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Abstract—Human Activity Recognition has been a dynamic 

research area in recent years. Various methods of collecting data 

and analyzing them to detect activity have been well investigated. 

Some machine learning algorithms have shown excellent 

performance in activity recognition, based on which many 

applications and systems are being developed. Unlike this, the 

prediction of the next activity is an emerging field of study. This 

work proposes a conceptual model that uses machine learning 

algorithms to detect activity from sensor data and predict the 

next activity from the previously seen activity sequence. We 

created our activity recognition dataset and used six machine 

learning algorithms to evaluate the recognition task. We have 

proposed a method for the next activity prediction from the 

sequence of activities by converting a sequence prediction 

problem into a supervised learning problem using the windowing 

technique. Three classification algorithms were used to evaluate 

the next activity prediction task. Gradient Boosting performs 

best for activity recognition, yielding 87.8% accuracy for the next 

activity prediction over a 16-day timeframe. We have also 

measured the performance of an LSTM sequence prediction 

model for predicting the next activity, where the optimum 

accuracy is 70.90%. 

Keywords—Machine learning algorithms; activity recognition; 

gradient boosting; next activity prediction; LSTM sequence 

prediction model 

I. INTRODUCTION 

Rapid advancement in machine learning addresses a 
significant area of research, recognition, and human activity 
prediction. Predicting the next activity ahead of time can have 
a substantial impact on shaping and designing future 
technologies. A system needs to know the daily activities of a 
human to predict the next activity, which requires activity 
recognition. Recognition of an activity depends on capturing 
the movements and gestures made by different body parts. It is 
pretty challenging to correctly detect daily activities from a 
whole bunch of body movements. Again, the same activity 
can be performed in different ways. So, activity recognition 
has gained increasing interest in research in the past years. 
Activity prediction is the next step into the advancement of 
technology. From the recognized activities, a system would be 
able to predict what is going to be the next activity. It would 
be a massive leap towards reshaping the future, and the 
promise of such systems and technologies motivated this work 
to contribute to this field. 

Activities are parts of Human behavior. An Activity 
consists of Actions. Three important terminologies are to be 
considered: Action, Activity, and Behavior [1]. Actions are a 

more straightforward form of conscious body movements like 
moving hands up and down, which form a specific action such 
as eating, running, walking, etc. All the actions a human 
performs in daily life contribute to creating his behavior, a 
complex structure of activities with a hidden pattern. Action 
data is needed to be captured by using different sensors for 
recognition of Activity. It can also be done from a video feed. 
Thus, we have two approaches for activity recognition- vision-
based and sensor-based [1]. The vision-based activity 
recognition approach often turns into privacy concerns, so 
sensors get more attention in research and thus our area of 
interest. 

In recent years, the consumer electronics industry has 
made a considerable investment in wearable technology. 
Companies produce many different wearable devices: fitness 
trackers, smartwatches, connected headsets, smart glasses, 
wrist bands, etc. Despite wearable devices not being new, the 
development of mobile technologies and the quantified-self 
movement related to fitness and sports activities have led to 
their explosion [2], [3]. Among the wide variety of wearable 
devices, wrist-wearables such as smartwatches and wrist 
bands seem to have become mainstream. Estimations 
indicated that by 2019 [4], wrist wearable devices would reach 
1 million sold units, while all the other wearable devices 
together will achieve just 7.3 million units. In addition to other 
features associated with their reduced size and comfortable 
use, wrist-wearable devices include many sensors providing 
continuous data about vital signs (e.g., heart rate, skin 
temperature, acceleration) and environmental variables (e.g., 
movements). Such advancements in wearable technology 
create opportunities to study further by analyzing the data and 
developing new applications, technologies, and solutions. 

Different context-aware systems such as personalized 
assistants, home automation, health monitoring, security 
management systems, etc., can benefit from activity data. The 
anticipation of the following activity will empower such 
systems to interact and perform more efficiently with users to 
improve context-aware experiences. 

Predicting the next activity of a user requires previous 
activity data. So, a system that recognizes activity and stores 
activity information (e.g., activity name, timestamp, etc.) can 
be used for activity prediction. For activity recognition, it 
requires data for training a machine learning model. Our work 
includes data collection using a wearable device to build a 
recognition model to recognize the activity. Then the predictor 
model predicts the next activity from the sequence of 
recognized activities. We will focus on the following facts: 
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1) Collecting sensor data for building a machine learning 

model. 

2) Deploying a machine learning model that best 

recognizes activity from collected data. 

3) Storing activity information in a log file for creating an 

activity sequence. 

4) Build another machine learning model to learn patterns 

in the activity sequence for predicting the next activity. 

We intend to record sensor data generated from body 
movements and use the data to train Machine Learning 
Models to recognize activities. Further, the detected activities 
will be used for predicting the next activity for a specific user. 
There are different sensors available to collect required data, 
and these sensors can be positioned in various body parts. 
Sensor position is an essential factor in HAR (Human Activity 
Recognition) [5]. They can also be attached to home entities 
(e.g., bedroom doors, kitchen doors, refrigerators, washing 
machines, etc.) in a smart home setting. Some sensors are 
integrated into smartphones and smartwatches/fitness trackers. 
We propose to record data from a wrist wearable device 
because wrists are engaged in most activities in daily life, and 
the position is ideal for collecting data for activity recognition 
purposes [5]. Choosing the suitable machine learning model 
for this task requires effort [6]. In our proposed work, the 
prediction of the next activity depends on the recognized 
activity sequence. Though activity recognition is a widespread 
research interest, activity prediction is still moderately new 
and challenging. Several approaches have been adopted to 
predict activities which include Hidden Markov Models 
(HMM) [7], Recurrent Neural Networks (RNN), Long-Short 
Term Memory (LSTM) [5], etc. In this work, we intend to 
collect data from sensors positioned at the wrist, recognize 
activity and predict the next possible activity of a specific user 
in the nearest future by implementing machine learning 
models. This paper contributes to the following sectors: 

1) We derive three new features from collected data and 

build an Activity Recognition Model that performs moderately 

well based on a reduced dataset. 

2) We propose a novel approach to predict activity by 

converting the sequence prediction problem into a supervised 

learning problem. 

3) We also explore an LSTM sequence prediction 

approach for the next activity prediction. 

The study schemes to propose a model to recognize human 
activity from the data collected by the sensors of a wrist-
wearable device and then predict the next possible activity 
from the sequence of previous activities. Section 2 contains a 
brief discussion about Activity Recognition and Activity 
Prediction and prior works related to these fields. The 
Architecture and System Workflow of our proposed model is 
described in Section 3. The evaluation of our work and results 
are covered in Section 4. Section 5 includes an insightful 
discussion of our findings. 

II. LITERATURE REVIEW 

Activity recognition is the process of recognizing an 
activity performed by a human. It is a machine learning 

approach to detect activity by analyzing data given as input to 
a machine learning model built on a machine learning 
algorithm. It is a way to teach a machine to recognize an 
activity. 

It is a fundamental and challenging problem to track and 
understand agents' behavior through videos taken by various 
cameras—the primary technique employed in computer 
vision. Vision-based activity recognition has found many 
applications such as human-computer interaction, user 
interface design, robot learning, and surveillance. In vision-
based activity recognition, a great deal of work has been done. 
Researchers have attempted many methods such as optical 
flow, Kalman filtering, Hidden Markov models, etc., under 
different modalities such as single-camera, stereo, and 
infrared. In addition, researchers have considered multiple 
aspects of this topic, including single pedestrian tracking, 
group tracking, and detecting dropped objects. Recently some 
researchers have used RGBD cameras like Microsoft Kinect to 
detect human activities. Depth cameras add an extra 
dimension, i.e., the depth which a regular 2d camera fails to 
provide. Sensory information from these depth cameras has 
been used to generate real-time skeleton models of humans 
with different body positions. This skeleton information 
provides meaningful information that researchers have used to 
model human activities, which are trained and later used to 
recognize unknown activities. 

Despite the remarkable progress of vision-based activity 
recognition, its usage for most actual visual surveillance 
applications remains a distant aspiration. Conversely, the 
human brain seems to have perfected the ability to recognize 
human actions. This capability relies not only on acquired 
knowledge but also on the aptitude of extracting information 
relevant to a given context and logical reasoning. Based on 
this observation, it is proposed to enhance vision-based 
activity recognition systems by integrating commonsense 
reasoning and contextual and commonsense knowledge. 

Sensor-based activity recognition integrates the emerging 
area of sensor networks with novel data mining and machine 
learning techniques to model a wide range of human activities. 
Mobile devices (e.g., smartphones) provide sufficient sensor 
data and calculation power to enable physical activity 
recognition to estimate energy consumption during everyday 
life. Sensor-based activity recognition researchers believe that 
these computers will be better suited to act on our behalf by 
empowering ubiquitous computers and sensors to monitor 
agents' behavior (under consent). Sensor-based activity 
recognition is a challenging task due to the inherently noisy 
nature of the input. Thus, statistical modeling has been the 
main thrust in this direction in layers, where the recognition at 
several intermediate levels is conducted and connected. At the 
lowest level where the sensor data are collected, statistical 
learning concerns how to find the precise locations of agents 
from the received signal data. At an intermediate level, a 
statistical inference may be concerned about recognizing 
individuals' activities from the inferred location sequences and 
environmental conditions at the lower levels. Furthermore, at 
the highest level, a significant concern is to find out the 
overall goal or sub-goals of an agent from the activity 

https://en.wikipedia.org/wiki/Activity_recognition#cite_note-31
https://en.wikipedia.org/wiki/Activity_recognition#cite_note-31
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sequences through a mixture of logical and statistical 
reasoning. 

Activity Recognition can be done in various ways. Some 
AR works include only accelerometer data. Fernando G.D 
Silva [8] designed a recognition system for simple human 
body movements using a tri-axial accelerometer sensor 
integrated with a sports watch. Min-Cheol Kwon and 
Sunwoong Choi built a system for recognizing activity using 
accelerometer and location data generated from a wrist-worn 
smartwatch using an Artificial Neural Network. Their 
approach is location-specific; a user can only perform certain 
actions in a specific location. An activity recognition model 
based on a wavelet using one or more accelerometers was 
proposed by Mannini and Sabitini [9]. Casale et al. [10] used a 
wearable device for collecting accelerometer data for human 
activity recognition. Some works include multiple 
accelerometers. Chung, Lim, Noh, Kim, and Jeong [11] built a 
testbed to collect motion data using a tri-axial accelerometer, 
gyroscope, and magnetometer by attaching eight Inertial 
Measurement Units (IMU) devices on different parts of the 
human body. They trained that dataset using the Long Short-
Term Memory (LSTM) network to recognize a few Activities 
of Daily Living (ADLs). Foerster and Fahrenberg [12] 
collected data using five accelerometers and proposed a 
hierarchical model to classify different body postures and 
movements. Beddiar, Nini, Sabokrou and Hadid [13] surveyed 
numerous vision-based human activity recognition research 
papers to describe the method of HAR. They featured three 
essential components of this approach, which are video frame 
segmentation for activity recognition, action representation of 
the body postures and motions and ML algorithms to 
recognise activities by learning process. Bao and Intille [14] 
used five biaxial accelerometers worn on other body parts to 
monitor 20 types of activities using C4.5 and Naive Bayes 
classifiers. Wallace [15] Ugulino proposed another ML-based 
recognition classifier to detect five different activities (sitting, 
standing, sitting down, standing up, and walking) using body-
worn accelerometer data collected from 4 participants. 
Krishnan et al. [16] collected data from ten participants using 
three accelerometers to detect lower body motions. Samad 
Zabihi [17] used transformation of the accelerometer data (x, 
y, z) to a spherical coordinate system (r, Ø, θ) for activity 
recognition and extracted features from transformed data. 
Zhen-Yu [18] used tri-axial accelerometer data to build an 
autoregressive model to detect human activity. Different 
activities (run, still, jump, and walk) were classified using AR 
coefficients feature extraction. Huawei Wang [19] used 
Principal component analysis to reduce the dimensionality and 
selected 3 out of the 12 features of a dataset. Magnetic-
induction based communication system is used for sensing and 
transmitting data generated by every movement of the body 
part to recognize a physical activity in [20] Acceleration data 
of a smartphone is investigated in [21]. Twenty-nine users 
participated in data collection, and each of them carried an 
Android phone in their pocket. They were asked to perform 
six activities: Walking, Standing, Sitting, Jogging, Stairs-Up 
and Stairs-Down. They used Logistic Regression, J48, and 
Multilayer Perceptron for the model evaluation. The accuracy 
was above 90%. They found it a little hard to differentiate 
between Stairs-Up versus Stairs-Down. For activity prediction 

purposes, the most popular approaches are to use Recurrent 
Neural Networks (LSTM) and Hidden Markov Model (HMM) 
[1]. This paper [22] shows the importance of prediction in 
intelligent environments. Most of the Prediction tasks are 
carried out as a sequence prediction. 

Activity Prediction is the process of predicting an activity 
ahead of time that will be performed in the nearest future. It is 
a way to teach a machine to predict an activity by using 
machine learning models. Most of the prediction tasks carried 
out in the past are either in a Smart Home scenario to identify 
the next sensor that would generate the next event or from a 
video to infer what will happen next. Personalized activity 
prediction is still a new concept and is merely investigated as 
a research topic. An activity can be predicted for a specific 
user by learning from the pattern of activities performed 
previously by that user. So, the activity prediction problem 
can be formulated as a sequence prediction problem. Sequence 
prediction is a problem that includes using historical sequence 
information to predict the next value or values in the 
sequence. Various methods are available for sequence 
prediction, but Recurrent Neural Networks, especially 
LSTMs, have been the best in use. 

Predicting future activity empowers different applications 
like personal assistants and context-aware systems to interact 
more efficiently with the user. The problem of next activity 
prediction is often addressed as sequence prediction, which 
can be adapted to predict the label of the activity that will 
occur next in the sequence. Du, Lim, and Tan [23] performed 
activity recognition on some ADLs to generate a series of 
activities and then implemented LSTM and Naive Bayes to 
find the accuracy of predicting the next activity. The active 
LeZi algorithm is implemented in this [24] work to identify 
the sensor in a home that would generate the next event. There 
have been works on predicting the next location [25] and 
user's location-based mobility [26]. Location-based human 
behavior is focused in these papers and is subject primarily to 
using the Markov models. Markov models lack the flexibility 
to explore past activities instead of making a prediction based 
on only the most recent previous state. This feature restricts 
Markovian models from getting high-level insight into the 
data. Another popular method is Sequence mining that can be 
used to address such problems [27]. A dataset consisting the 
name of activities was generated from a collection of human 
actions using mapping and word embedding using LSTM 
algorithms to predict the future activity was implemented in 
[28]. Some activity prediction works are also found to be 
vision-based [7], [29], [2]. Alfaifi and Artoli [30] evaluated 
recent improvements in activity prediction and proposed a 3D- 
convolutional neural network model that extracted features 
and classified them to predict the action by LSTM. 

III. ARCHITECTURE OF PROPOSED SOLUTION 

In this paper, we intend to propose a conceptual model for 
activity recognition and next activity prediction. The model 
complements the existing wearable technology architecture 
[31]. As illustrated in Fig. 1, the current architecture has three 
main components: a wrist-worn device (i.e., fitness 
tracker/smartwatch), an intermediate medium (i.e., 
Smartphone, computer), and a server/cloud service. It follows 
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a Proprietary system. Wearable vendors use this system for 
data collection and analytics and send the analytical result to 
the user and the authorized third parties [31]. A wrist-worn 
device is used to collect data using the sensors integrated into 
it. Theoretically, the device should be capable of sending data 
directly to the server for permanent storage, but it is not in use 
[31]. 

It sends data to the server/cloud service via the 
intermediate platforms. The server performs analytical 
operations to generate insight from data and sends it back to 
the middle layer as an interface for the wearable device. Our 
work will enhance the analytical capability by adding the 
feature to recognize an activity with a machine learning 
model. The model will take a chunk of sensor data from the 
device as input and generate a label for that movement (i.e., 
activity). After successfully recognizing activities and storing 
them as an activity sequence for a certain period, another 
machine learning model will take the sequence of activities as 
input and predict the next possible activity. 

The first task of our proposed work requires data for 
building an activity recognition model. A fitness tracker or 
smartwatch is the best solution for collecting such data, 
integrated with different sensors. Still, we have used a 
smartphone for data collection and storage simplicity, tying it 
on the participants' hands like a tracker/smartwatch. This 
approach has collected the desired data but with more 
straightforward storage options as we could save it directly as 
CSV files. We have used an android app named 
'AndroSensor'1 available on the Google Play Store to collect 
data. We have recorded accelerometer, gyroscope, and sound 
level data and also kept timestamps. The data recording rate 
has been set to: 0.125 s/per data (instance). 

Table I shows the value of the day-of-the-week and 
corresponding value. One is a weekday, and another is the 
weekend. We have considered Sunday, Monday, Tuesday, 
Wednesday, Thursday as weekdays while Friday and Saturday 
as weekends according to local holidays. Table II illustrates 
time-of-the-day data. Furthermore, the datasets have used in 
this study can be categorized into two types: recognition 
dataset and prediction dataset. We have selected ten activities 
(Table III). Here, we have held a common assumption: A user 
will not perform multiple activities simultaneously. The 
recognition dataset consists of 330993 rows and ten columns. 
It has contained acceleration values of x, y, z-axis, orientation 
values of x, y, z-axis, sound level (in DB), day-of-the-week 
(Weekday/Weekend), time-of-the-day (Morning, Noon, 
Evening, Night). The last two features have been generated 
from a timestamp—the acceleration data of x, y, and z-axis 
have depicted hand movement through the corresponding axis. 
We have also considered the orientation data of the x, y, z-axis 
because sometimes there were activities that did not generate 
insightful acceleration data. Some activities have been 
performed in specific places, e.g., we have taken transport in 
noisy places rather than a closed room. So, the sound level has 
played an essential role in recognizing activities accurately. 

                                                           
*1https://play.google.com/store/apps/details?id=com.fivasim.androsensor

&hl=en&gl=US 

In the data pre-processing task, we have converted 
timestamp data into day-of-the-week (Table I) and time-of-
the-day (Table II). Sound level, day-of-the-week, and time-of-
the-day are three novel features we have introduced in our 
research. A human annotator has labeled the collected data 
according to activity labels (Table III). There have been three 
participants; two of them were male and one female. Each of 
them has collected data for three consecutive days consisting 
of two weekdays and one weekend. This dataset has been used 
to detect activity. 

 

Fig. 1. Wearable Technology Architecture. 

TABLE I. VALUE OF DAY-OF-THE-WEEK 

Day-of-the-week Value 

Weekday (Sunday, Monday, Tuesday, Wednesday, Thursday) 1 

Weekend (Friday, Saturday) 2 

TABLE II. VALUE OF TIME-OF-THE-DAY 

Time-of-the-day Value 

Morning (5:00 AM- 11:59 AM) 1 

Noon (12:00 PM- 16:59 PM) 2 

Afternoon (17:00 PM- 19:59 PM) 3 

Night (20:00 PM- 4:59 AM) 4 

TABLE III. ACTIVITY LABELS 

Activity Label 

Brushing teeth 1 

Drinking tea or coffee 2 

Eating 3 

Walking 4 

Taking Transport 5 

Working on PC 6 

Using Mobile Phone 7 

Reading 8 

Cooking 9 

Cleaning Utensils 10 
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Fig. 2. System Workflow. 

Fig. 2 depicts the workflow of our approach in this study. 
Our proposed model is initiated after data is collected by a 
wearable device and sent to the server. Feature engineering 
and data pre-processing are performed on the stored data for 
efficient modeling. 

In our conceptual system architecture, data is then sent to 
the recognition model. In this study, we have investigated six 
machine learning algorithms: Artificial Neural Network 
(ANN), K-Nearest Neighbor (KNN), Naïve Bayes (NB), 
Random Forest (RF), Support Vector Machine (SVM), and 
Gradient Boosting (GB) to recognize activities. When the 
model has started identifying activities, the labels were sent to 
a pipeline to create a sequence of activities. We have 
implemented a windowing technique to extract data from the 
pipeline to prepare the dataset for the next activity prediction. 

Activity prediction is a user-centric process. When the 
activity recognition algorithm is implemented in the wearable 
technology architecture, it starts detecting the user's activities. 
So, we propose that the sequence of activities will be stored in 
a log file and used as the dataset for prediction purposes. We 
have collected data for some consecutive days to make a 
sequence of activities for demonstrating the activity prediction 
problem. 

The prediction dataset used in this paper has been prepared 
by recording activities for eight consecutive days and sixteen 
days to evaluate the model performance regarding time. As 
prediction of the next activity depends on a specific user's 
behavior, data has been collected from one participant. The 
prediction model has taken previous activities and the current 
activity into consideration for predicting the next activity. 
Table IV shows a glimpse of the sequence of activities 
performed by the participant. Hence, it has a various number 
of attributes depending on the window size we choose. 
Depending on different window sizes concerning 8 days and 
16 days, the number of rows has differed in the prediction 
dataset. 

TABLE IV. SEQUENCE ACTIVITIES 

 1  6  4  5 10  2  6  3  1 ….. 

TABLE V. TRANSFORMED DATA FOR NEXT ACTIVITY PREDICTION 

(WINDOW SIZE = 3) 

 
Prev_act2 

(Feature 1) 

Prev_act1 

(Feature 2) 

Curr_act 

(Feature 3) 

Next_act 

(Target) 

1 1 6 4 5 

2 6 4 5 10 

3 4 5 10 2 

4 5 10 2 6 

5 10 2 6 9 

We have introduced a novel approach for the next activity 
prediction. We have transformed the sequence of activities 
into a feature and target-shaped data frame by implementing 
the windowing technique. It creates the opportunity to use the 
transformed sequential dataset in a supervised learning 
problem predicting human activities. Table V shows a sample 
of the dataset for the next activity prediction, where the 
window size is 3, which features were used as input and the 
target as output for the prediction model. 

We propose another approach to predict the next activity, 
as shown in Fig. 3. An LSTM sequence prediction approach is 
adopted to predict the next value in the activity sequence. 

 

Fig. 3. LSTM Sequence Prediction Workflow. 

IV. RESULT AND DISCUSSION 

We have used python with scikit-learn ML packages for 
the Machine Learning algorithms implemented in our study 
[32]. Keras and Tensorflow are used to implement LSTM. 
Some modifications have been made in the default 
hyperparameters of the ML algorithms to achieve better 
accuracy. The codes run in the Anaconda Jupyter Notebook 
(Version3). 

Fig. 4 illustrates the accuracy comparison of the six 
algorithms for activity recognition. For the Artificial Neural 
Network, the number of hidden layers has played an important 
role. The accuracy for the 3-layer network was 98.99% and for 
the 7-layer network was 99.01%. However, we have 
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considered the outcome of five hidden layer networks, as it 
performed the best for this dataset with an accuracy of 99.1%. 
On the other hand, the K-Nearest Neighbor yielded an 
accuracy of 99.2%. Where the accuracy of the Random Forest 
was 99.3%, for the Support Vector Machine, it was 98.7%. 
Though the Naïve Bayes performed poorly, having an 
accuracy of 61.9%, among all the six ML algorithms, the 
Gradient Boosting showed the highest accuracy of 99.7%. 

As mentioned earlier, in this study, we have introduced 
three novel features: sound level, day-of-the-week, and time-
of-the-day. These trio features help to detect the activity more 
accurately. As a comparison, we have run all six algorithms on 
the same dataset without these trio features. 

Fig. 5 clearly describes that all six algorithms' accuracy 
had reduced compared to Fig. 4. Yet, Gradient Boosting had 
the best accuracy of 98.8%, and Naïve Bayes yielded the 
lowest accuracy of 54.4%. In comparison, the accuracy 
differed by around 2% for all the algorithms except for Naïve 
Bayes. Naïve Bayes accuracy difference was almost 7%. 

After studying the accuracy score of the six implemented 
ML algorithms in the previous section for activity recognition, 
we can see that GB gave the best result [99.7%], where the 
nearest result was shown by KNN and the bagging algorithm 
Random Forest with an accuracy rate of 99.2% and 99.3% 
respectively. As we know, both bagging and boosting are 
ensemble methods and perform better compared to other ML 
algorithms. So, as expected, both of them have the highest 
accuracy among all six algorithms. 

Fig. 6 explains the confusion matrix of our best model for 
detecting human activity, Gradient Boosting. Almost all the 
instances of the actual class have been predicted accurately by 
the model. Specifically, the activity 'Walking' is labeled as 
activity no. 4. Of all the instances of 'Walking,' data has been 
predicted correctly as 'Walking' with an accuracy of 99.9%. 
Also, the instances of other activities have been predicted 
correctly with varying accuracy from 98.8% to 99.8%. 

For predicting the next activity, we have used two 
timeframes. The first one was a prediction on an 8 days 
activity sequence and the second one was on 16 days. We 
have used 3 ML algorithms to check the accuracy, e.g., ANN, 
KNN, GB. We have experimented with different window sizes 
to observe the effect on accuracy. 

 

Fig. 4. Accuracy Comparison for Activity Recognition. 

 

Fig. 5. Accuracy Comparison without Trio-Features. 

 

Fig. 6. Confusion Matrix of the Best Model (Gradient Boosting). 

Here we have kept both training and test accuracy in 
determining if the models have overfitting or underfitting 
issues. For an 8-days timeframe, window size (W) was taken 
from 2 to 6 with an interval of 1 to explore the effect of 
window size on accuracy comparison. Fig. 7, Fig. 8, Fig. 9 
show the accuracy comparison of training and test for 8 days 
on ANN, KNN, GB for predicting the next activity, 
respectively. 

 

Fig. 7. Accuracy Comparison (8 Days) with varied Window Size for ANN. 
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Fig. 7 illustrates that an increase in window size increases 
training accuracy but decreases test accuracy. At W = 2, ANN 
yielded the highest test accuracy of 53.1% but kept lowering 
with the window size increase. 

Similarly, in Fig. 8, training accuracy increases with the 
increase of window size, but there is a sudden drop at W = 6. 
However, the highest test accuracy for KNN was 46.9% at W 
= 2, 3. The test accuracy gradually kept decreasing with the 
change of window size. KNN showed similar behavior as 
ANN to predict the next activity from the activity sequence of 
8 days. 

 

Fig. 8. Accuracy Comparison (8 Days) with varied Window Size for KNN. 

 

Fig. 9. Accuracy Comparison (8 Days) with varied Window Size for GB. 

Fig. 9 displays that with the change of window size, 
training accuracy kept increasing. In the case of testing 
accuracy, there was some fluctuation of performance for 
varied window sizes. Notably, for W = 4, GB showed the best 
result of 61.2% accuracy. 

We can sense a trend in training and test accuracy with 
varied window sizes. In most cases, for all the algorithms, an 
increase in window size increases training accuracy but results 
in a gradual decrease in test accuracy. So, there is a hint of 
slight overfitting of data here. Now we will be analyzing the 
same for a more extended timeframe of 16 days of activity 
sequence. 

For a 16-days timeframe, the window size varied from 2 to 
8. For predicting the next activity, the accuracy comparison of 
training and test for 16 days on ANN, KNN, and GB is 
illustrated in Fig. 10, Fig. 11, and Fig. 12, accordingly. 

Analyzing Fig. 10, it can be said that, while training 
accuracy increases with the increase of window size, testing 

accuracy varies significantly. The highest test accuracy was 
yielded at W = 6, which was 81.6%. 

Similarly, in Fig. 11, for KNN, training accuracy increased 
with the change of window size. KNN also varied for test 
accuracy, but like the previous one, it performed best at W = 
6, 82.7%. 

The accuracy comparison for GB on 16 days dataset is 
graphed in Fig. 12. With the increase of window size, training 
accuracy kept increasing. GB also yielded the highest 
accuracy of 87.8% at W = 6. 

 

Fig. 10. Accuracy Comparison (16 Days) with varied Window Size for ANN. 

 

Fig. 11. Accuracy Comparison (16 Days) with varied Window Size for KNN. 

 

Fig. 12. Accuracy Comparison (16 Days) with varied Window Size for GB. 

After vivid exploration of the above cases, a longer 
timeframe of activity sequence yields better performance for 
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predicting the next activity. Also, we can say that the 
algorithms are prone to overfitting with smaller timeframe 
datasets. 

Observing Table VI, it can be said that increasing the 
window size gives a good test accuracy compared to the 
training accuracy for a specific limit. The training accuracy 
increases with the increase of window size. Just a small 
exception in the case of KNN when the window size was 
changed from 5 to 6, it decreased instead of increasing. But in 
the case of testing, while changing the window size from 4 to 
5, the test accuracy started to decline and continued for all the 
algorithms. On the other hand, Table VII indicates the 
accuracy comparison between the training and testing dataset 
for 16 days. Unlike Table VI, after increasing the window size 
with an interval of 1, GB's testing accuracy was quite good, 
though the accuracy decreased for ANN and KNN on some 
points. 

For training accuracy, we can say that the accuracy 
increased gradually with the change of the window size. 
Though after size 5, it decreased for some, at size 7, it rose 
again. It can be determined that for ANN and KNN the test 
accuracy varied while increasing the window size after 
analyzing Table VII. But for GB, the accuracy increased up to 
window size 6, and after that, it started to decrease even 
though the window size was increasing. This was the purpose 
of considering a higher range of window size for16 days 
compared to 8 days. 

TABLE VI. TRAINING AND TESTING ACCURACY (8 DAYS) WITH VARIED 

WINDOW SIZE 

Window 

Size 

ANN KNN GB 

Train 

(%) 

Test 

(%) 

Train 

(%) 

Test 

(%) 

Train 

(%) 

Test 

(%) 

2 66.6 53.1 64.9 46.9 66.6 55.1 

3 83.2 48.9 84.1 46.9 86.7 51.0 

4 91.1 42.8 89.3 40.8 91.9 61.2 

5 98.2 37.5 99.1 39.6 95.5 58.3 

6 99.1 41.7 96.4 31.2 96.4 43.2 

TABLE VII. TRAINING AND TESTING ACCURACY (16 DAYS) WITH VARIED 

WINDOW SIZE 

Window 

Size 

ANN KNN GB 

Train 

(%) 

Test 

(%) 

Train 

(%) 

Test 

(%) 

Train 

(%) 

Test 

(%) 

2 55.5 60.6 65.9 57.6 66.8 58.6 

3 80.7 72.7 83.3 78.8 83.8 77.8 

4 86.4 64.3 87.2 71.4 89.0 81.6 

5 92.9 70.4 95.6 76.5 95.6 78.6 

6 93.8 81.6 95.1 82.7 95.1 87.8 

7 93.8 71.1 96.9 74.2 96.9 81.4 

8 95.4 68.0 96.4 75.3 96.4 80.4 

 

Fig. 13. Accuracy Comparison (8 Days vs. 16 Days) LSTM Activity 

Prediction. 

Fig. 13 shows an accuracy comparison for the LSTM 
model used for predicting the next activity. Here we have 
assessed the performance of the model in a limited way. The 
model is assessed under timeframes of 8 and 16 days but 
considered a fixed window size for each timeframe, unlike the 
previous method that used varied window sizes. For the 8 
days' timeframe, window size 6 was taken, and it was 8 for 16 
days. It showed slightly better performance for a longer 
sequence of activities of 16 days than 8 days. For the 8 days' 
timeframe, the model yielded an accuracy of 68.75% and 
70.90% for 16 days. We observe a similar behavior of the 
LSTM model performing with better accuracy for a longer 
timeframe, just like the previous method. 

Both the supervised model and LSTM had performed well 
for predicting the next activity for an individual when there 
was a long activity sequence. Fig. 14 shows a performance 
comparison between LSTM and the supervised model used for 
predicting next activity. For 8 days timeframe and window 
size 6, LSTM outperforms our best-supervised model. But in 
the longer timeframe of 16 days and window size 8, the 
supervised model performs better than LSTM. 

 

Fig. 14. Accuracy Comparison between Supervised Model and LSTM 

Activity Prediction (8 Days vs. 16 Days). 
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Hence, we can conclude that both the methods used for 
predicting the next activity perform better with an extended 
timeframe of activities. 

Compared to the current work, our proposed model 
includes three new novel features: sound level, day-of-the-
week, and time-of-the-day while collecting data. Moreover, 
the activities chosen to be recognized shows deviation 
quantitatively. Various machine learning algorithms have been 
applied, and their accuracy is as good as the current work. 
Furthermore, we have converted a sequential dataset into a 
supervised learning model, which was not conducted in 
previous work. The accuracy rate of the LSTM model for 
activity prediction performed better than the existing surveys. 

To summarize, our proposed models show a significant 
outcome. The Gradient Boosting produced 99.7% accuracy 
out of all six algorithms for recognizing activity. In addition, a 
longer timeframe with a longer day count performs better than 
others for predicting next activity. Sequence and LSTM 
activity predictions provide 80.4% and 70.9% accuracy 
respectively for a 16-day timeframe with window size 8. 

V. CONCLUSION 

Due to resource constraints, we could not use a smartwatch 
or any wearable device to collect data; instead, we used a 
smartphone tying it on the wrist, which worked just like a 
wrist wearable. For data collection, we had to depend on only 
3 participants. The work can be best understood and explained 
by deploying it in real-time. But we had to work with batch 
processing due to the lack of high-end machines and 
components. 

This paper proposes a conceptual model for activity 
recognition and prediction, which can be extended with the 
existing wearable architecture. We have shown how sound 
level, day-of-the-week, and time-of-the-day can improve 
activity recognition model accuracy. We adopted a 
straightforward but effective approach to convert a sequence 
prediction problem into a supervised learning problem to 
predict the next activity. The accuracy was moderate, 
considering the dataset we have. We have also used a Long- 
Short-Term Memory (LSTM) model to explore the prediction 
process. The model we developed has shown good 
performance, yet the result is not always accurate. 

Our models have shown promise for both activity 
recognition and prediction. Wearable technologies and home 
automation, security systems, and health monitoring systems 
can significantly leverage this concept. By integrating our 
model in a smartwatch or a wrist-worn wearable architecture, 
this unique technology can be readily available to common 
people. Predicting the next human activity can create a 
significant impact on existing and future technologies. 

The next activity predictor model predicts the next activity 
based on previously detected activities. Prediction model 
accuracy depends mainly on the timeframe. The comparison 
between the 8 days dataset and 16 days dataset clearly shows 
the difference. If the dataset is sufficiently large and the 
hyperparameters are appropriately tuned, we expect a far 
better result. We have noticed that both prediction models 
yield better accuracy with a larger window size when the time 

frame increases from 8 days to 16 days. Though it is difficult 
to say which model can predict the next activity of a person 
more accurately, for different timeframes with different 
window sizes, both the supervised learning model and LSTM 
perform differently. We have a plan to extend our research 
with more participants. 

Moreover, we want to determine if it is possible to predict 
which approach performs more precisely using even more 
timeframes with different window sizes. We will also 
investigate the fact that if there is any correlation between 
timeframe and window size. We intend to further mature this 
proposed model by implementing it in real-time with 
streaming data. In the future, we will try to make predictive 
modeling more efficient by incorporating timestamps in the 
model and the activity to create time series forecasting. We 
also intend to introduce some more valuable features and 
recognize more new activities. Furthermore, a 
recommendation system can be designed based on the 
predicted activity. The recommender system will use the next 
activity data indicated by the model to make corresponding 
recommendations. 
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