2020.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 12, 2021

303 | P a g e

www.ijacsa.thesai.org

[19] R. Walker, "Artificial Intelligence in Business: Balancing Risk and
Reward," Pegasystems, 2018.

[20] J. Ciliberti, ASP.NET Core Recipes: A Problem-Solution Approach, 2
ed., Apress, 2017.

[21] A. Troelsen and P. Japikse, Pro C# 7: With .NET and .NET Core, 8 ed.,
Apress, 2017.

[22] H. Schwichtenberg, Modern Data Access with Entity Framework Core,
1 ed., Apress, 2018.

