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Abstract—Fog and edge computing has emerged as an 
important paradigm to address many challenges related to time-
sensitive and real-time applications, high network loads, user 
privacy, security, and others. While these developments offer 
huge potential, many efforts are needed to study and design 
applications and systems for these emerging computing 
paradigms. This paper provides a detailed study of workflow 
scheduling and offloading of service-based applications. We 
develop different models of cloud, fog and edge systems and 
study the scheduling of workflows (such as scientific and machine 
learning workflows) using a range of system sizes and application 
intensities. Firstly, we develop several Markov models of cloud, 
fog, and edge systems and compute the steady-state probabilities 
for system utilization and stability. Secondly, using steady-state 
probabilities, we define a range of system metrics to study the 
performance of workflow scheduling and offloading including, 
network load, response delay, energy consumption, and energy 
costs. An extensive investigation of application intensities and 
cloud, fog, and edge system sizes reveals that significant benefits 
can be accrued from the use of fog and edge computing in terms 
of low network loads, response times, energy consumption and 
costs. 

Keywords—Workflow scheduling; workflow offloading; cloud 
computing; fog computing; edge computing; scientific workflows 

I. INTRODUCTION 
In recent years, new computing paradigms, named fog 

computing [1]–[5] and edge computing [6]–[11] have emerged 
as an extension of cloud architecture to the edge of the 
network to support the computational demands of real-time, 
latency-sensitive, and location-aware service-based 
applications (SBA) of largely distributed Internet-of-Things 
(IoT) devices/sensors. Fog and edge computing are considered 
among the most important archetypes in the current world. 
While some communities differ in the precise definitions of 
and differences between fog and edge computing or nodes, we 
prefer the following definitions. Edge computing refers to the 
computing at the edge of the networks, near the device and 
IoT layers. Fog computing refers to the computing at the 
intermediate layers between cloud data centers and IoT 
devices (many works have considered such definitions, see 
[3], for example). Edge and Fog layers have been proposed to 
bridge the gap between the cloud and IoT devices by enabling 
data management, computing, networking, storage, and 
application services at the intermediate layers and edge of the 
network while offering the possibility to interact with the 
cloud. Many applications have been proposed to benefit from 
fog and edge computing such as smart districts [9], SMS 

(Short Message Service) spam detection [12], networked 
healthcare [3], smart societies [2], QoS management in 
networks [8], Smart airport [9], Distributed Artificial 
Intelligence (AI) as-a-service (DAIaaS) [9], and many others 
applications [13]–[18]. However, the development and 
management of fog-based and edge-based systems for SBA 
face many challenges that need to be tackled. These include 
investigating and designing applications and systems for these 
emerging computing paradigms. One of the core challenging 
issues is workflow scheduling and offloading in such a 
dynamic, geo-distributed, heterogeneous environment where 
the set of computing nodes contains edge nodes, fog nodes, 
and cloud datacenters such as discussed in many works in the 
literature [19]–[23]. 

Further research is needed, for instance, for investigating 
dynamic scheduling of multiple workflows executions, i.e., 
invocations of multiple sets of linked elementary IT-enabled 
services, in hybrid edge-fog-cloud computing environments 
while ensuring the individual Quality-of-Service (QoS) 
requirements of all the workflows and their services and 
reducing services latency, energy consumption, and costs. 

This paper provides a detailed study of workflow 
scheduling and offloading of service-based applications. We 
abstracted high-level challenges and requirements of cloud, 
fog and edge systems and developed different models of 
cloud, fog and edge systems, and study the scheduling of 
workflows (such as scientific and machine learning 
workflows) using a range of system sizes and applications 
intensities. Firstly, we develop several Markov models of 
cloud, fog, and edge systems and compute the steady-state 
probabilities for system utilization and stability. Secondly, 
using steady-state probabilities, we define a range of system 
metrics to study the performance of workflow scheduling and 
offloading including, network load, response delay, energy 
consumption, and energy costs. An extensive investigation of 
application intensities and cloud, fog, and edge system sizes 
reveals that significant benefits can be accrued from the use of 
fog and edge computing in terms of low network loads, 
response times, energy consumption, and costs. 

The proposed workflow scheduling and offloading models 
can be utilized in practice to study a range of applications and 
derive several benefits. Firstly, different well-known 
standardized workflow can be plugged in our proposed 
workflow scheduling models to study their various 
performance behaviors including network load, average 
response delay, energy consumption, and energy cost, and this 
can be done for a range of cloud-only, cloud-fog, and cloud-
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fog-edge systems. Some examples of standardized workflows 
include Montage workflow, SIPHIT workflow, epigenomics 
workflow, LIGO workflow, Cyber-Shake workflow, and 
more; see [23], for explanations and use cases of these 
workflows, and [19]–[22] for additional examples for practical 
utilization of our work. We elaborate this further in the 
methodology, results, and the discussion sections. 

The rest of the paper is organized as follows. Section II 
reviews related work. Section III details the methodology and 
design. Section IV provides an analysis of the results. 
Section V discusses the practical utilization of the proposed 
models and concludes the paper. Section  VI provides future 
research directions. 

II. LITERATURE REVIEW 
The focus of this paper is on combining the use of edge, 

fog and cloud computing for executing service-based 
applications. Fog computing has been attracting a lot of 
attentions in the last few years from researchers all over the 
world to bring out its potential. It has been seen as a 
complement of cloud computing to allow satisfying the 
increasingly sophisticated applications demanded by users that 
combine the use of time-sensitive services and intensive-
processing services, such as big data analysis which can be 
performed only in the cloud. The coupling of fog and cloud 
computing requires providing scheduling and offloading 
mechanisms that allows to manage the execution of multiple 
workflows of interconnected services in fog and cloud 
resources. 

The problem of scheduling and offloading in fog 
computing environments has been an active research topic for 
the last few years. Many researchers have been extensively 
focusing on providing solutions to this problem [24]–[32]. 
However, the research on fog computing, in general, and on 
workflow/task scheduling and offloading, in particular, is still 
in its early stages and the problem is not completely solved 
and there is still a lot of challenges that need to be addressed 
[33]. 

In [34], Zeng et al. tackled the problem of minimizing the 
maximum task completion time in Fog computing supported 
software-defined embedded system (FC-SDES) by jointly 
considering task scheduling and task image placement. The 
authors considered a scenario where tasks (requests) can be 
processed either on the client node or a fog (edge) node and 
task images can be saved on storage servers. Based on that 
scenario, they formulated their optimization problem as a 
mixed-integer non-linear programming (MINLP) problem. 
Then, in order to tackle its computational complexity, the 
authors proposed a heuristic algorithm for task completion 
time minimization based on the concept of “partition and 
join”. The main consideration in the proposed algorithm is 
that, by balancing the load between client nodes and fog 
nodes, the overall computation and transmission latency of all 
requests, therefore, their completion time, can be significantly 
minimized. 

Similarly, Chen et al. [35], formulated the task offloading 
problem in ultra-dense network as a mixed-integer non-linear 
programming problem. Their aim, in this work, was to 

minimize the delay while saving the battery lifetime of user’s 
device. To do so, the optimization problem has been divided 
into two sub-problems, i.e., task placement and resource 
allocation sub-problems. Based on the solution of the two sub-
problems, the authors proposed an offloading scheme which 
considers the battery lifetime of user’s device while reducing 
the task duration. 

In [36], Huang et al. focused on providing a solution to the 
problem of computational offloading for multimedia 
workflows in mobile cloud computing. They proposed an 
energy-efficient offloading method using Differential 
Evolution (DE) algorithm to optimize the energy consumption 
of the mobile devices with time constraints. 

Targeting the problem of task scheduling in smart factory, 
Wan et al. [37], introduced a method for energy-aware load 
balancing and scheduling (ELBS) based on Fog computing. 
They first formulated a load balancing optimization function 
by taking into account the energy consumption of the 
equipment in the smart factory. Then, they introduced a multi-
agent system for achieve the dynamic scheduling of 
equipment workload with the task scheduling mechanism. 

Considering a scenario where both edge/fog and cloud 
computing are used to serve mobile users, Zhao et al. [31], 
proposed to maximize the probability of tasks satisfying the 
delay requirement by jointly scheduling them either to the 
edge/fog network or to the cloud and allocating computational 
resources in the edge/fog network. So, they proposed to 
offload tasks with stringent delay bounds to resources in the 
edge level while the ones with loose delay bounds to resources 
in the cloud level. The proposed solution has been introduced 
to allow users with different delay requirement to be 
simultaneously served. 

In [38], the authors presented a ranking-based method for 
task scheduling in fog-cloud computing networks. The aim of 
the proposal is to schedule user’s requests based on their 
different preferences and fog nodes’ constraints. To do so, the 
authors proposed to use linguistic quantifiers and fuzzy 
quantified propositions to rank fog nodes from the most to the 
least satisfactory one based on their requirements, then, the 
one that satisfies more user task preferences will be selected as 
a destination fog node. 

Another work for task scheduling in hybrid fog-cloud 
computing has been proposed in [39]. In their work, Aburukba 
et al. modeled the problem of scheduling IoT service requests 
as an optimization problem using integer linear programming 
to minimize latency. They proposed a heuristic optimization 
approach in order to find feasible solutions with a good quality 
in a reasonable computational time. The genetic algorithm 
(GA) has been chosen and customized to schedule the IoT 
service requests to achieve the objective of minimizing the 
overall latency. 

Even though there is many research works for scheduling 
and offloading in fog computing and hybrid fog-cloud 
computing, most of them fail to meet the scalability and 
mobility of nodes criterion. Also, they consider the scheduling 
of a single task which is not applicable for workflows 
composed of a set of linked tasks. The dependency between 
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tasks in workflows adds more challenge to the scheduling and 
offloading problem. More importantly, many efforts are 
needed to develop high-level understanding of cloud-fog-edge 
systems. 

III. METHODOLOGY AND DESIGN 

A. Workflow Scheduling Cloud-Fog-Edge Model 
Consider a workflow scheduling system that is 

programmed to manage its capacity periodically -- such as 
monthly, weekly, daily, or hourly -- by scrutinizing the 
quantitative variations in the workload. A possible method 
that can be used for planning is building Markov models and 
solving these models for their steady-state probabilities. 

Let us represent the demand of a workflow scheduling 
system in terms of the aggregate computational nodes by 𝜆𝐴, 
where the subscript ‘A’ represents the ‘aggregate’ demand per 
hour. The demand 𝜆 represents the inter-arrival times that are 
exponentially distributed. The aggregate demand includes the 
demand for cloud, fog, and edge servers that are represented 
by 𝜆𝐶 , 𝜆𝐹 , and 𝜆𝐸 , respectively. We can write the aggregate 
demand in a mathematical form as in the following equation. 

𝜆𝐴 =  𝜆𝐶 +  𝜆𝐹 + 𝜆𝐸 .             (1) 

Now consider that the aggregate hourly capacity of the 
collective cloud, fog, and edge system is 𝜇𝐴, where, as for the 
arrival rate 𝜆 , the subscript ‘A’ represents the ‘aggregate’ 
hourly capacity in terms of the number of nodes. These nodes 
can be the physical nodes in the system or virtual machines. 
Similar to Equation (1), the following equation gives the 
breakdown of the aggregate capacity, which is the sum of the 
cloud, fog, and edge capacities, respectively. 

𝜇𝐴 = 𝜇𝐶 + 𝜇𝐹 + 𝜇𝐸 .             (2) 

The total number of physical or virtual nodes in the system 
are represented by 𝑁𝐴, which is the sum of the total number of 
cloud, fog, and edge nodes, represented by 𝑁𝐶, 𝑁𝐹, and 𝑁𝐸, as 
formulated in Equation (3) below. Note that the capacities 
defined in Equation (2) are the hourly service capacities of the 
system while Equation (3) defines the number of cloud, fog, 
and edge nodes in the system. 

𝑁𝐴 = 𝑁𝐶 + 𝑁𝐹 + 𝑁𝐸 .             (3) 

Note that “capacity” in this paper implies to be the server 
capacity in terms of the physical nodes or virtual machines the 
cloud, fog, and edge are able to provide in terms of their 
hourly rates. Note also that the three arrival rates or demands 
and capacities in the two equations given above can assume 
any reasonable values and their quantities do not affect our 
model. Indeed, not only that the model is independent of the 
values 𝜆  and 𝜇  can assume, the number of sub-arrival rates 
and capacities can also be extended to any number of clouds, 
fogs and edges. That is, using the model described above, we 
can model any number of clouds, fogs and edges by 
embedding in Equations (1) and (2) their individual arrival 
rates and server node capacities. 

Fig. 1 depicts the CTMC (Continuous Time Markov 
Chain) transition diagram of our proposed cloud-fog-edge 
workflow scheduling model. There are three parts of the 

transition diagram, one part each for cloud, fog, and edge. The 
symbols used in the figure have already been defined in the 
earlier paragraphs and equations. The cloud layer model is 
depicted in the top row, as is evident by the use of “C” 
subscript in all the variables and parameters (arrival and 
departure rates, and node capacities), followed by the fog 
layer (use of the subscript “F”) and edge layer (use of the 
subscript “E”) in the second and third rows, respectively. 

Inside the cloud layer, we have the system moving from 
the zero or idle state with no task in the system to be executed 
to one task, two tasks, until “c” tasks, where “c” could be any 
state between zero and 𝑁𝐶 . Once the maximum number of 
tasks allocated to the cloud(s) have reached, the fog can start 
receiving tasks, moving from state one, to two, to “f” where 
“f” could be any state between one and 𝑁𝐹 . Once the 
maximum number of tasks allocated to the fog(s) have 
reached, the edge can start receiving tasks, moving from state 
one, to two, to “e” where “e” could be any state between one 
and 𝑁𝐸. Note that any reasonable values can be assigned to the 
quantities in Equations (1), (2), and (3), with the exception 
that arrival rate cannot exceed the capacity otherwise the 
system will not be stable. Note also that the system can be 
equally modelled as first receiving the tasks in the edge layer 
followed by the fog and cloud. Similarly, we can conveniently 
place another set of parameters -- let us call them 𝑛𝐶, 𝑛𝑓, and 
𝑛𝑒, to replace 𝑁𝐶 ,𝑁𝐹, 𝑁𝐸, respectively – such that they can be 
any number between zero and 𝑁𝑥 (𝑥 ∈ {𝐶,𝐹,𝐸}. This would 
enable the model to allocate any maximum number of nodes 
in cloud, fog, and edge layers up to the maximum capacities of 
the three layers. That is, we can model such that any or all of 
the three layers do not have to work to their full capacities to 
avoid instability and provide higher reliability. Finally, note 
that the arrival and departure rates are dependent on the 
specific state the system is in but in the figure (Fig. 1) these 
are shown the same for simplicity (e.g., 𝜆𝐶 and 𝜇𝐶). 

 
Fig. 1. The Cloud-Fog-Edge Workflow Scheduling Model – CTMC 

Transition Diagram. 

 
Fig. 2. The Cloud-Fog-Edge Workflow Scheduling Model: CTMC 

Generator Matrix Q. 
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Fig. 2 depicts the CTMC generator matrix of our proposed 
cloud-fog-edge workflow scheduling model. The model itself 
is depicted in Fig. 1 and has been explained. This generator 
matrix, represented by 𝐴, can be used to calculate the steady-
state probabilities vector, 𝑥,  using the following equation. 

𝐴𝑥 = 0.               (4) 

The vector 𝑥 is a probability vector and therefore the sum 
of the vector is normalised to the value of 1. The details about 
the numerical solution of Markov chains can be found in the 
nominal book [40], or our earlier works such as [41], and 
other works such as [42]. 

We define a range of cloud, fog and edge system sizes in 
terms of the computational nodes and task arrival and 
departure rates and solve them for the steady-state 
probabilities. We use these steady-state probabilities to 
compute the system utilization and stability as formulated in 
Equations (5) and (6). The system utilisation (𝑈) is defined as 
the maximum relative state that has the highest probability for 
the system to be in, in terms of the number of computational 
nodes. 

𝑈 = 𝑖
𝑁

 | 𝑥[𝑖] = max (𝑥).             (5) 

The relative state in the equation above is computed by 
dividing the state number that has the highest probability in 
the vector (indicating that the system will be in this state with 
the highest probability) by the total capacity of the system (the 
hourly capacity in terms of the number of nodes); higher this 
number, higher will be the utilisation of the system in terms of 
the number of busy computational nodes. A higher utilisation 
is desired to make the best use of the available computational 
resources. However, a higher utilisation could reduce the 
stability of the system. 

The system stability defines inverse of the maximum 
relative state that has the highest probability and can be 
computed by dividing 1 by the system utilization. 

𝑆 = 1
𝑈

                (6) 

The average network workload in bytes per second is 
represented by 𝑁𝑊𝐿 and its computation is formulated by the 
following equation. 

NWL =
𝜓∗� (𝜂𝑖∗ 𝑡𝑖

𝜅
𝑖=1 )

𝜅
,        𝜂𝑖 𝜖 𝜂, 𝑡𝑖𝜖 {𝜅}.           (7) 

In the equation above, 𝜂𝑖 is the network load of the task 
number 𝑖, given in bytes, 𝑡𝑖 is the time the task number 𝑖 takes 
to be transferred over the network, and 𝜂 is the set of all tasks 
in a given state. There are 𝜅 tasks in a given state, and {𝜅} is 
the set of all 𝜅 time durations required to complete all tasks. In 
our experiments, we have used a fixed size of 5MB for the 
network load for all tasks. The times for each task are also 
fixed according to the latency of different networks (cloud-fog 
latency is 100ms, fog-edge latency is 2ms, and edge latency is 
0.1ms). Not that this is not a limitation of our approach; a 
distribution of task sizes and task network transfer time can 
easily be used in these equations. Finally, ψ is a factor that 
depends on the state the system is in and this is computed 
using the following equation. 

𝜓 = 1 +  𝜔 ∗ 𝑈𝜎 ,     ∀ 𝜓,𝜓 ≤ 1 +  𝜔.           (8) 

The equation stats that ψ can be computed using system 
utilization U, 𝜔, and σ, but its value cannot exceed 1 +  𝜔, 
means that the value of 𝑈𝜎 cannot exceed 1. The parameter ω 
is a regulation weight given to the network workload 
calculation that regulates the factor ψ. We set it to 1.0. A 
lower value for this parameter will have a lower effect on the 
network load computation and vice versa. This can be set by 
the user based on their knowledge of the system or focus of 
the study. The parameter σ is set to 5 in our calculations. It is a 
dampening factor over utilization so that the effect of 
utilization is balanced over the various operational states of 
the workflow scheduling system. A higher value of the 
dampening fact σ will create higher dampening implying that 
the values of ψ will increase slowly for the earlier states 
towards the higher-numbered states (see Fig. 1 and Fig. 2). 

The average response delay (RD) of the system can be 
computed by the following equation. The parameter ψ is the 
same factor that depends on the state the system is in and this 
was computed using Equation (8). The variable 𝑑𝑖 is the delay 
of job “i” (the time it takes to complete the job) and there are 𝜏 
jobs in the system, each with its own delay. 

RD =
𝜓∗� 𝑑𝑖

𝜏
𝑖=1
𝜏

,        𝑑𝑖𝜖 {𝜏}.            (9) 

The network energy consumption per hour (NE) is 
calculated by the following equation. The network energy 
consumption depends on the network load, NWL, and the 
estimated energy ζ. Several studies have reported the network 
energy consumption. We use the values reported in [9], [43], 
which is 0.54 kWh/GB. NWL has already been computed 
earlier. Since it was computed in MBps, we have added in the 
equation a denominator of 1000 to convert the network load 
into GBps. The value is multiplied by ͳ which is the time 
factor, in this case it is 3600 (the number of seconds in an 
hour). 

NE = ͳ∗𝜁∗𝑁𝑊𝐿
1000

.            (10) 

Finally, we compute the network energy cost (EC) per 
hour as given in the following equation. The cost depends on 
the network energy consumption, NE, calculated earlier, and 
the unit price of energy (γ), which we have taken from [44] as 
GBP 0.174 per kilowatt-hour (kWh). 

EC = γ ∗ 𝑁𝐸.            (11) 

IV. RESULTS AND ANALYSIS 

A. Workflow Scheduling System (Cloud) 
We use the CTMC model described in Fig. 1 and  Fig. 2 

and model a cloud-only workflow scheduling system. We set 
the number of cloud nodes to 16,000, and the number of fog 
and edge nodes to zero each. This gives according to Equation 
(3), 𝑵𝑨 = 16,000 +  0 +  0 = 16,000.  We study different 
CTMC system with varying aggregate arrival rates, 𝜆𝐴 , 
beginning from one task per hour (𝜆𝐴 = 1) to 500 tasks per 
hour (𝜆𝐴 = 500), up to 16,000 tasks per hour (𝜆𝐴 = 16,000). 
The service rate or departure rate or hourly capacity of this 
system is kept at constant, which is 16,000 tasks per hour 
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(𝜇𝐴 = 16,000). These settings result in 33 different CTMC 
models that we solve using iterative methods and compute the 
steady-state probabilities for each model. These are plotted in 
Fig. 3. The figures shows that the x-axis that plots the number 
of states varies between 0 and 16,000, and the y-axis provides 
probability values ranging from 1E-19 to 1.0 on a logarithmic 
base 10 scale. The system is idle in the zeroth state. Initially, 
with lower arrival rates, the probabilities of the lower-
numbered states are higher compared to the higher-numbered 
states, and in these cases the maximum probabilities fall to a 
certain low, near-zero values (manifested in the vertically 
dropping lines before the state number 16,000). As we move 
towards higher arrival rates, the probabilities for the lower-
numbered states start decreasing and the probabilities for the 
higher-numbered states start increasing. This trend continues 
until the probabilities rise towards the high-numbered states 
and do not fall vertically even after reaching the states nearer 
the state number 16,000. This shows that these cloud 
scheduling systems will be operating with high computational 
node utilization but with low stability and the risk for the 
system to drop the tasks off the system or its waiting queues. 

Fig. 4 plots the utilization and stability of the 33 cloud 
workflow systems that we have described in the previous 
paragraph. Note that the utilization (y-axis, blue line) rises 
with the increasing arrival rates (x-axis), while the stability of 
the system (orange line) decreases with the increasing arrival 
rates. This is an expected behaviour from such systems. 

 
Fig. 3. Steady State Probabilities: Cloud Only System (16000 Nodes). 

 
Fig. 4. Cloud (16000 Nodes): Utilization and Stability. 

B. Workflow Scheduling System (Cloud-Fog-Edge) 
We now model cloud-fog-edge systems where the 

workflows are scheduled to all three layers. Fig. 5 plots the 

steady-state probabilities of 23 workflow scheduling systems 
with different configurations. Some execute on cloud only (the 
top nine systems represented by Cloud-1, Cloud-1000, … 
Cloud-8000). While others run on fog (Fog-333 to Fog-333) 
and edge (Edge-166 to Edg-3166) layers. The numbers 
alongside Cloud-, Fog-, and Edge- represent the arrival rates 
for those nodes types. The strange numbering is used to avoid 
lines coming on top of each other and causing difficulty in 
reading and differentiating the plots. Note that since the fog 
and edge layers add to the capacity of the cloud, the 
probabilities for the higher-numbered states near the state 
number 16,000 are zero, indicating that those systems will not 
be unstable. 

C. Network Load 
The network workload (NWL) computations were 

explained earlier in Section  III along with its Equation (7). In 
this section, we will study the network workload related 
performance of various cloud, cloud-fog, and cloud-fog-edge 
systems. 

Fig. 6 depicts the network workload in GBps for a cloud-
only workflow scheduling system containing 16,000 nodes. 
There are a total of 31 different systems that have been 
modelled and their network load has been computed. These 31 
systems relate to different workloads on the systems in terms 
of the tasks being received by the system, beginning from 1 
task, to 500 tasks, up to 15000 tasks per hour. The capacity in 
all of these 31 systems has been kept constant. The minimum 
network load is for the system with one task; it is actually 0.51 
GBps but is rounded off to 1GBps in the figure. Note that the 
network load consistently rises to reach 15,315 GBps for the 
busiest workflow scheduling system. Note that the increase in 
the network load is due to the equal load of each job as have 
been explained in Section  III. However, this increase can be 
varied by using a distribution of network loads related to 
different tasks, and these network loads and tasks can even be 
varied based on different system states. Moreover, note that 
the increase in the network load is not linear. This is due to the 
factor ψ, which is dependent on the steady-state probabilities 
and system utilisation. 

 
Fig. 5. Steady-State Probabilities: Cloud-Fog-Edge System (8000-4000-

4000 Nodes). 
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Fig. 6. Network Load in GBps (Cloud with 15,000 Nodes). 

 
Fig. 7. Network Load in GBps (Cloud-Fog System with 7,500 Nodes Each). 

Fig. 7 shows the network workload in GBps for a cloud-
fog workflow scheduling system containing 7,500 nodes each 
in the cloud and fog. As mentioned earlier, an equal number of 
nodes are used for simplicity of explanation and it does not 
pose any limitations on the design of the systems. There are a 
total of 15 different systems for cloud and fog each that have 
been modelled and their network loads have been computed. 
These 15 x 2 systems relate to different workloads on the 
systems in terms of the tasks being received by the system, 
beginning from 500 tasks, up to 7,500 tasks. The capacity in 
all of these 30 systems has been kept constant. The cloud 
network load is depicted using blue bars and the fog network 
load is depicted using orange bars. The third set of bars in the 
grey colour represents the aggregate network load of the 
cloud-fog systems. The minimum network load is for the 
system with 500 tasks; it is 255 GBps for cloud and 84 GBps 
for the fog system, with ~170 GBps the aggregate network 
load. The network load consistently rises to reach 6,459 GBps 
(cloud), ~266 (fog), and 3362 GBps (aggregate) for the busiest 
workflow scheduling system. Note that the consistent increase 
in the network load is due to the equal load of each job as has 
been explained earlier. The relatively smaller values for fog 
systems is due to the smaller network latencies, implying a 
much lower time period for the fog tasks to travel over the 
fog-edge networks compared to the fog-cloud networks. 

Fig. 8 plots the network workload in GBps for a cloud-fog-
edge workflow scheduling system containing 5000 nodes each 
in the cloud, fog, and edge layers. An equal number of nodes 
are used for simplicity of explanation and it does not pose any 
limitations on the design of the systems. There are a total of 

10 different systems for cloud and fog each, which have been 
modelled. These 10 x 3 systems relate to the different 
workloads on the systems in terms of the tasks being received 
by the system, beginning from 500 tasks, up to 5000 tasks per 
hour while the capacity all the systems is constant. The 
network load is depicted using blue, orange, and grey bars for 
cloud, fog and edge respectively. The edge values are 
relatively small and therefore their bars are not visible but the 
labels can be seen on the right of the orange bars. The fourth 
set of bars in the yellow colour represents the aggregate 
network load of the cloud-fog-edge systems. The minimum 
network load is for the system with 500 tasks; 255 GBps 
(cloud), 58 GBps (fog), 5 GBps (edge), and 106 (aggregate). 
Note that the network load for the fog system with 500 nodes 
was 84 in the cloud-fog system depicted in Fig. 7; the higher 
value in that case is due to the cloud system that had 7500 
maximum nodes. Since we modelled systems with cloud 
scheduling first, the fog is scheduled after the 7500 cloud 
nodes and this increase the overall load of system and in turn 
the factor ψ, which is dependent on the steady-state 
probabilities and system utilisation. The network load 
consistently rises to a maximum of 4,118 GBps (cloud) and 
1433 GBps (aggregate) for the busiest workflow scheduling 
system with 5000 nodes each in the cloud, fog, and edge. The 
reason for relatively smaller values for fog (and edge) systems 
has been explained in the previous paragraph. 

 
Fig. 8. Network Load in GBps (Cloud-Fog-Edge System with 5,000 Nodes 

Each). 

D. Average Response Delay 
The calculations of average Response Delay (RD) were 

explained earlier in Section  III and Equation (9). We now in 
this section will analyse the system performance related to 
response delay of various cloud-fog, and cloud-fog-edge 
systems. We have modelled cloud-only and several other 
different configuration systems but we will limit our analysis 
to the cloud-fog and cloud-fog-edge systems for the sake of 
brevity. 

Fig. 9 depicts the average response delay in milliseconds 
(ms) for a cloud-fog workflow scheduling system containing 
7,500 nodes each in the cloud and fog. This system is similar 
to the one depicted in Fig. 7. There are a total of 15 different 
systems for cloud and fog each that have been modelled and 
their average response delays have been computed according 
to Equation (9). The cloud response delay is depicted using 
blue bars and the fog delay is depicted using orange bars. The 
third set of bars in the grey colour represents the aggregate 
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response delay of the cloud-fog systems. The minimum delay 
is for the system with 500 tasks; 404ms, 102ms, and 253ms 
for cloud, fog, and aggregate delays, respectively. The 
increase in the delay is consistent and non-linear, however, 
minimal. The minimal increase is because the system serves 
the jobs in parallel. Also, this minimal value and consistent 
increase is due to the equal load of each job as has been 
explained earlier. This increase in the delay depends on the 
system and task characteristics that can be tuned using the 
factor ψ and using tasks with some low or high-variance 
distributions. 

Fig. 10 depicts the average response delay in milliseconds 
(ms) for a cloud-fog-edge workflow scheduling system 
containing 5000 nodes each in the cloud, fog, and edge. This 
system is similar to the one depicted in Fig. 8. There are a 
total of 10 different systems for cloud, fog, and edge, each, 
which have been modelled and their average response delays 
have been computed according to Equation (9). The cloud, 
fog, edge, and aggregate response delays are depicted using 
blue, orange, grey, and yellow bars. The minimum delay is for 
the system with 500 tasks; 404ms, 102ms, 100ms, and 202ms 
for cloud, fog, edge, and aggregate delays, respectively. The 
increase in the delay is consistent and non-linear, however, 
minimal. We have explained the reasons for this while 
explaining Fig. 9. Note that using a cloud-fog-edge system as 
opposed to cloud-only or cloud-fog system significantly 
decreases the aggregate delay bringing to half of it (from 652 
to 326 ms). Obviously, increasing the relative number of edge 
nodes compared to cloud and fog can significantly bring down 
the aggregate delays. 

 
Fig. 9. Response Delay -- Milliseconds -- Cloud-Fog System with 7,500 

Nodes Each. 

 
Fig. 10. Response Delay -- Milliseconds -- Cloud-Fog-Edge System with 

5000 Nodes Each. 

E. Energy Consumption 
The network energy consumption per hour (NE) was 

defined and explained in Section  III and calculated using 
Equation (10). We, in this section, analyse the system 
performance related to network energy consumption of 
various cloud-fog-edge systems. We have modelled cloud-
only and cloud-fog, and several other different configuration 
systems, however, for the sake of brevity, we will limit our 
analysis in this section to the cloud-fog-edge systems. 

Fig. 11 depicts the network energy consumption in MWh 
for a cloud-fog-edge workflow scheduling system containing 
5000 nodes each in the cloud, fog, and edge. This system is 
similar to the one depicted in Fig. 10, however, it provides 
network energy consumption data. There are a total of 10 
different systems for cloud, fog, and edge, each, which have 
been modelled and their energy consumption have been 
computed according to Equation (10). The cloud, fog, edge, 
and aggregate network energy consumption are depicted using 
blue, orange, grey, and yellow bars. The minimum energy 
consumption is for the system with 500 tasks; 496, 112, 10, 
and 206 MWh for cloud, fog, edge, and aggregate energy 
consumption, respectively. The increase in the consumption is 
consistent, non-linear, and reaches roughly 16 times (496 to 
8006) as opposed to the 10 times increase in the number of 
nodes (500 to 5000). We have explained the reasons for this 
while explaining Fig. 9. Note that using a cloud-fog-edge 
system as opposed to cloud-only or cloud-fog system 
significantly decreases the aggregate energy consumption 
(from 8006 to 2786 MWh). 

F. Energy Cost 
The energy cost (EC) per hour was defined and explained 

in Section  III and calculated using Equation (11). We here 
analyze the system performance related to network energy 
cost of various cloud-fog-edge systems. We have modelled 
cloud-only and cloud-fog, and several other different 
configuration systems; however, for the sake of brevity, we 
will limit our analysis in this section to the cloud-fog-edge 
systems. 

Fig. 12 depicts the energy cost in GBP (x million) for a 
cloud-fog-edge workflow scheduling system containing 5000 
nodes each in the cloud, fog, and edge. There are a total of 10 
different systems for cloud, fog, and edge, each, which have 
been modelled and their energy cost have been computed 
according to Equation (11). The cloud, fog, edge, and 
aggregate monthly network energy consumption are depicted 
using blue, orange, grey, and yellow bars. The minimum 
monthly energy cost is for the system with 500 tasks; 62, 14, 
1, and 26 million GBP for cloud, fog, edge, and aggregate 
monthly cost respectively. The increase in the cost is 
consistent, non-linear, and reaches roughly 16 times (62 to 
1003) as opposed to the 10 times increase in the number of 
nodes (500 to 5000). Note that using a cloud-fog-edge system 
as opposed to cloud-only or cloud-fog system significantly 
decreases the aggregate energy consumption (from 1003 to 
349 million GBP). 
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Fig. 11. Network Energy Consumption -- MWh -- Cloud-Fog-Edge System 

with 5000 Nodes Each. 

 
Fig. 12. Monthly Energy Cost – GBP x million -- Cloud-Fog-Edge System 

with 5000 Nodes Each. 

V. DISCUSSION, UTILIZATION AND CONCLUSION 
Fog and edge computing has emerged as an important 

paradigm to address many challenges related to time-sensitive 
and real-time applications, high network loads, user privacy, 
security, and others. These developments offer huge potential; 
however, many efforts are needed to study and design 
applications and systems for these emerging computing 
paradigms. 

This paper provided a detailed study of workflow 
scheduling and offloading of service-based applications. We 
developed different models of cloud, fog and edge systems 
and studied the scheduling of workflows using a range of 
system sizes and application intensities. Firstly, we developed 
several Markov models of cloud, fog, and edge systems and 
computed the steady-state probabilities for system utilization 
and stability. Secondly, using steady-state probabilities, we 
defined a range of system metrics to study the performance of 
workflow scheduling and offloading including, network load, 
response delay, energy consumption, and energy costs. An 
extensive investigation of application intensities and cloud, 
fog, and edge system sizes revealed that significant benefits 
can be accrued from the use of fog and edge computing in 
terms of low network loads, response times, energy 
consumption and costs. 

The proposed workflow scheduling and offloading models 
can be utilized in practice to study a range of applications and 
derive several benefits. Firstly, different well-known 
standardized workflow can be plugged in our proposed 
workflow scheduling models to study their various 
performance behaviors including network load, average 

response delay, energy consumption, and energy cost, and this 
can be done for a range of cloud only, cloud-fog, and cloud-
fog-edge systems. Some examples of standardized workflows 
include Montage workflow, SIPHIT workflow, epigenomics 
workflow, LIGO workflow, Cyber-Shake workflow, and 
more; see [23], for explanations and use cases of these 
workflows, and [19]–[22] for additional examples for practical 
utilization of our work. Let us take the epigenomics workflow 
as an example that captures the execution workflows related to 
the operations involved in genome sequences. Such a 
workflow can be embedded in our proposed Markov model by 
defining the execution workflows within the Markov chain 
and thereby we can study how that workflow will behave for 
cloud-only, cloud-fog, and cloud-fog-edge systems in terms of 
the network load, average response delay, energy 
consumption, and energy cost of the system. 

The computational loads used by the different tasks 
modeled in this paper are the same. Similarly, the network 
loads in terms of the bytes sent around the network are also 
the same. However, this is not the limitation of the model. The 
equations developed in the models do use different 
computational and network loads and other parameters. The 
proposed models can capture the additional network load due 
to the task offloading or the different execution times of tasks 
in nodes due to the differences in their computational 
performance such as device speed and power that may also 
lead to higher energy consumption by the devices and 
networks. This is because the models define separately each of 
the tasks’ computational and network loads, as well as 
computational and network characteristics of the devices and 
networks in the cloud, fog and edge layers. These could be 
easily changed based on various workflows to study their 
performance. However, the developed system is a Markov 
chain and therefore it does use exponential distribution to 
capture the arrival and departure rates. 

VI. FUTURE WORK 
The future work will focus on investigating variations in 

the cloud, fog, and edge system configurations, variations in 
application intensities, and variations in task sizes. Moreover, 
we plan to investigate system utilization and stability models 
and their effects on the computations of system characteristics 
including energy consumption and costs, response times, and 
network throughput. 
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