
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

A Novel Framework for Cloud based Virtual Machine
Security by Change Management using Machine

S.Radharani, V.B.Narasimha
Department of CSE, UCE, Osmania University

Hyderabad, India

Abstract—The increased growth in the cloud-based
application development and hosting, the demand for higher
application and data security is also increasing. The cloud-based
applications are hosted on virtual machines and the data
generated or used by these applications are also hosted inside the
virtual machines. Hence, the security of the applications and the
data can be achieved only by securing the virtual machines.
There are number of challenges to achieve the security of the
virtual machines. Firstly, the size of the virtual machines is large,
and the generic cryptographic methods are primarily designed to
handle smaller size of the data. Thus, the applicability of these
methods for virtual machine are subjected to analysis. Secondly,
the additional time required for applying the cryptographic
algorithms on the virtual machines impact the response time of
the applications, which again impacts the service level
agreements. Finally, the virtual machines during the migration
are highly vulnerable as the virtual machines are migrated inside
the data center networks as simple text data. A good number of
research attempts have tried to solve these challenges.
Nonetheless, most of the parallel research works have either
compromised on the strength of the security protocols or have
compromised on the time taken to apply the cryptographic
methods. However, the need of the research is to identify the
attacks based on the characteristics of connection requests and
reduce the time for the encryption and decryption of the virtual
machines. This work proposes a novel framework for detection of
the attacks based on a machine learning driven algorithm by
analyzing the connection properties and prevent the attacks by
selective encryption of the virtual machines using another
machine learning driven algorithm. This work demonstrates
nearly 98% accuracy in detection of the newer and existing
attack types.

Keywords—DevOps; deep clustering; VM security; cloud
security; VM versioning; progression cryptography

I. INTRODUCTION
The security for the cloud infrastructure has always been a

persistent issue as most of the consumers and practitioners do
not have clear understanding about the security factors and
implementation details. To some extent, the service providers
have made a closed loop about the knowledge of cloud security
inside the organizations and sometimes only to the selective
groups. This makes the deployment of the cloud-based security
protocols even harder for the researchers. Nonetheless, the
recent research outcomes by various research attempts are
opening the closed loops of the knowledge and exploring the
possibilities of the deployment of novel and higher performing
security protocols. One such work presented by P. Mishra et al.
[1]. Nevertheless, the challenges of cloud securities are not

only restricted to the data stored on the cloud. Rather, the
security challenges can be observed in all the layers of cloud
implementations as on the infrastructure layer, platform layer
and the services layer. Another work by P. Mishra et al. [2]
have confirms this claim. Thus, deploying the security protocol
for all the layers of cloud implementation is highly complex
due to various aspects such as model complexity or
compatibility or interoperability between the layers.

Henceforth, the implementation of the cloud security
protocols can be best implemented using the virtual machine
architectures. As the virtual machines holds the applications
core and the data, generated or consumed by these applications,
hence protecting the virtual machines must be the primary
concern, which is implemented in this work. This work
identifies the challenges of cloud security, internally which is
virtual machine security and proposes a machine learning
driven framework to protect the VMs.

II. PARALLEL RESEARCH OUTCOMES
The security of the cloud-based applications is critical as

mentioned earlier. The applications and the data on the cloud
are visible to authenticated and unauthenticated parties at the
same time. Though, the access and identity management
aspects of the online access can restrict the privileges on the
applications and the data. Nonetheless, the visibility of data
cannot be restricted. Hence, the possibilities of the attacks also
increase on such data. The work by M. R. Watson et al. [3]
have clearly listed the vulnerabilities on the cloud systems and
also produced a clear guideline for managing the security.
Considering the similar directions, to produce a framework for
detection of the attacks based on characteristics, yet another
work by V. Varadharajan et al. [4] can be highlighted. These
parallel research outcomes are primarily focused on an old
framework called Rekall [5] and the produced recent outcomes
are the attempts to reduce the complexity and at the same time
increasing the responsiveness of the same outlined
characteristics. These outcomes have mainly concentrated on
the prevention of the attacks.

In the other hand, the domains for attack detections are also
very popular among researchers. The work by T. K. Lengyel et
al. [6] have clearly listed the possibilities of the attack analysis
frameworks to detect the attacks. Nonetheless, these detection
processes can be highly complex for the distributed
architectures such as cloud or fog or edge-based computing.
The application, the data and the userbases are always
distributed and most of the times, the execution is parallel.
Hence, the protective framework must also comply with the

658 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

distributed nature of the architecture. The work by S. Gupta et
al. [7] have confirmed to this believe.

The attacks are not only restricted to platform and the
service layers. Multiple attacks are also reported on the
physical hardware devices. The immediate but costly solution
is to provide the hardware security modules or the HSM
devices. Nonetheless, as mentioned these solutions are costly
and for a cloud-based architecture, the applicability of the
HSMs is very limited due to the limited physical access to the
infrastructure. The work by D. Kirat et al. [8] have spoken in
favor of this statement and confirms the claim. Although, the
analysis of the intrusion or attack detections must take place at
all the layers of cloud computing and infrastructure layer is not
an exception. The work by C. Spensky et al. [9] have
elaborated on the possibilities and feasibilities of monitoring
for the attack detections on the physical infrastructure layer.
This work has been criticized for not considering the
possibilities for remote monitoring, which can be achieved
using the access to the virtual machines. In the recent times, a
good number of virtual machine managers have incorporated
the monitoring layers in the VMM structure.

Reciting back to the monitoring of the virtual machines for
attack detection and prevention methods have improved a lot
using the virtual machine monitoring possibilities. The survey
done by F. Cai et al. [10] confirms few claims directly and
indirectly as firstly, the deployment of the security features can
be best adopted on the virtual machines. Secondly, the existing
cryptographic methods can easily be outperformed in the
recent higher demand for best response times and finally, the
newer types of the attacks are increasing day by day and a
method for detecting the attacks based on the behavior must be
adopted. Thus, the demand for the automated framework with
these features is the demand of the current research as also
demonstrated in the work by A. Almtrf et al. [11].

The primary features of the expected framework must
comply with few additional characteristics. The first
characteristics is the close association with the software and the
hardware modules to track the flow of the application
processing characteristics as rightly stated in the work by A.
Khurshid et al. [12]. The second characteristics of the proposed
framework is to track the changing nature of the data as
mentioned in the work by N. E. Moussaid et al. [13]. The final
characteristics must comply with the deployed virtual machine-
based applications hosted on the cloud platforms as suggested
by X. Lu et al. [14]. Thus, this work considers all the
recommendations from the parallel research outcomes and
further produces the proposed framework for detection and
prevention of the attacks on the cloud application, in tern the
virtual machine security.

Further, this work realizes the characteristic based detection
of the attacks. This not only identifies the known attack types,
but also identifies the newer attack types. The work by B.
Sudhakar et al. [15] has clearly listed the attack types and the
mapping to the connection properties. The conclusive mapping
from this work is furnished here [Table I].

TABLE I. ATTACK TYPES AND CONNECTION PROPERTIES MAPPING [15]

Attack Type Connection Properties

Browser Based Attacks 1. Count of the connection requests
2. Access Type Requests

Brute Force Based Attacks 1. Count of the connection requests
2. Ratio between the request and responses

DoS Based Attacks

1. Access Type Requests
2. Service Request Types
3. The rate of change in the service request

types

SSL Based Attacks
1. Service Request Types
2. The rate of change in the service request

types

Scan Based Attacks 1. Ratio between the request and responses

DNS Based Attacks 1. Service Request Types

It is worth the mention, that these all characteristics or
connection properties are available in the KDD dataset [16].

Thus, in the next section of this work, the problem
identified in this section in the parallel research outcomes is
formulated using mathematical models.

III. PROBLEM FORMULATION & PROPOSED SOLUTIONS
After the fundamental understanding of the research

problems in the previous section of this work, this section
focuses and elaborates the core problems and proposes
solutions to these problems using the mathematical modeling
techniques.

The first problem elaborates on the responsiveness of the
cloud-based applications due to the adaptation of the attack
detection methods. The parallel research outcomes, as seen in
the previous sections, shows higher time complexity. The
increased time complexity is due to the nature of analysis
deployed by these algorithms, which primarily focus on large
number of characteristics or the connection properties. Hence,
this must be resolved.

Lemma – 1: The reduction of the connection characteristics
using the correlation method can reduce the time complexity of
the detection method.

Proof: The connections characteristics or the properties
extracted from the connection requests can be a very large
dataset because of multiple monitoring system. Many of the
times, these large datasets provide limited and redundant
information, which is again at the cost of higher time
complexity. Thus, a machine learning driven process to reduce
the number of characteristics can certainly reduce the time
complexity.

Assuming that, the set of connection properties, C[], is a
collection of multiple characteristics and each characteristics
can be identified as Ci. Thus, for n number of total
characteristics, the relationship can be formulated as:

1 2 3[] , ,, nC C C C C=
 (1)

659 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Also, assuming that, CX is the class variable, which defines
the nature of the connection in terms of attacks or normal from
the historical information sets.

Hence, the characteristics analysis for detection of the
attacks using the standard algorithms can be formulated as,

() : []
i

i i
RowID C

TH C C
=

= Φ ∃ ∏
 (2)

Here, Φ is the function for extracting the threshold and
further, the threshold for attribute iC is stored in iTH .
Clearly, the threshold must be calculated relatively as with the
consideration of the other parameters.

Further, the combined information from the thresholds
from all the characteristics can decide the nature of the
connection in terms of the class variable as,

1

n

X i
i

C TH
=

=∑
 (3)

It is natural to realize that due to Eq. 2 and Eq. 3, the time
complexity, T1, can be formulated as,

1 (1)T n n= − (4)

Or,
2

1 * ()T n n O n= = (5)

For a large dataset with 100s of parameters or
characteristics, this time complexity for detection of the attacks
can be very high. Thus, this problem must be solved using
parameter reduction process.

Thus, based on the Eq. 1, the correlation formulation can be
formulated as,

(([])).(([]))(,)
.

x i
x i

x i

C x C C i CC C
C C

η ηρ
σ σ
− −

=
 (6)

Here, ρ defines the correlation value or correlation
coefficient, η defines the mean value and σ defines the
standard deviation.

The standard deviation calculation can be formulated as,

2{ ([])}i
i

C C i
C

n
η

σ
−

= ∑
 (7)

Further, the total correlation sets can be stored in Corr[] and
the highest values can be taken to identify m number of
characteristics for final analysis as,

[] (,)x iCorr C Cρ=< ∃ > (8)

And,

: []m Corr→ (9)

Thus, in the light of Eq. 4, the new time complexity, T2,
can be formulated as,

2 (1)T m m= − (10)

Or,
2

2 * ()T m m O m= = (11)

As, m n<< , thus it is conclusive to state that

2 1T T<< (12)

Thus, reduction of the time complexity using the attribute
reduction method is highly feasible.

The second problem elaborates on the detection of the
attack types. The attack types can be identified using a cluster
analysis on the connection characteristics or the properties. As
seen in the previous section of the work, the parallel research
outcomes mostly fail to detect the newer attacks, though the
types of the attacks are not very new and have a strong
similarity with the existing and known types of attacks.

This problem can be solved using deep cluster technique.
The clustering method for identification of the attacks is
significant as the identification of attacks direct towards
anomalies in the connection, which is easily identifiable as
outliers using the clustering method.

Lemma – 2: The deep clustering method can identify the
newer types of attacks using the outlier identification method.

Proof: The outliers as a result of clustering process
identifies the anomalies using various characteristics and
similarities of the characteristics domain values. Based on the
nature of the data used in the clustering process, the outliers
can define various meanings. As in this research the data used
are the connection characteristics, hence the outliers will
denote the abnormal connections or the attacks.

Continuing and revising the Eq. 1, for all the
characteristics, there must be domains for each characteristic
as,

1 2 3[][] [], [], []...., []nC C C C C=
 (13)

Further, the clustering process must be performed initially
for each and every characteristic or attribute domains as

[] ([])i iCL C←Φ ∃ (14)

Here, the set of clusters for the ith attribute will be stored in
[]iCL and Φ denotes the clustering process.

Henceforth, the number of members in each cluster must be
validated and the cluster with the lowest number of members
are the potential clusters, inside which the outliers will reside.

Thus, the iterative clustering must be performed until the
outliers, in this case the attacks, is not identified as,

660 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

([])i low
CLω ←Φ ∃

 (15)

The terminating condition for Eq. 15 iteration is 1ω → .

Henceforth, it can be stated conclusively, the minute
deviations can be identified using this proposed method and
further any new attack can also be detected, which has very
little similarity to the existing attack types.

The final problem, which this research aims to solve is the
reduction of the cryptographic algorithm implementation time.
As seen in the previous section of this work, the cryptographic
algorithms are not designed to handle the large data, which is
case of virtual machine files are very large in volume. Also,
due to the higher adaptability of the DevOps processes across
all organizations for application development, the changes
made to the application and indirectly to the virtual machines
are very high. This makes the process of applying
cryptographic algorithms further difficult.

Henceforth, the solution is to track the changes made to the
virtual machines in terms of application code and data and
apply incremental encryption process to reduce the time.

The proposed solutions are converted to algorithms, which
are furnished in the next section of this work.

IV. PROPOSED ALGORITHMS AND FRAMEWORK
After the formulation of the concepts of solutions in the

previous section, in this section of the work, the proposed
algorithms and the proposed frameworks are furnished.

Firstly, the Connection Characteristics Reduction using
Correlation Analysis algorithm is furnished.

Algorithm - I: Connection Characteristics Reduction using
Correlation Analysis (CCR-CA) Algorithm
Input:
Connection Characteristics set as CS[]

Output:
Reduced Characteristics set as RCS[]

Process:
Step - 1. Load the CS[] set
Step - 2. Mark the class characteristics as CX from CS[x]
Step - 3. For each attrbiute in CS[] as CS[i]

a. Calculate the standard deviation, as SD[] using
Eq. 7

b. Calculate the correlation of CS[i] with CX as
Corr[i] using Eq. 6

Step - 4. For each element in Corr[] as Corr[j]
a. If Corr[j] Not Equal Corr[j+1] & Corr[j] is Max

i. Store RCS[j] = CS[i]
b. Else,

i. Continue
c. Corr[j] = Null
d. Stop if Count(RCS[]) >= Count(CS[])/2

Step - 5. Return RCS[]

The above algorithm is framed to solve the first problem
discussed and based on the proposed Lemma – 1.

Secondly, the Deep Clustering Based Attack Detection
algorithm is furnished.

Algorithm - II: Deep Clustering Based Attack Detection
(DC-AD) Algorithm

Input:
Reduced Characteristics set as RCS[][]
Output:
Detected Attacks as DS[]
Process:
Step - 1. Load the RCS[][] set
Step - 2. For each element in RCS[][] as RCS[i][]

a. Apply K-Means Clustering on RCS[i][] and
store the result in CL[i][] using Eq. 14

Step - 3. For each element in CL[][] as CL[j][]
a. If count(CL[j][]) -> min(count(CL[][])

i. Apply K-Means Clustering on
CL[j][] and store the result in
CL1[i][] using Eq. 15

ii. Repeat the process untill
Count(CL1[i][]) -> 1

iii. Identify the attack characteristics as
DS[k] = RCS[i]

b. Else,
i. Continue

Step - 4. Return DS[]

The above algorithm is framed to solve the second problem
discussed and based on the proposed Lemma – 2.

Thirdly, the Random Crypto Key Generation algorithm is
furnished.

Algorithm - III: Random Crypto Key Generation (RCKG)
Algorithm
Input:
Large Random numbers as P & Q

Output:

I. Public Key as PK
II. Private Key as PKK

Process:
Step - 1. Calculate the modulus, M as M = P * Q
Step - 2. Select the derived encryption factor, DE as DE>1 and

DE<(P-1).(Q-1)
Step - 3. Generate public key, PK as PK = (M,DE)
Step - 4. Generate private key, PKK as PKK = {1 MOD (P-

1).(Q-1)}/DE
Step - 5. Return PK and PKK

Fourthly, the Progressive Virtual Machine Encryption
using Change Detection algorithm is furnished.

661 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Algorithm - IV: Progressive Virtual Machine Encryption
using Change Detection (PVME-CD) Algorithm
Input:

I. Version Management of VM as VMS[]
II. Public Key as PK (M, DE)

Output:
Encrypted Virtual Machine as VME
Process:
Step - 1. Load the virtual machine versions as VMS[]
Step - 2. For each element in VMS[] as VMS[i]

a. Configuration Management:
i. Identify the import and include

statements
ii. Store the configuration management

as CM[i]
b. Data Management:

i. Identify the variable in the code
ii. Store the data management as DM[i]

c. Life Cycle Management:
i. Identify the loops and conditional

statements
ii. Store the life cycle management as

LCM[i]
Step - 3. For each element in VMS[] as VMS[i]

a. If CM[i] Not Equals to CM[i+1]
b. Then, Store the changes CMC[j] = CM[i]-

CM[i+1]
c. If DM[i] Not Equals to DM[i+1]
d. Then, Store the changes DMC[j] = DM[i]-

DM[i+1]
e. If LCM[i] Not Equals to LCM[i+1]
f. Then, Store the changes LCMC[j] = LCM[i]-

LCM[i+1]
g. Merge the changed components as CC[i] =

CMC[j] U DMC[j] U LCMC[j]
h. Build the encrypted VMS[i] as VME =

pow(CC[i],DE) mod M
Step - 4. Return VME

Fifthly & finally, the Progressive Virtual Machine
Decryption using Change Detection algorithm is furnished.

Algorithm - V: Progressive Virtual Machine Decryption
using Change Detection (PVMD-CD) Algorithm
Input:

I. Encrypted Virtual Machine as VME
II. Private Key as PKK (DE, M)

Output:
Decrypted Virtual Machine as VM
Process:
Step - 1. Load the encrypted virtual machine as VME
Step - 2. Build the decrypted virtual machine, VM as VM =

pow(VME,DE) mod M
Step - 3. Return VM

The above algorithms are framed to solve the third problem
discussed in the previous section of this work.

Further, the final framework is furnished here [Fig. 1]:

Fig. 1. A Framework for Cloud based Virtual Machine Security by Change

Management using Machine Learning.

Further, in the next section of this work, the obtained
results from these proposed algorithms are discussed.

V. RESULT AND DISCUSSION
After the detailed understanding on the proposed

algorithms, here the obtained results are furnished.

Firstly, the used dataset [16] is analyzed here [Table II].

Further, the data is visualized graphically here [Fig. 2].

Here this is important to observe that, the many attributes
have higher unique distributions and further demonstrates
unique characteristics to detect large number of attacks.

Secondly, the impact or the correlation analysis results are
furnished here [Table III].

The obtained results are again visualized graphically
[Fig. 3].

Here it is natural to realize that the many of the attributes
have demonstrated higher correlation than the other attributes.
As per the proposed algorithm, the threshold of the correlation
is calculated as 0.223 and based on the correlation theory, the
positive impacted and meaning full attributes correlation must
be above 0.50. Thus, again based on the proposed algorithm,
the median value of the correlation is considered as 0.135.

Henceforth, based on the new correlation threshold, the
following attributes are identified in the reduced set [Table IV].

Further, the reduced set is also analyzed graphically here
[Fig. 4].

Here, it is worth noting that, due to this process the
information loss is minimum as the diversified nature of the
dataset with high distribution is kept intact.

Further, the results from the deep clustering process to
detect the attacks are furnished here [Table V].

662 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

TABLE II. DATASET ANALYSIS

SN
O Attribute Name Attribut

e Type

Missin
g Value
(%)

Number of
Unique
Distributio
n

1 “duration” Num 0% 624
2 “protocol_type” Nom 0% 3
3 “service” Nom 0% 64
4 “flag” Nom 0% 11
5 “src_bytes” Num 0% 1149
6 “dst_bytes” Num 0% 3650
7 “land” Nom 0% 2
8 “wrong_fragment” Num 0% 3
9 “urgent” Num 0% 4
10 “hot” Num 0% 16
11 “num_failed_logins” Num 0% 5
12 “logged_in” Nom 0% 2
13 “num_compromised” Num 0% 23
14 “root_shell” Num 0% 2
15 “su_attempted” Num 0% 3
16 “num_root” Num 0% 20
17 “num_file_creations” Num 0% 9
18 “num_shells” Num 0% 4
19 “num_access_files” Num 0% 5
20 “num_outbound_cmds” Num 0% 1
21 “is_host_login” Nom 0% 2
22 “is_guest_login” Nom 0% 2
23 “count” Num 0% 495
24 “srv_count” Num 0% 457
25 “serror_rate” Num 0% 88
26 “srv_serror_rate” Num 0% 82
27 “rerror_rate” Num 0% 90
28 “srv_rerror_rate” Num 0% 93
29 “same_srv_rate” Num 0% 75
30 “diff_srv_rate” Num 0% 99
31 “srv_diff_host_rate” Num 0% 84
32 “dst_host_count” Num 0% 256
33 “dst_host_srv_count” Num 0% 256
34 “dst_host_same_srv_rate” Num 0% 101
35 “dst_host_diff_srv_rate” Num 0% 101

36 “dst_host_same_src_port_ra
” Num 0% 101

37 “dst_host_srv_diff_host_ra” Num 0% 58
38 “dst_host_serror_rate” Num 0% 99
39 “dst_host_srv_serror_rate” Num 0% 101
40 “dst_host_rerror_rate” Num 0% 101
41 “dst_host_srv_rerror_rate” Num 0% 100
42 “class” Nom 0% 2

(a)

(b)

Fig. 2. (a) and (b) Analysis of the Dataset.

TABLE III. CORRELATION ANALYSIS

SNO Correlation with “Class” Variable
1 0.150
2 0.112
3 0.368
4 0.525
5 0.016
6 0.097
7 0.008
8 0.039
9 0.009
10 0.057
11 0.135
12 0.618
13 0.021
14 0.018
15 0.022
16 0.021
17 0.016
18 0.052
19 0.070
20 0.000
21 0.010
22 0.116
23 0.353
24 0.092
25 0.282
26 0.280
27 0.517
28 0.513
29 0.550
30 0.261
31 0.192
32 0.399
33 0.645
34 0.636
35 0.276
36 0.030
37 0.022
38 0.312
39 0.308
40 0.528
41 0.506

663 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Fig. 3. Correlation Analysis.

TABLE IV. REDUCED ATTRIBUTE SET WITH CORRELATION

SNO Attribute Name Correlation with
“Class” Variable

1 “dst_host_srv_count” 0.645

2 “dst_host_same_srv_rate” 0.636

3 “logged_in” 0.618

4 “same_srv_rate” 0.550

5 “dst_host_rerror_rate” 0.528

6 “flag” 0.525

7 “rerror_rate” 0.517

8 “srv_rerror_rate” 0.513

9 “dst_host_srv_rerror_rate” 0.506

10 “dst_host_count” 0.399

11 “service” 0.368

12 “count” 0.353

13 “dst_host_serror_rate” 0.312

14 “dst_host_srv_serror_rate” 0.308

15 “serror_rate” 0.282

16 “srv_serror_rate” 0.28

17 “dst_host_diff_srv_rate” 0.276

18 “diff_srv_rate” 0.261

19 “srv_diff_host_rate” 0.192

20 “duration” 0.150

21 “num_failed_logins” 0.135

Fig. 4. Reduced Attribute Set Correlation Analysis.

TABLE V. ATTACK DETECTION ACCURACY ANALYSIS

Analysis Metric Number of
Values

Percentage
(%)

“Correctly Classified Instances” 84248 98.2335

“Incorrectly Classified Instances” 1515 1.7665

“Kappa statistic” 0.9638 -

“Mean absolute error” 0.032 -

“Root mean squared error” 0.12 -

“Relative absolute error” - 6.5494

“Root relative squared error” - 24.2856

“Total Number of Instances” 85763 -

The results are observed visually here [Fig. 5].

Fig. 5. Detection Accuracy Analysis.

664 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Clearly from the results it is worth noting that the accuracy
of the proposed deep clustering algorithm for attack detection
is 99.23% with the newer types of attacks.

Further, the change detection algorithm for the virtual
machines produces a log of tracked changes. The analysis is
performed over 1000 virtual machines, however, for the
visualization on 10 virtual machine logs are presented here.

Sample Change Detection Log File

Change Tracking for VM #1
Tracking for version #1
VM Size reduced by 126 GB

Change Tracking for VM #2
Tracking for version #1
VM Size reduced by 95 GB

Change Tracking for VM #3
Tracking for version #1
VM Size reduced by 94 GB
Tracking for version #2
VM Size reduced by 42 GB

Change Tracking for VM #4
Tracking for version #1
VM Size increased by 138 GB

Change Tracking for VM #5
Tracking for version #1
VM Size reduced by 183 GB
Tracking for version #2
VM Size increased by 28 GB

Change Tracking for VM #6
Tracking for version #1
VM Size increased by 236 GB
Tracking for version #2
VM Size reduced by 28 GB

Change Tracking for VM #7
Tracking for version #1
VM Size increased by 208 GB

Change Tracking for VM #8
Tracking for version #1
VM Size increased by 275 GB

Change Tracking for VM #9
Tracking for version #1
VM Size reduced by 32 GB
Tracking for version #2
VM Size reduced by 42 GB
Tracking for version #3
VM Size increased by 79 GB

Change Tracking for VM #10
No Changes Detected

From the above sample log file, the following aspects are
conclusive regarding the virtual machine change detection
algorithm:

1) The changes for any virtual machine can be detected
over multiple versions of the same VM.

2) The changes are reflected in terms of size; however, the
actual change management is tracked based on characteristics
of the virtual machines.

3) The detection algorithm also ensures no changes if the
version of the same virtual machine is not updated.

Henceforth, it is conclusive that, the change management
algorithm is perfectly justifying the claims made is this work.

Further, the key generation algorithm outputs are analysed
here [Table VI]. During the testing phase, the algorithm is
tested for more than 1000 instances. However, for
representation purposes only 10 examples from the total
outcomes are furnished.

TABLE VI. KEY GENERATION TIME ANALYSIS

Test Sequence # Key Generation time (ns)
Seq #1 7
Seq #2 9
Seq #3 14
Seq #4 7
Seq #5 10
Seq #6 20
Seq #7 15
Seq #8 25
Seq #9 10
Seq #10 14

The results are visualized graphically here [Fig. 6].

Fig. 6. Key Generation Time Analysis.

It is evident from the above results, that the time taken for
the key generation demonstrates fairly liner characteristics,
which is always expected for any best key generation
algorithms.

TABLE VII. CRYPTOGRAPHIC ALGORITHMS TIME ANALYSIS

Test Sequence # Encryption Time (ns) Decryption Time (ns)
Seq #1 19 22
Seq #2 6 16
Seq #3 4 19
Seq #4 10 7
Seq #5 17 1
Seq #6 11 20
Seq #7 18 14
Seq #8 14 20
Seq #9 8 15
Seq #10 12 16

665 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 12, 2021

Further, the encryption and decryption time analysis is
furnished here [Table VII]. During the testing phase, the
algorithm is tested for more than 1000 instances. However, for
representation purposes only 10 examples from the total
outcomes are furnished.

The results are also visualized graphically here [Fig. 7].

Fig. 7. Encryption and Decryption Time Analysis.

The results obtained in terms of time taken to perform the
encryption and decryption operations on the detected changes
on the virtual machines clearly showcase a trend of reduced
time. This reduction is achieved due to the change management
algorithm deployed for the virtual machine versions.

Further, in the next section of this work, the obtained
results are compared with the other parallel research outcomes.

VI. COMPARATIVE ANALYSIS
The obtained result from the proposed framework is highly

satisfactory. Nonetheless, without a comparative analysis, no
work can be concluded as benchmarked outcome. Thus, in this
section of the work, the proposed framework using various
parameters is compared with the parallel popular research
outcomes [Table VIII].

Henceforth, it is conclusive to state that, the proposed
framework has outperformed the parallel popular research
works in terms of capabilities and as well as in terms of model
complexity.

Finally, in the next section of the work, the research
conclusion is presented.

TABLE VIII. COMPARATIVE ANALYSIS

Author, Year Methodology Capabilities Model
Complexity

X. Lu et al. [14],
2020

Machine
Learning Reactive Security O(n2)

N. E. Moussaid et
al. [13], 2020

Machine
Learning Reactive Security O(n2)

F. Cai et al. [10],
2019

Machine
Learning Reactive Security O(n2)

B. Sudhakar et al.
[15], 2019

Machine
Learning Reactive Security O(n*m)

Proposed
Framework

Machine
Learning

Reactive &
Proactive Security O(n)

VII. CONCLUSION
This research establishes benchmark in many aspects. In

any of the parallel research outcomes, the reduction of time for
applying the cryptographic aspects is ignored, which as per this
work is most evident to increase the responsiveness of the
cloud security. Also, this work elaborates the possibilities of
detection of the attacks with the simplest model with least
complexity. The proposed mathematical models and
algorithms are strong evidence of the claim that, this
framework is not only capable of detection of existing or
known attacks, rather, this framework can also detect newer or
unknown types of attacks based on the connection
characteristics analysis. The detection rate on the benchmarked
dataset is over 98%, which is again a benchmark for these
types of framework.

REFERENCES
[1] P. Mishra et al., "Intrusion detection techniques in cloud environment: A

survey", J. Netw. Comput. Appl., vol. 77, pp. 18-47, 2017.
[2] P. Mishra et al., "VAED: VMI-assisted evasion detection approach for

infrastructure as a service cloud", Concurrency Comput.: Practice
Experience, vol. 29, 2017.

[3] M. R. Watson et al., "Malware detection in cloud computing
infrastructures", IEEE Trans. Depend. Sec. Comput., vol. 13, no. 2, pp.
192-205, Mar./Apr. 2016.

[4] V. Varadharajan and U. Tupakula, "On the design and implementation
of an integrated security architecture for cloud with improved resilience",
IEEE Trans. Cloud Comput., vol. 5, no. 3, pp. 1-14, Jul.–Sep. 2017.

[5] Rekall: Memory FOrensics and Analysis Framework, May 2014, [online]
Available: http://www.rekall-forensic.com/.

[6] T. K. Lengyel, Stealthy Monitoring with Xen Altp2m, 2016, [online]
Available: https://blog.xenproject.org/2016/04/13/stealthy-monitoring-
with-xen-altp2m/# comments.

[7] S. Gupta and P. Kumar, "System cum program-wide lightweight
malicious program execution detection scheme for cloud", Inf. Secur. J.:
A Global Perspective, vol. 23, no. 3, pp. 86-99, 2014.

[8] D. Kirat et al., "BareCloud: Bare-metal analysis-based evasive malware
detection", Proc. 23rd USENIX Secur. Symp., pp. 287-301, 2014.

[9] C. Spensky, H. Hu and K. Leach, "LO-PHI: Low-observable physical
host instrumentation for malware analysis", Proc. Netw. Distrib. Syst.
Secur. Symp., pp. 1-15, 2016.

[10] F. Cai, N. Zhu, J. He, P. Mu, W. Li and Y. Yu, "Survey of access control
models and technologies for cloud computing", Cluster Comput., vol. 22,
no. S3, pp. 6111-6122, May 2019.

[11] A. Almtrf, Y. Alagrash and M. Zohdy, "Framework modeling for user
privacy in cloud computing", Proc. IEEE 9th Annu. Comput. Commun.
Workshop Conf. (CCWC), pp. 0819-0826, Jan. 2019.

[12] A. Khurshid, A. N. Khan, F. G. Khan, M. Ali, J. Shuja and A. U. R.
Khan, "Secure-CamFlow: A device-oriented security model to assist
information flow control systems in cloud environments for IoTs",
Concurrency Comput. Pract. Exper., vol. 31, no. 8, Apr. 2019.

[13] N. E. Moussaid and M. E. Azhari, "Enhance the security properties and
information flow control", Int. J. Electron. Bus., vol. 15, no. 3, pp. 249-
274, 2020.

[14] X. Lu, L. Cao and X. Du, "Dynamic control method for tenants’
sensitive information flow based on virtual boundary recognition", IEEE
Access, vol. 8, pp. 162548-162568, 2020.

[15] B. Sudhakar, V. B. Narsimha, G. Narsimaha, Detection of Intrusion
using Hybrid Feature Selection and Flexible Rule Based Machine
Learning, International Journal of Engineering and Advanced
Technology (IJEAT), 2019.

[16] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A Detailed
Analysis of the KDD CUP 99 Data Set,” Submitted to Second IEEE
Symposium on Computational Intelligence for Security and Defense
Applications (CISDA), 2009.

666 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Parallel Research Outcomes
	III. Problem Formulation & Proposed Solutions
	IV. Proposed Algorithms and Framework
	V. Result and Discussion
	1) The changes for any virtual machine can be detected over multiple versions of the same VM.
	2) The changes are reflected in terms of size; however, the actual change management is tracked based on characteristics of the virtual machines.
	3) The detection algorithm also ensures no changes if the version of the same virtual machine is not updated.

	VI. Comparative Analysis
	VII. Conclusion
	References

