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Abstract—Crop productivity and disaster management can be 
enhanced by employing hyperspectral images. Hyperspectral 
imaging is widely utilized in identifying and classifying objects on 
the ground surface for various agriculture application uses such 
as crop mapping, flood management, identifying crops damaged 
due to flood/drought, etc. Hyperspectral imaging-based crop 
classification is a very challenging task because of spectral 
dimensions and poor spatial feature representation. Designing 
efficient feature extraction and dimension reduction techniques 
can address high dimensionality problems. Nonetheless, 
achieving good classification accuracies with minimal 
computation overhead is a challenging task in Hyperspectral 
imaging-based crop classification. In meeting research 
challenges, this work presents Hyperspectral imaging-based crop 
classification using soft-margin decision boundary optimization 
(SMDBO) based Support Vector Machine (SVM) along with 
Image Fusion-Recursive Filter (IFRF) and Inherent Feature 
Extraction (IFE). In this work, IFRF is used for reducing 
spectral features with meaningful representation. Then, IFE is 
used for differentiating physical properties and shading elements 
of different objects spatially. Both spectral and spatial features 
extracted are trained using SMDBO-SVM for performing 
hyperspectral object classification. Using SMDBO-SVM for 
Hyperspectral object classification aid in addressing class 
imbalance issues; thus, the proposed IFE-SMDBO-SVM model 
achieves better accuracies and with minimal misclassification in 
comparison with state-of-art statistical and Deep Learning (DL) 
based Hyperspectral object classification model using standard 
dataset Indian Pines and Pavia University. 

Keywords—Crop classification; decision boundary; deep 
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I. INTRODUCTION 
Agriculture plays a very important role in improving major 

developing country economy. High productivity of food yield 
will aid in meeting food security. However, with global 
warming, it is hard to achieve a very high yield. A significant 
amount of crops is lost worldwide due to natural disasters such 
as drought, cyclones, and floods; leading to loss of life of 
farmers/people. A farmer requires timely relief of funds for 
disaster management. Allocating the right kind of funds is 
challenging, as farmer grows multiple crops within the same 
region. Thus, efficient crop identification methodologies are 
needed. Hyperspectral Imaging (HSI) is an efficient method 

used for crop identification. Extensive work has been done in 
recent times for crop recognition in agriculture environment 
such as Locally Adaptive Dictionary (LAD) through Multiscale 
Joint Collaborative Feature (MJCF) [1], spatial-spectral feature 
extraction through end-to-end deep learning framework [2], 
neural network learning framework for extracting adaptive 
Spatial-Spectral Features [3], Improved CNN framework 
combining Markov random fields for extracting spatial-spectral 
feature [4], Conditional Random Field and Deep Metric 
Learning for HSI classification [5]. However, following 
challenges such as high dimension size, presence of noise, and 
high similarity among spectral features, shapes, textures of 
different crops must be addressed in building an effective 
hyperspectral imaging-based crop classification method. 
Hyperspectral imaging consists of hundreds of Narrow Bands 
that are continuous with high spectral correlation. Thus, results 
in Hughes phenomenon, space, and computation complexity as 
shown in following work such as band selection through End-
to-End deep learning architecture [7], hierarchical spatial-
spectral feature maps through CNN [8], spectral-spatial feature 
extraction using CNN and information measure [9], and Active 
learning-based CNN model [10], a hybrid model combining 
Inception and Deep Residual Network [11] for HSI crop 
classification. 

The crop classification accuracies can be improved by the 
utilization of feature extraction and feature selection methods. 
Existing methodologies predominantly used Principal 
Component Analysis (PCA) and Independent Component 
Analysis (ICA) for reducing the feature size of hyperspectral 
images [12]. The ICA-based hyperspectral crop classification 
methodologies assure the extracted feature is independent; 
nonetheless, ICA induces high computation overhead and 
doesn't guarantee to retain spatial information. On the other 
side, PCA-based hyperspectral crop classification 
methodologies realize good classification accuracy when 
compared with ICA- based methodologies. The PCA- based 
methodologies aid in assuring stabilizing features with a 
limited size of high meaningful representation. Nonetheless, 
PCA-based HSI crop classification methodologies are not 
efficient in retaining useful spectral features. Thus, for 
retaining spectral features more efficiently Image fusion (IF) 
methodologies are used in recent work. However, IF-based 
methodologies achieve poor classification performance; this is 
because they are affected due to the presence of noise and 
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mixed pixel due to different illumination and climatic 
conditions [13], [14]. 

Recently, Deep Learning (DL) methodologies [15], [16] 
have been adopted for HSI crop classification [17], [18] with 
good accuracies [19], [20] which is studied in literature survey 
section. However, these DL-based methodologies induce high 
computation overhead and require a higher number of training 
parameters [21]. Further, induces high misclassification when 
data is imbalanced. For overcoming research problems it is 
important to extract meaningful features both spectrally as well 
as spatially; further, it is important to eliminate shading 
features from crop inherent features to classification 
accuracies. Here we used image fusion and recursive filter 
(IFRF) [22], [23] for obtaining semantic features across 
different bands i.e., spectrally. The usage of IFRF aided in 
reducing feature size with meaningful representation. Then we 
present an inherent feature extraction (IFE) method for 
distinguishing physical properties and shading elements of 
different crops. Existing models are trained using a Support 
vector machine (SVM) [18] for performing crop classification; 
the classification accuracies using SVM are affected due to 
misclassification [19]; especially when data is imbalanced and 
two objects exhibit similar physical features [20]. Thus, to 
address data imbalance issues and reduce misclassification in 
this we introduced a soft-margin decision boundary 
optimization model for SVM. The SMDBO-SVM based crop 
classification model aided in achieving high classification with 
less misclassification in comparison with the deep learning-
based classification model. 

The significance of using IFE-SMDBO-SVM is described 
below: 

• Presented effective spatial-spectral feature extraction 
mechanism namely IFE. The IFE model can extract 
semantic features even under different illumination and 
climatic conditions. 

• Presented soft-margin decision boundary optimization 
model for performing classification when HSI data 
exhibit data imbalance and also under mixed pixel 
environment. 

• SMDBO-SVM based HSI achieves high classification 
accuracies with less misclassification (i.e., Kappa 
coefficient) in comparison with recent deep-learning-
based HSI classification models. 

• The SMDBO-SVM based HSI classification model 
reduces computation overhead in comparison with 
deep-learning-based HSI classification models. 

The rest of the paper is organized as follows. Section II 
discusses various existing hyperspectral crop classification 
models and establishes the benefits and limitations, and 
hypotheses of the proposed method. Section III presents 
Inherent feature extraction and soft margin decision boundary 
optimization for Hyperspectral image-based crop classification 
methodology. In section IV, the performance efficiency of IFE-
SMDBO in comparison with the existing HSI classification 
methodology is discussed. In the last section, the benefit of 

IFE-SMDBO is discussed and the future direction of work is 
discussed. 

II. LITERATURE SURVEY 
This section presents some of the recent methodologies 

presented for performing crop classification using the 
hyperspectral image. In [2] presented HS-CNN (Hybrid 
Spectral Convolutional Neural Network) based HSI 
classification model. They first employed 3D-CNN for 
extracting spectral-spatial information followed by 2D-CNN. 
The classification performance of the HSCNN model heavily 
relies on both spectral and spatial information of HSI. The HS-
CNN model can joint retain spatial-spectral feature sets from 
different brands. The hybrid CNN model aids in learning more 
abstract level spatial features with minimal overhead in 
comparison with the 3D-CNN model. In [6], presented 
recurrent neural network (RNN)-based HSI classification. Here 
the spectral information is considered as a sequence; however, 
they showed standard RNN models are difficult to train and are 
not efficient as spatial features are not used. Thus, they 
presented Shorten Spatial-spectral RNN Parallel-GRU (St-SS-
pGRU) by combining convolution layers to achieve better HSI 
classification performance. In [16] showed that the 2D CNN 
just focused on extracting spatial features; however, neglects to 
extract spectral features. Similar, to [2], [21] presented a 3D 
CNN model that jointly considers extracting both spatial and 
spectral features; however, with reduced computational 
overhead by distributing spatial and spectral features extraction 
across different layers. In [15] showed CNN is widely used for 
HSI classification; However, they significantly because of high 
misclassification at the pixel level. In particular at the edges of 
neighboring crops; this is because the impact of adjacent pixels 
crops is different from target pixels. To address this, here they 
presented a center attention network (CAN) for HSI 
classification. The CAN-HSI can extract spatial and spectral 
features of both target pixel and adjacent pixels together in a 
simultaneous manner for performing HSI classification. In 
CAN major importance is given to highly correlated features 
concerning target pixels; thus aiding HSI classification 
performance. Further, CAM reduces parameters through a 
weighted sum of spatial and spectral features to reduce 
computation overhead without compromising on HSI 
classification accuracies. 

In [14] showed DL-based method generally use patch-wise 
learning architecture for HSI classification. In recent times fast 
patch-free global learning (FPGA) frameworks have been 
modeled for HSI classification considering global spatial 
contextual information. Nonetheless, when HSI data is 
imbalanced the FPGA-based HSI classification finds it difficult 
in extracting discriminative features. To address they presented 
"spectral-spatial dependent global learning (SSDGL) 
architecture employing global joint attention (GJA) technique 
and global convolution LSTM (GCLSTM). In SSDGL for 
addressing data imbalance issues employed hierarchical 
tradeoffs sampling solution and weighted softmax loss function 
are modeled. The GCLSTM model is used for extracting 
LSTM dependencies of spectral features and later these 
dependencies are used for distinguishing spectral features for 
crop types. The GJA model is used for extracting attention 
areas for identifying the most discriminating features. In [17], 
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for improving the robustness of standard machine learning 
models, recent work has emphasized integrating traditional ML 
models into DL methodologies. Here they studied modeling 
Deep SVM (DSVM) for HSI classification. The DSVM is 
modeled by implementing four kernel functions as polynomial, 
neural, Gaussian radial basis function, and exponential radial 
basis function. The standard SVM model is used for 
interconnecting weights of the entire network; the 
interconnecting weights act as a regularization parameter. 

The research hypothesis the problems that existing SVM- 
based Hyperspectral object classification [18] are modeled 
using hard margin decision boundary [19], [20]; thus, high 
induce misclassification for smaller classes. Thus, are not 
efficient when data is imbalanced and induce high 
computational overheads. Further, the classification outcome is 
improved through better representation of spatial and spectral 
information; the proposed research work addresses the 
aforementioned problems in designing a better hyperspectral 
object classification model in the next section.  

III. INHERENT FEATURE EXTRACTION AND SOFT MARGIN 
DECISION BOUNDARY OPTIMIZATION FOR HYPERSPECTRAL 

IMAGE-BASED CROP CLASSIFICATION 
This work presents the inherent feature extraction (IFE) and 

Soft Margin Decision Boundary Optimization (SMDBO) 
Technique for Hyperspectral Crop Classification. Here first the 
working model of IFE-SMDBO based hyperspectral crop 
classification is presented. Second, present an inherent feature 
extraction model to reduce spectral features and exploit 
inherent features spatially to distinguish between actual crop 
and shadowing elements. Then, it discusses the standard SVM 
model used for HSI classification and highlights its limitation. 
Finally, present an improved decision boundary mechanism 
namely soft-margin decision boundary optimization (SMDBO) 
for addressing data imbalance and mixed pixel problems in 
HSI classification. 

 
Fig. 1. Block Diagram of IFE-SMDBO based Hyperspectral Crop 

Classification Technique. 

A. Working Model of IFE-SMDBO based Hyperspectral Crop 
Classification 
The step involved in the proposed hyperspectral crop 

classification using the IFE-SMDBO model is shown in Fig. 1. 
The first step loads the HSI and reads the entire band 
information. Second, the HSI size is reduced spectrally using 
Eq. (1). Third, semantic features are extracted in an iterative 
manner using Eq. (5). Then, the sematic spatial-spectral feature 
bare trained using modified SMDBO and performs 
classification. Finally, the image is reconstructed for validating 
the accuracy of HSI classification models. The algorithm of the 
proposed IFE-SMDBO model is shown in Algorithm 1. 

Algorithm 1. IFE-SMDBO based hyperspectral crop 
classification technique. 

Input. Hyperspectral image collected from satellite 
𝐽 ∈ 𝑆𝑠∗𝑑∗𝐾 with 𝑠 ∗ 𝑑 pixels by 𝐾 bands. 

Output. A classified outcome (i.e., labeled 
Hyperspectral image 𝑍). 

Step 1. Start. 

Step 2. Dimension reduction of 𝐾 bands to 𝑄 using Eq. 
(1). 

Step 3. For𝑗 ∈ {1,𝑄} do 

Step 4.       By iterating Eq. (5), the 𝐽𝑗 is decomposed 
into 𝑆𝑗 and𝑇𝑗. 

Step 5. End for. 

Step 6.Vectorise𝑆  to 𝑌 = {𝑦1,𝑦2, … ,𝑦𝑜} ∈ 𝑆𝑄∗𝑜  where 
𝑜 = 𝑠 ∗ 𝑑 for assuring each pixel can be represented as a 
𝑑 −dimensional data point. 

Step 7. For obtaining labels 𝑧 ∈ 𝑆𝑜soft-margin decision 
boundary optimization-based support vector 
machine learning (SMDBO-SVM) algorithm is used.  

Step 8. Reconstruct 𝑧 to be a hyperspectral image 𝑍 ∈
𝑆𝑄∗𝑑. 

Step 9. Stop. 

B. Band Selection and Feature Extraction 
Effective selection of band plays a very important role in 

achieving high accuracies with minimal computation overhead 
for performing crop classifications. Existing HSI classification 
methodologies used PCA for reducing band size; however, 
PCA fails to provide a higher number of useful features. Let 
consider hyperspectral data with 𝐾 bands which are reduced to 
𝑄 bands. Here we employ IFRF [23] for reducing band size 
and assuring eliminating noisy and redundant pixels spectrally 
through the following equation. 

𝐽𝑙 =
∑ 𝐽𝑚𝑙𝑛
𝑚=(𝑙−1)𝑛+1

𝑛
, 𝑙 = �𝐾

𝑄
�,            (1) 

where  𝑛  defines the sub-group band size considered, 𝑙 
defines band indices of reduced spectral bands, 𝑚 defines band 
indices of actual spectral bands, and ⌊∙⌋ a value closer to −∞. 
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Next, the inherent properties of different crops are extracted 
by eliminating shading elements in obtaining high-quality 
features spatially using the following equation. 

𝐽𝑞 = 𝑆𝑞𝑇𝑝,              (2) 

where𝑞  defines pixel index,𝑇 ∈ 𝒮𝑠∗𝑑  describes inherent 
features shading component,𝑆 ∈ 𝒮𝑠∗𝑑defining inherent feature 
component, and 𝐽 ∈ 𝒮𝑠∗𝑑  defines intensity feature. The 
variable 𝑆𝑞  and 𝑇𝑝  in the above equation are unknown; 
however, 𝐽𝑞  is a known variable. Generally, the reflectance 
value changes rapidly in edges and remains constant otherwise; 
similarly, the pixel with the same value will have the same 
reflectance value. Keeping the aforementioned context in 
consideration the 𝑆𝑞 is computed as follows 

𝑆𝑞 = ∑ 𝑏𝑞𝑟𝑆𝑟,𝑟∈𝒪(𝑞)              (3) 

where𝑟 defines pixel index and 𝑏𝑞𝑟affinity matrix features 
for measuring similarities between 𝐽𝑞 and𝐽𝑟.the adjacent pixel 
obtained through Gaussian window as follows 

𝐺𝑊 = exp �− ‖𝑞−𝑟‖22

2𝜎2
�             (4) 

and 𝜎 defines the size considered. Further, defining affinity 
graph (AG) plays a very essential part in semantically 
extracting inherent characteristics. Using Eq. (2) and Eq. (4), 
the meaningful feature is extracted through linear properties as 
follows 

�
𝑆𝑟 = ∑ 𝑏𝑞𝑟𝑆𝑟 ,𝑟∈𝒪(𝑞)

𝑇�𝑞 = 1
𝐽𝑞
𝑆𝑟 ,              (5) 

where 𝒪(𝑞)  defines neighbor pixel  𝑞 ,  𝑇�𝑞 = 1
𝐽𝑞

 after 
obtaining the estimated value of 𝑆𝑟 and  𝑇𝑞 . Thus each pixel 
physical properties of different crops are retained, where 
shading properties are not related to semantic feature sets 
properties and using inherent features the spatially useless 
feature can be eliminated. 

C. SVM Classification 
The feature space is represented as 𝑌 ∈ 𝑆𝑒 , the index of 

different crops are represented as  𝑍 = {−1 + 1} , and 
respective crop distribution over 𝑌 ∗ 𝑍 is repressed as 𝐸. Let us 
consider that there are 𝑜  feature points in respective 
hyperspectral data and 𝑛 training features as described below 

𝑇 = {(𝑦1, 𝑧1), (𝑦2, 𝑧2), … , (𝑦𝑛, 𝑧𝑛)},            (6) 

Here training features selected are identical based on the 
distribution of  𝐸 . For predicting the sample considered the 
following function is defined 

𝑓(𝑦) = 𝑥𝑈𝛼(𝑦),              (7) 

where 𝑥  represent the forecaster, 𝛼(𝑦)  represent 
corresponding feature mapping of 𝑦 to kernel 𝐿  as described 
below 

𝐿𝑗𝑘 = 𝛼�𝑦𝑗�
𝑈𝛼(𝑦𝑘).             (8) 

In precise 𝑌  represent the matrix where its𝑗𝑡ℎ  column is 
𝛼(𝑦𝑘) which is defined as follows 

𝑌 = [𝛼(𝑦1),𝛼(𝑦2), … ,𝛼(𝑦𝑛)],            (9) 

And 𝑧 is its column vector which is defined as follows 

𝑦 = (𝑧1, 𝑧2, … , 𝑧𝑛)𝑈           (10) 

The classification margin for describing a crop feature is 
computed using the following equation 

𝛽𝑗 = 𝑧𝑗𝑥𝑈𝛼�𝑦𝑗�,   𝑗 = 1,2,3, … ,𝑛.          (11) 

The state-of-art SVM based classification model generally 
considers that crop features are separable and the hyperplane 
has the capability in distinguishing the training crop features 𝑇 
with no errors; thus, the SVM classification margin is obtained 
using the following equation 

min𝑥
1
2
‖𝑥‖2   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑧𝑗𝑥𝑈𝛼�𝑦𝑗� ≥ 1,   𝑗 = 1,2,3, … ,𝑛, (12) 

That maximizes its minimum margin. 

D. Soft Margin Decision Boundary Optimization Model 
Using above Eq. (12) will lead to high misclassification 

when used for classifying crops under a mixed cropping 
environment, when crops exhibit similar features, and when 
data is imbalanced. Further, there exist scenarios where a very 
limited feature is available for some crops and the high number 
of features for other crops; leading to concept drift and data 
imbalance issues. Using a hard-margin-based SVM 
classification model defined in the above equation gives a very 
poor result. Thus, for addressing this paper introduce soft 
margin decision boundary optimization SVM (SMDBO-SVM) 
for classifying crops considering concept drift and data 
imbalance issues. The SMDBO-SVM model optimizes the 
margin/boundary by minimizing the margin difference and 
simultaneously maximizing the margin average. Using Eq. 
(11), the margin difference is computed as follows 

𝛽̂ =
1
𝑛2
���𝑧𝑗𝑥𝑈𝛼�𝑦𝑗� − 𝑧𝑗𝑥𝑈𝛼�𝑦𝑗��

2
𝑛

𝑘=1

𝑛

𝑗=1

 

= 2
𝑛2

(𝑛𝑥𝑈𝑌𝑌𝑈𝑥 − 𝑥𝑈𝑌𝑥𝑥𝑈𝑌𝑈𝑥).          (13) 

similarly, the margin means is obtained as follows 

𝛽̅ = 1
𝑛
∑ 𝑧𝑗𝑥𝑈𝛼�𝑦𝑗� = 1

𝑛
(𝑌𝑧)𝑈𝑥,𝑛

𝑗=1           (14) 

The Eq. (2) decision boundary can be optimized using the 
following equation 

min𝑥
1
2
‖𝑥‖2 + 𝛿1𝛽̂ − 𝛿2𝛽̅such that 𝛼�𝑦𝑗� ≥ 1,   𝑗 =

1,2,3, … ,𝑛            (15) 

where𝛿1  and 𝛿2  are parameters used for bringing good 
tradeoffs. 

In non-distinguishable scenarios, the training crop features 
𝑇can't be distinguished with zero error and ideal hyperplane 
can't be obtained by minimizing objective function (tradeoffs 
model of error minimization and margin maximization). For 
addressing in SMDBO-SVM the error minimization are an 
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additional parameter used for penalizing misclassified crop 
features, which is described below 

min𝑥,𝜇
1
2
‖𝑥‖2 𝛿1𝛽̂ − 𝛿2𝛽̅ + 𝐷∑ 𝜇𝑗𝑛

𝑗=1 such that𝑧𝑗𝑥𝑈 𝛼�𝑦𝑗� ≥
1 − 𝜇𝑗 , 𝜇𝑗 ≥ 0,   𝑗 = 1,2,3, … ,𝑛,          (16) 

where  𝜇  represent the slack parameter for quantitating 
feature loss and is computed defined as follows 

𝜇 = [𝜇1,𝜇2, … , 𝜇𝑛]𝑈           (17) 

𝐷 represent the regularization variable that is used for 
controlling the penalty given to misclassifications. The higher 
the error, the higher penalty is given to it. 

Using Eq. (13) and Eq. (14) into Eq. (16) will result in 
quadratic programming problem as follows 

min𝑥,𝜇
1
2
𝑥𝑈𝑥 + 2𝛿1

𝑛2
(𝑛𝑥𝑈𝑌𝑌𝑈𝑥 − 𝑥𝑈𝑌𝑧𝑧𝑈𝑌𝑈𝑥) −

𝛿2
1
𝑛

(𝑌𝑧)𝑈𝑥 + 𝐷∑ 𝜇𝑗𝑛
𝑗=1 such that 𝑧𝑗𝑥𝑈𝛼�𝑦𝑗� ≥ 1 − 𝜇𝑗 ,

𝜇𝑗 ≥ 0,   𝑗 = 1,2,3, … ,𝑛.           (18) 

The ideal forecasting/prediction model 𝑥∗  for the 
optimization problem of Eq. (18) is defined using the following 
equation 

𝑊∗ = ∑ 𝜑𝑗𝛼�𝑦𝑗� = 𝑌𝜑𝑛
𝑗=1 ,          (19) 

where𝜑  described its coefficient which is described as 
follows 

𝜑 = [𝜑1,𝜑2,𝜑3, …𝜑𝑛].           (20) 

Using Eq. (19) into Eq. (18), Eq. (18) is updated as follows 

min𝜑,𝜇
1
2
𝜑𝑈𝑅𝜑 + 𝑞𝑈 + 𝐷∑ 𝜇𝑗𝑛

𝑗=1 such that 𝑧𝑗𝜑𝑈𝐿𝑗 ≥ 1 − 𝜇𝑗 ,
𝜇𝑗 ≥ 0,   𝑗 = 1,2,3, … ,𝑛,           (21) 

where the parameter 𝑅 is computed as follows 

𝑅 = 4𝛿1
�𝑛𝐿𝑈𝐿−(𝐿𝑧)(𝐿𝑧)𝑈�

𝑛2+𝐿
,           (22) 

Then, 𝑞 is computed as follows 

𝑝 = −𝛿1𝐿𝑧
𝑛

,            (23) 

The kernel matrix 𝐿 is computed as follows 

𝐿 = 𝑌𝑈𝑌,            (24) 

and 𝐿𝑗 represents the 𝑗𝑡ℎ column of kernel matrix 𝐿. 

In general, the state-of-art SVM model are used for binary 
classification purpose; however, in this, we propose SMDBO-
SVM as a multiclass classifier. Let consider 𝑍 =
{1,2,3, … ,𝑚}as a set of crop classes in hyperspectral data; 
then, 𝑚(𝑚 − 1/2)  hyperplane is built all probable pairwise 
classifier using SMDBO-SVM. Here the SMDBO-SVM model 
first performs binary classification among two classes 𝑗 and 𝑘 
through discriminant function 𝑓𝑗𝑘(𝑦) ∈ {−1,1} where 𝑗 ≠ 𝑘 
and belongs to  𝑍 . Further, it is important for computing 
weighted function 𝑇𝑗�𝑦𝑞� for respective individual class 𝑗 ∈ 𝑍, 
before making any decision of predicted value  𝑦𝑞 . Thus, a 

weighted strategy is modeled for distinguishing different crops 
from one another is described as follows 

𝑇𝑗�𝑦𝑞� = ∑ sign�𝑔𝑗𝑘�𝑦𝑞��𝑚
𝑘=1
𝑘≠𝑗

,          (25) 

where sign(∙) represents the sign function used for binary 
representation of value. The decision of classified crop 𝑦𝑞  is 
done based on the highest weighted crops as described below 

𝑗∗ = arg max𝑗∈𝑍�𝑇𝑗�𝑦𝑞��.           (26) 

The semantic feature extracted from HSI data is trained 
using the SMDBO-SVM model to aid in attaining better crop 
classification performance in comparison with the state-of-art 
crop classification model which is experimentally proven 
below. 

IV. SIMULATION ANALYSIS AND RESULTS 
This section evaluated the effectiveness of IFE-SMDBO-

SVM based hyperspectral crop classification over various 
recent state-of-art hyperspectral classification model [1], [4], 
[6], [10], [14], [15], and [17]. Total two publically available 
benchmarks HSI datasets such as Indian pines and Pavia 
University are used for analyzing HSI classification models. 
The performance of different classification models is measured 
using the most widely used metric in many existing HSI  
classification models such as average accuracy, overall 
accuracy, Kappa coefficient, and computation time. Attaining a 
higher accuracy value of accuracy and higher value of Kappa 
coefficient indicated good performance. Alongside, reducing 
time indicates the model is suitable for real-time deployment. 

TABLE I. THE GROUND TRUTH DATA OF THE INDIAN PINES DATASET 
WITH 16 CLASSES 

Number Classes Total Samples 

1 Alfalfa 46 

2 Buildings Grass Trees Drives 386 

3 Corn notill 1428 

4 Corn mintill 830 

5 Corn 237 

6 Grass pasture 483 

7 Grass trees 730 

8 Grass pasture moved 28 

9 Hay windrowed 478 

10 Oats 20 

11 Soybean notill 972 

12 Soybean mintill 2455 

13 Soybean clean 593 

14 Stone Steel Towers 93 

15 wheat 205 

16 woods 1265 
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A. Dataset Description 
The Indian Pines dataset is collected through an AVIRIS 

sensor deployed over the northern-west side of Indiana. The 
hyperspectral data is collected by setting a wavelength of 
0: 4 − 2: 5 × 10−6  meters with 224  bands and 145 × 145 
pixels. The reason for using IP is because the majority of the 
area covered is the agriculture environment i.e., 2/3P

rd and the 
remaining 1/3P

rd measured areas are forest and other vegetation 
that is grown naturally. Further, IP data encompasses small 
roads, houses, low-lying buildings, and two-lane highways. 
Alongside, there are crops with early stages of growth which is 
less than 5% of overall data collected in IP. The ground truth 
data is composed of a total of 16 crops (i.e., labels) as shown in 
Table I. Similar, to [14]-[17], the water absorption bands are 
eliminated and spectral bands size are reduced to 200. 

The Pavia University hyperspectral data is collected 
through the ROSIS sensor. The PU dataset is measured with a 
spatial resolution of 1: 3 meters, with total 103 spectral bands, 
and composed of 610 ×  610  pixels. Before analysis some 
data are eliminated they don't provide any information similar 
to [14]-[17]. The ground truth data is composed of total 9 
classes as shown in Table II. 

TABLE II. THE GROUND TRUTH DATA OF PAVIA UNIVERSITY DATASET 
WITH 9 CLASSES 

Number Classes Total Samples 

1 Asphalt 6631 

2 Bitumen 1330 

3 Bare − S 5029 

4 Gravel 2099 

5 Meadows 18649 

6 Painted − M − S 1345 

7 Shadow 947 

8 Sum 42776 

9 Self − B − B 3682 

B. Comparative Analysis for IndianPines Dataset 
Here experiment is conducted using Indian Pines Dataset 

for validating the performance achieved using IFE-SMDBO-
SVM and other state-of-art HSI crop classification methods 
such as CNN-AL-MRF, CAM, FPGA, SSDGL, and DSVM. 
The accuracies achieved for different classes of an object by 
the individual model are shown in Table III. From the 
experiment, it can be seen the proposed IFE-SMDBO-SVM 
achieves much better results than other HSI crop classification 
methods such as CNN-AL-MRF, CAM, FPGA, SSDGL, and 
DSVM in terms of accuracies and Kappa coefficient. Further, 
the IFE-SMDBO-SVM induces very little computation 
overhead in comparison with CNN-AL-MNF. 

TABLE III. COMPARATIVE ANALYSIS OF IFE-SMDBO-SVM OVER 
RECENT HSI CROP CLASSIFICATION METHODOLOGY FOR INDIAN PINES 

DATASET 

Class 
name 

CNN-
Al-
MNF 
(2020) 
[10] 

CAM 
(2021) 
[15] 

FPGA 
(2020) 
[14] 

SSDGL 
(2021) 
[14] 

DSVM 
(2020) 
[17] 

IFE-
SMDBO-
SVM 

Alfalfa 92.71 87.8 97.22 100 100 100 

Corn notill 92.98 98.05 93.07 99.63 100 99.98 

Corn 
mintill 88.7 97.99 89.46 99.24 100 99.97 

Corn 97.7 94.37 100 100 100 100 

Grass 
pasture 92.9 98.39 95.63 99.56 99.43 99.56 

Grass trees 98.89 99.7 97.56 100 98.89 99.88 

Grass 
pasture 
moved 

76.74 100 100 100 100 100 

Hay 
windrowe
d 

97.87 100 100 100 98.72 100 

Oats 38.89 77.78 100 100 100 99.97 

Soybean 
notill 92.27 98.17 96.64 99.68 95.75 99.41 

Soybean 
mintill 95.07 98.33 96.74 99.36 100 99.46 

Soybean 
clean 90.51 97.94 91.65 99.11 99.63 100 

wheat 96.53 100 100 100 100 99.85 

woods 99.28 98.77 99.91 100 100 100 

Buildings 
Grass 
Trees 
Drives 

88.4 92.51 99.72 100 95.45 99.87 

Stone 
Steel 
Towers 

97.12 98.81 100 100 100 100 

OA (%) 98.79 98.1 96.18 99.63 98.86 99.7 

AA (%) 94.28 96.16 97.33 99.79 99.24 99.87 

Kappa 
(%) - 97.84 95.64 99.58 - 99.66 

Time (s) 8109.3
4 - - - - 12.5 
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C. Comparative Analysis for Pavia University Dataset 
Here experiment is conducted using Pavia University 

dataset for validating the performance achieved using IFE-
SMDBO-SVM and other state-of-art HSI crop classification 
methods such as CNN-AL-MRF, CAM, FPGA, SSDGL, and 
DSVM. The accuracies achieved for different classes of an 
object by the individual model are shown in Table IV. From 
the experiment, it can be seen the proposed IFE-SMDBO-SVM 
achieves much better results than other HSI crop classification 
methods such as CNN-AL-MRF, CAM, FPGA, SSDGL, and 
DSVM in terms of accuracies and Kappa coefficient. Further, 
the IFE-SMDBO-SVM induces very little computation 
overhead in comparison with CNN-AL-MNF. 

TABLE IV. COMPARATIVE ANALYSIS OF IFE-DMDBO-SVM OVER 
RECENT HSI CROP CLASSIFICATION METHODOLOGY FOR PAVIA UNIVERSITY 

DATASET 

Class 
name 

CNN-
Al-
MNF 
(2020) 
[10] 

CAM 
(2021) 
[15] 

FPGA 
(2020) 
[14] 

SSDGL 
(2021) 
[14] 

DSVM 
(2020) 
[17] 

IFE-
SMDBO-
SVM 

Asphalt 82.88 99.54 97.83 100 99.55 99.96 

Meadows 100 99.78 99.95 100 99.36 100 

Gravels 98.32 93.15 91.28 100 99.43 100 

Trees 99.76 98.63 95.85 99.67 99.45 100 

Painted 
metal 
sheets 

99.85 100 100 100 95.64 99.97 

Bare soil 100 99.78 99.76 100 100 100 

Bitumen 98.83 98.08 99.73 100 97.66 100 

Self-
blocking 
bricks 

100 96.06 98.05 99.92 98.92 100 

Shadows - 99.89 97.86 100 99.11 99.92 

OA (%) 99.15 98.97 98.68 99.97 98.17 99.98 

AA (%) 97.45 98.32 97.82 99.95 98.79 99.98 

Kappa 
(%) - 98.64 98.25 99.96 - 99.98 

Time (s) 1378.57 - - - - 8.5 

 
Fig. 2. The Classification Outcome was attained using IFE-SMDBO-SVM 

and Various Existing Classification Methods. 

D. Effect of Varying Training Sample size 
This section presents a comparative analysis of the 

proposed IFE-SMDBO-SVM classification over state-of-art 
HSI classification methodologies considering the effect 
training sample size. Here the training sample size is varied 
from 5 to 20% and the experiment is conducted as shown in 
Fig. 2. The existing HSI classification methods are MLJRC 
(Yang et al., 2018) [1], BS-Net-Conv (Cai et al., 2020) [7], and 
CNN-MBF (Cao et al., 2018) [4], and CNN-Al-MNF (Cao et 
al., 2020) [10]. From the result achieved it can be seen that 
among deep learning methodologies CNN-Al-MNF achieves 
very good performance with accuracies of 96.12% and 99.41% 
considering the training sample size of 5% and 20%, 
respectively. On the other, BS-Net-Conv achieves very poor 
performance with accuracies of 70.58% and 90.45% 
considering the training sample size of 5% and 20%, 
respectively. The IFE-SMDBO-SVM achieves very good 
performance accuracies with accuracies of 98.7% and 99.97% 
considering the training sample size of 5% and 20%, 
respectively when compared with other state-of-art HSI 
classification algorithms such as MLJRC, BS-Net-FC, BS-Net-
Conv, and CNN-MBF. From the result, the SFR-HSI is very 
efficient when there is a very limited training sample available. 

E. Effect of Inherent Feature Extraction Method 
This section evaluates the effect of using IFE in a 

classification task. The classification accuracies obtained by 
IFE-HSI and other existing HSI crop classification 
methodologies are graphically shown in Fig. 3. The effect of 
using and not using IFE is shown in Fig. 4. From Figure, it can 
be seen how IFE aids the classification accuracies 
enhancement. Thus, it can be stated the IFE-SMDBO-SVM 
model can learn crop inherent features more efficiently by 
eliminating the shadow component. 
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False Color Map   Ground Truth 

 
SVM-3DDWT-GC (94.28%) [6]       CNN-MRF (96.12%) [10] 

 
St-SS-GRU (86.28%) [6]     St-SS-pGRU(89.61%) [6] 

 
IFE-SMDBO-SVM (99.89%) 

Fig. 3. Classification Maps were Obtained by All Methods on the Indian 
Pines Dataset (Overall Accuracies are reported in Parentheses). 

 
Fig. 4. Effect of IFE on Hyperspectral Object Classification Performance. 

V. CONCLUSION 
Designing hyperspectral crop classification with high 

accuracies with minimal computation time is challenging. In 
achieving high accuracies existing methodologies used 
machine and deep learning models; however, induces high 
training and computation overhead. In addressing computation 
overhead, dimension reduction technique has been emphasized; 
however, these model does not attain good accuracies due to 
poor spatial-spectral feature representation. This paper 
presented a hybrid design namely IFE-SMDBO-SVM using 
dimension reduction and machine learning model together for 
bringing tradeoffs among achieving higher accuracies with 
minimal time. The IFE-SMDBO-SVM works significantly 
well even with a fewer number of training samples; further, 
modeling of soft margin decision boundary aid in addressing 
feature imbalance issues during classification. The IFE-
SMDBO-SVM much better result accuracies, Kappa 
coefficient, and computation time in comparison with recent 
HSI classification models such as SS-pGRU, CNN-Al-MNF, 
CAM, FPGA, SSDGL, and DSVM. The proposed model 
attains a much superior OA performance of 98.89% which is 
better than and slightly better than CNN-Al-MNF 2020. 
However, the accuracies of existing HSI methodologies are 
highly dependent on a higher number of samples and induce 
high computation overhead. However, IFE-SMDBO-SVM can 
work efficiently even with a small number of training samples 
with high speed. Thus, the proposed IFE-SMDBO-SVM model 
is much efficient when compared with existing hyperspectral 
image classification. In the future would consider introducing 
artificial noise into the hyperspectral image to meet the real-
time requirement of the agriculture environment and see how 
the proposed HSI classification model can perform. 
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