
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 2, 2021 

Model-driven Framework for Requirement 
Traceability 

Nader Kesserwan1, Jameela Al-Jaroodi2 
School of Engineering, Mathematics, and Science (SEMS) 

Robert Morris University 
Pittsburgh, USA 

 
 

Abstract—In software development, requirements traceability 
is often mandated. It is important to apply to support various 
software development activities like result evaluation, regression 
testing and coverage analysis. Model-Driven Testing is one 
approach to provide a way to verify and validate requirements. 
However, it has many challenges in test generation in addition to 
the creation and maintenance of traceability information across 
test-related artifacts. This paper presents a model-based 
methodology for requirements traceability that relies on 
leveraging model transformation traceability techniques to 
achieve compliance with DO-178C standard as defined in the 
software verification process. This paper also demonstrates and 
evaluates the proposed methodology using avionics case studies 
focusing on the functional aspects of the requirements specified 
with the UCM (Use Case Maps) modeling language. 
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I. INTRODUCTION 
The largest part of traceability research so far has been 

done in the last two decades by the requirements engineering 
community [1]. Traceability, known as the ability to describe 
and follow the life of software artifacts [2], has become more 
important and traceability topics are being researched in many 
other areas of software development. One example is model-
driven development where some components of the software 
development process are executed automatically using model 
transformations   [3]. Model-driven development provides the 
foundation for the use of models as primary artefacts 
throughout the software development phases [4]. The variety 
of different models produced in the model-driven process pose 
challenges to requirements traceability and assessment. This 
diversity of artifacts results in an intricate relationship 
between requirements and the various models. The model-
based testing (MBT) is a technique where test cases are 
generated from models [5]. MBT needs the ability to relate the 
“abstract values of the specification to the concrete values of 
the implementation”   [6]. The relationships between artifacts 
play an important role to support automation of testing 
activities and it has been recognized for some time  [7]. 
Relationships between behavioral models and test cases and 
between test cases and test results support better capabilities to 
measure coverage, evaluate results and perform selective 
regression testing. As a result, creating and maintaining 
explicit relationships among test-related artifacts is a main 
challenge to the automated support of these activities. 

In this paper, model transformation techniques are used to 
create traceability links among MBT artifacts during the test 
generation process. The approach extends previous testing 
methodology presented in [8] that generates tests based on 
behavioral models. This paper’s contribution is building a 
traceability model to support the creation and persistence of 
such relationships among heterogeneous models representing 
various testing artifacts. Moreover, this work enables the 
support for traceability visualization, model-based coverage 
analysis and result evaluation. The case study used in this 
work is an industrial product, flight management system 
(FMS), to evaluate the correctness of the approach that 
ensures all the generated test cases determine correctly the 
behavior of the FMS and are traceable to requirements. 

The rest of this paper is organized as follows. Section  2 
offers background information on traceability and model-
based approaches in requirements and testing. A discussion of 
some related work about model transformation, model-based 
test generation, and traceability applied to automated testing 
approaches is presented in Section 3. Section  4 presents and 
describes the proposed approach, which is followed by 
Section  5 where two case studies are used to demonstrate the 
applicability and the evaluation of the approach. Section 6 
offers a discussion of relevant approaches and draws future 
work guidelines, while Section 7 concludes the paper. 

II. BACKGROUND 
In the domain of requirements engineering, the term 

traceability is usually defined as the ability to follow the traces 
(or, in short, to trace) to and from requirements. Two common 
definitions of requirements traceability are given by Pinheiro 
[9] as the ability to define, capture, and follow the traces left 
by requirements on other elements of the software 
development environment and the traces left by those 
elements on requirements; and by Gotel and Finkelstein as the 
ability to describe and follow the life of a requirement in 
forward and backward directions (i.e., from inception, through 
specification and development, to subsequent deployment, in 
addition to on-going refinement and iterations in any of the 
phases). 

The Radio Technical Commission for Aeronautics updated 
the guidance document DO-178C  [10] “Software 
Considerations in Airborne Systems and Equipment 
Certification” to address the safety concerns in new 
technologies such as model-based and object-oriented 
technologies. The document defines objectives and design 
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assurance levels for assuring the quality of the software and 
for an airborne system to perform its intended function with a 
level of confidence in safety that complies with airworthiness 
requirements. 

The software verification process in DO-178C defines an 
activity to verify that the system requirements assigned to 
software have been developed into high-level requirements 
that meet those system requirements. In order to support this 
verification, trace data should be generated that show a link 
between each single system-level requirement and its 
propagation to test cases. The relationship between a high-
level requirement and a test case is bidirectional allowing to 
trace in forward and backward directions. 

Model-driven testing approach, based on transformation 
rules, uses a model-transformation technique to map a source 
model to a target one  [11]. Model composition approaches 
automate the composition of heterogeneous models by relying 
on matching/merging operators [12]. Model-driven 
approaches move the focus in development from the third-
generation programming language coding to more abstract 
models. This aims to increase productivity and reduce time to 
market by enabling the use of development concepts closer to 
the problem domain than those programming languages offer. 
The main challenge of model-driven development is 
transforming the high-level models to platform-specific 
models such that tools can use them for code generation  [13]. 
It is possible to use models horizontally to describe different 
system aspects; however, they are useful for vertical 
representation to refine abstractions from the higher to the 
lower levels, where at the lowest level models use 
mechanisms based on implementation technology. Significant 
efforts are needed to work with multiple interrelated models to 
ensure their overall consistency. Furthermore, using these 
models can significantly reduce the burden of several other 
activities like reverse engineering, view generation, 
application of patterns, and refactoring through automation 
that is facilitated by the models. Such activities are usually 
performed as automated processes using one or more source 
models as input and producing one or more target models, 
while following a well-defined set of transformation rules. 
This process is referred to as model transformation. 

The guidance document DO-178A [14] introduced at the 
beginning of 1985 a new technique that supports test coverage 
and traceability between requirements and tests. This 
technique, known as requirements-based testing, has been 
applied in the testing of complex software systems and 
demonstrated that the systems meet the requirements. 

There are several modeling languages to express system 
requirements as scenarios and numerous languages that can be 
used to write test scripts. This paper refers to three different 
notations to capture functional requirements, describes the 
software description as test specification, and implements and 
executes scripts against the system under test (SUT). The key 
points are: (1) system behavioral requirements are formalized 
and modeled into scenarios representing the same 
requirements in an alternate Use Case Map (UCM) 
representation [15], [16], [17], and [18]; the UCM scenarios 
can be grouped by functionality into sets, for ease of 

comprehension and maintenance; (2) those UCM models are 
transformed to abstract test cases using the Test Description 
Language (TDL) [19], [20] , this process can be viewed as 
stepwise refinement and model transformation; (3) the 
obtained TDL abstract scenarios are used as the basis to 
generate executable test cases in Testing and Test Control 
Notation (TTCN-3) language. TTCN-3 [21] is a standard 
language for test specification that is widespread and well-
established. 

III. RELATED WORK 
It is important to establish and maintain relationships 

among software artifacts because these relationships are useful 
for many different software engineering activities like 
software change impact analysis and software validation, 
verification and testing processes. For instance, the traces can 
be used to keep models consistent and to identify pairs of 
related artifacts. These pairs can then be verified and validated 
against each other. A commonality between MBT and 
traceability is essential to manage the relationships among 
different artifacts. Relationship management should assist 
conception, persistence, and preservation of meaningful 
relationships across software artifacts in addition to assisting 
in the destruction of relationships. 

Automated MBT approaches exploit two types of 
relationships: (1) implicit relationships embedded in the tool’s 
algorithms and models, and (2) explicit relationships created 
and made explicit either automatically by the tool, or manually 
by the users. 

Some approaches as in [22], [23] and  [24] use implicit 
relationships to support test generation, execution and 
evaluation; while others like in [25] use implicit relationships 
to support regression testing. Further approaches use explicit 
relationships to support test generation [26], test execution and 
evaluation [27], or coverage analysis. 

Naslavsky et al. [28] use one kind of behavioral UML 
model for test generation. A control-flow representation is 
used along with domain analysis of the parameters of the 
sequence diagram. 

Basanieri et al. [29] use a tool (COW_SUITE) that loads 
UML models to create explicit relationships as edges in 
hierarchical trees among them. 

Anquetil et al. [30] addressed some of the challenges in 
developing software product lines in two steps; (1) develop a 
model-driven framework to identify traceability of variability 
and (2) specify a metamodel for recording the traceability 
links. 

In [31], the authors integrated a model-driven approach 
that exploits traceability relationships between monitoring 
data and architectural model to derive recommended 
refactoring solutions for the system performance 
improvement. 

Bünder et al. introduce a domain-specific language called 
Traceability Analysis Language [32] to create and maintain 
relations of all artifacts that specify, implement, test, or 
document a software system. The relations are recorded in a 
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traceability information model and later aggregated to support 
software development and project management activities with 
a real-time overview of the state of development. 

In  [33], the authors adopt the tool (AGEDIS) that uses 
user-created explicit relationships to execute and evaluate the 
test scripts. The created relationships map abstract stimuli to 
method invocations and abstract observations to value 
checking. In addition, this tool expresses relationships 
between abstract test suites and test trace results during test 
execution. Manual coverage analysis is supported via the 
visualization of the test traces and the abstract test suite that 
generated them. 

In [34], the (AsmL) tool uses user-generated explicit 
relationships to execute and evaluate abstract test scripts. The 
use of relationships in the AsmL tool supports the parallel 
execution of the model and its implementation by relating 
them and comparing their states. 

An approach presented by Abbors et al.  [35] provides 
requirements traceability across an MBT process and the tools 
used. Additional earlier research addressed using requirement-
based testing to support traceability between the requirements 
and the related testing cases. 

Arnold et al. propose a scenario-driven approach [36] 
(supporting both functional requirements and non-functional 
requirements) that helps create the traceability between 
generated and executed test cases, and the executions of an 
implementation under test. 

Furthermore, a model-driven approach combining the 
strengths of both scenario-based and state-based modeling 
styles is described in  [37]. The tool proposed enables tracing 
from requirements to testing and from testing to requirements 
in a round-trip engineering approach. 

Pfaller et al. suggest   [38] using varying levels of 
abstraction in development to derive test cases and link them 
to the corresponding user requirements. 

Another approach suggested by Boulanger and Dao  [39], 
where requirement engineering is performed in different 
phases of the V-model to enable requirements validation and 
traceability. 

Felderer et al., however, focus on model–driven testing of 
service-oriented systems in a test–driven way [40]. They 
suggest that the Telling TestStories tool can support 
traceability among all types of modeling and system artifacts. 
Marelly et al. discuss linking requirements and testing through 
the extension of sequence charts with symbolic instances and 
symbolic variables  [41]. 

IV. TRACEABILITY APPROACH 
This work builds on some of the techniques described 

earlier to create the traceability approach of MBT artifacts. 

The Ecore trace model is integrated into Eclipse Modeling 
Framework (EMF) and it is independent of the models it 
connects. The traceability approach in Fig. 1 [42] shows how 
system requirements, represented in an abstract model, are 
propagated through model transformation to more refined 
models. Furthermore, the traceability approach shows how the 
relationships among the generated models are created and 
recorded in a trace model. The first step in the approach is to 
represent the functional requirements of a system. The use of 
the modeling tool jUCMNav [43] help describe the system 
requirements as scenario models in UCM notation. In step 2, 
the behavioral models, described in step 1, are flattened to 
scenario definitions using the path traversal algorithm in the 
jUCMNav tool. Each flattened scenario is transformed, based 
on transformation rules, to test description in TDL. During the 
transformation process, the traceability information between 
the two models (UCM and TDL) are explicitly defined as a 
trace model. Lastly, test cases generation starts in step 3; it 
uses the transformed TDL test description models and data 
model (additional information) to generate the TTCN-3 test 
cases. Once more, during the process of generating test cases, 
the traceability information between TDL and TTCN-3 
artifacts are explicitly defined and made persistent based on 
and guided by a traceability scheme. 

The key points of the traceability approach are: (1) natural 
language requirements are described as scenario models in 
UCM; (2) the UCM models are transformed to test scenario in 
TDL; and (3) the resulting TDL test scenarios are used along 
with data model, detailing test data, to generate test cases in 
TTCN-3. Since the UCM models emphasize behavior and 
abstract from concrete data, this work focuses on developing a 
metamodel to support the test data. The developed data model 
is based on test requirements consisting of three metamodel 
elements: (1) the UCM responsibilities for message exchange, 
(2) A set of typed TDL data, and (3) a detailed TTCN-3 data 
with concrete value. During model transformation, traceability 
information is defined explicitly into a trace model 
(tracemodel.ecore). In the following subsections, an example 
is used to show how relationships among the testing artifacts 
are created and captured in the trace model during model 
transformation. The applicability and the evaluation of the 
approach is demonstrated via case studies in Section 5. 

A. Scenarios in UCM Metamodel 
The user requirement notation standard suggested UCM 

notation to capture the functional requirements of a system in 
terms of visual use case. This latter represents the behavior of 
a system as a casual scenario composed of responsibilities that 
can be attached to abstract components. The scenario models, 
as shown in Fig. 1 (step 1), represent the functional 
requirements of a system. The UCM models help design and 
understand systems. The UCM models could be used as a base 
to derive the test specification cases which in their turn used to 
develop the test cases. 
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Fig. 1. Traceability Approach Overview. 

B. Test Scenarios in TDL Metamodel 
The European Telecommunications Standards Institute 

proposed TDL [44] as a standardized scenario-based approach 
to specify software test cases as scenarios. TDL is a new 
standard developed for specifying “formally defined Test 
Descriptions used for test automation. It offers a high level of 
abstraction for specifying scenarios beyond programming or 
scripting languages. TDL can also be used to represent tests 
generated from other sources like simulators, test case 
generators, or earlier runs’ logs”. As described in [45], TDL is 
a general formal language for representing Test Descriptions 
which are used mainly for communication between 
stakeholders as the basis for implementing concrete tests. The 
TDL design is centered on three separate concepts: (1) the 
metamodel principle that expresses its abstract syntax; (2) 
concrete syntax, which is user defined for different application 
domains; and (3) the TDL semantics that can be found in 
metamodel elements. 

Our approach’s main goal is to discover relationships 
between testing artifacts to support requirement coverage and 
test evaluation. The model-based test scenario method will 
support scenario derivation from the UCM behavioral models, 
and link the relationships from the behavioral model to the test 
cases. TDL metamodel is used to support the description of 
scenarios. An instance of TDL metamodel can describe the 
essential elements of a test scenario such as messages, 
behavior, actions, interacting components, etc. The TDL test 
description metamodel, shown in Fig. 2, describes test 
description based on the exchanged communications between 
an SUT and a tester. 

 
Fig. 2. TDL Test Description Metamodel. 

C. Linking UCM Scenarios to TDL Specification 
The UCM scenario model shown in Fig. 3 describes the 

Internet’s Domain Name System (DNS) example that verifies 
whether a DNS server can correctly map a host name to its 
equivalent IP address. 

ReceiveIP

X X

XX

SendIP

ReceivehostNameSendhostName

Web Browser DNS Server

ResolvehostName

Start

End

[DNS]

 
Fig. 3. DNS Scenario Model. 
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The DNS scenario model has one map contains: a Causal 
path represented by a wiggly line, two rectangular boxes that 
represent components Web Browser (Tester) and DNS Server 
(SUT) and four responsibilities bound to components along 
the path, and one scenario. The responsibilities elements in 
UCM are abstract and can represent actions or tasks to be 
performed by the components. The components themselves 
are also abstract and can represent software entities (objects, 
processes, network entities, etc.) as well as non-software 
entities (e.g. users, actors, processors). 

As depicted in Fig. 4, a process (ATC Builder) has been 
developed to transform the UCM scenario model and data 
model (additional information) into an abstract test case 
expressed as a valid TDL. 

The outcome of this process is a TDL specification 
composed of four elements; (1) Data Set, (2) Test Objective, 
(3) Test Configuration, and (4) Test Description. The DNS 
scenario model shown in Fig. 3 is transformed into a TDL 
specification as depicted in Fig. 5. 

 
Fig. 4. The Process to Build a TDL Test Specification. 

The Component objects, Web browser and DNS server 
objects, in DNS are transformed into Test configuration items 
including for example Component Instances, Gate Instance, 
and Connection. Component Instances can be a part of a 
Tester or a part of an SUT. Component Instances are 
connected via the Gate Instance for the exchange of 
information. The responsibility objects in the DNS scenario 
model are transformed to Test Description elements such as 
Action Reference and Interaction. The action to be performed 
on the Component Instance has an attribute to identify the 
latter. The gates are used to exchange abstract information 
which is referenced by the Interaction elements in TDL. This 
Interaction element could be seen as an exchanged message 
between source and target. 

D. Linking TDL Scenarios to TTCN-3 Test Cases 
The UCM scenarios are used as a base to derive the TDL 

elements. However, the transformed TDL test specification is 
an abstraction that cannot be executed on SUT. The TDL 
elements such as Data Instances and Interactions lack concrete 
details about how to communicate with the SUT. In order for a 
test case to be executable, it should contain detailed test data 
and interface specifications. The test inputs for the test cases 
were developed in a data model during the test analysis and 
design process. In a UCM scenario, the responsibility object 
represents an interaction or an action to perform. Therefore, 
the interaction messages are developed from those 
responsibilities of nature stimulus/response, mapped into TDL 
Data Instances, and in turn are developed into a TTCN-3 
Template as shown in Table I. 

<< Test Description >>

DNS Description

<< Atomic Behavior >>

DNS behavior

<< Interaction >> [2]
Argument = IP
Source = SUT

Target = Tester

<< ActionBehavior >>

Target = SUT

<< ActionBehavior >>

Target = Tester

<< Test Configuration >>

DNS Configuration

<< Action Reference >> [1]

action = Receive hostName
actualParameter = “”

<< Action Reference >> [3] 

Action = Receive IP
actualParameter = “”

<< Interaction >> [1]
Argument = hostName

Source = Tester
Target = SUT

<< Action Reference >> [2]

action = Resolve hostName
actualParameter = “”

<< ComponentInstance >>

role = Tester

<< ComponentInstance >>

role = SUT

<< GateInstance >>

TesterGate

<< GateType >>

GType

<< GateInstance >>

SUTGate

<< Connection >>

<< ComponentType >>

CType

<< ComponentType >>

CType

 
Fig. 5. TDL Metamodel for Test Specification Model. 
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TABLE I. REFINEMENT OF TEST DATA FROM ABSTRACTION TO 
CONCRETE [42] 

Test Data  
Input/ Output 

Abstract Data 
in UCM 

Data Instance 
in TDL 

Data template 
In TTCN-3 

Stimulus SendhostName instance 
SendhostName 

Template String 
SendhostName 
:="myHostName" 

Response ReceiveIP instance 
ReceiveIP 

Template String 
Receiveip:= 
"192.124.35.5"  

Stimulus SendhostName instance 
SendhostName 

Template String 
SendhostName 
:="myHostName"   

Response ReceiveIP instance 
ReceiveIP 

Template String 
Receiveip:= 
"192.124.35.5"  

Based on data specifications, this work included 
developing a data model composed of different test data 
abstraction: 

• Stimulus/response: a subset of abstract test data 
requirements characterized as input and output 
messages expressed as responsibility objects in UCM. 

• Test data instances: the abstract subset of test data 
requirements is developed to Data Instances and Data 
Sets in TDL. 

• Test data template: using the TTCN-3 templates that 
define the concrete data, the Data Sets are finally 
developed and detailed. 

The generation of TTCN-3 test cases from the TDL test 
specification and the data model becomes feasible after 
applying the transformation rules between the two languages. 
Transformation rules are defined between TDL and TTCN-3 
metamodels resulting in four TTCN-3 modules that together 
constitute an executable test case: (1) the Configuration 
module which usually contains several linked test components 
with unique communication ports, (2) the Description module 
that consists of behavioral program statements specifying the 
dynamic behavior of the test components, (3) the Oracle 
module that contains the expected responses, and (4) the Input 
module that contains test input data to be transmitted over the 
communication port. The modules (3) & (4) are derived from 
the Data Sets and data model. Each requirement to be tested in 
the data model has an input domain that is subdivided into a 
set of templates (partitions) and used as a concrete test data. 
This type of structure will create dependency relationships 
between a requirement and the relevant test case data. This 
will help improve regression testing as mentioned in  [46]. 
Since the model transformation starts with flattening the 
scenario model into scenario definitions, a scenario coverage 
strategy is applied. Each flattened scenario is transformed to a 
test scenario and enriched with test data to derive the test 
cases. This way, straightforward relationships are established 
between the scenario and the test cases. 

E. Traceability Metamodel 
In the context of model-driven development, traceability 

schemes are usually explicitly expressed in metamodels, 
which are also usually linked to models specifying model 
transformations. Currently there is no single standardized 

traceability metamodel. The traces among testing artifacts can 
be produced on-line, where case traces are stored 
automatically by a tool as a by-product of the development 
activity. It can also be done off-line, where traces are recorded 
(automatically or manually) after the actual development 
activity has ended. The approach proposed earlier uses a trace 
metamodel inspired from Jouault et al.  [47] that supports 
traceability. This work’s contribution is externalizing and 
maintaining the relationships between the test-artifact models 
(i.e. the UCM scenario models, Test scenario models and Test 
cases models) and recording them in the new trace model. The 
relationships are recorded semi automatically in the trace 
model to support various activities like results evaluation, 
regression testing and coverage analysis. The traceability 
metamodel to hold the relationships among testing artifacts is 
defined in UML class relationship diagram as shown in Fig. 6. 
A class relationship diagram describes the types of objects in 
the model and selected relationship among them. The 
relationships can be of type (1) 'Generalization' that relates a 
specific classifier to a more general classifier. Generalization 
is denoted by an arrow with an unfilled, triangle head. 
(2) 'Association' that denotes responsibilities and are shown as 
lines connecting classes. (3) 'Dependency' where a class A 
depends on another class B. Dependency is indicated by a 
dashed line ending at a navigability arrow head. 
(4) 'Aggregation' can be read as “is part of” or, in the opposite 
direction as “has a”. Aggregation is denoted by an arrowhead 
drawn as an unfilled diamond. (5) “Composition” implies that 
the “lifetime” of the parts is bound to the lifetime of the 
whole. Composition is denoted by an arrowhead drawn as a 
filled-in diamond. 

F. Traceability Scheme 
The first step of model creation constructs the UCM model 

with integrated features (path traversal algorithm) capable of 
exporting scenario models that conform to the EMF 
metamodel, Ecore, and implementation of the UCM notations. 
The implementation of the second step, model transformation, 
is based on the “UCM scenario to test scenario” model 
transformation. To support traceability, the transformation tool 
is extended in this work to create traces that relate the model 
elements between UCM scenarios and TDL specification. 
Guided by the traceability scheme defined in Table II, the 
produced traces in the traceability model called 
“tracemodel.ecore” were recorded. Implementation of the 
third step, test case generation and traceability information, 
takes place when the transformed TDL specifications and the 
data model developed earlier are ready. These traces were 
again recorded as a product of the transformation, with the 
guidance of the traceability scheme. 

aTraceModel

aModelRef bModelRef

aSourceModel bTargetModel

aSourceElement bTargetElement

ref ref

abTraceLink

aTraceLinkEnd bTraceLinkEnd

SourceElements

aElementRef bElementRef
ref ref

TargetElements

 
Fig. 6. Traceability Model (Kesserwan Dissertation [42]). 
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TABLE II. TRACEABILITY SCHEME 

Testing artifacts/ 
Traces 

What information 
to record Constraints Source 

UCM Scenario 
Component,  
Interaction, 
Action Reference 

 Scenario 
Definition 

TDL Test 
Specification 

Test Configuration, 
Test Description, 
Gate, 
Interaction,  
Action Reference, 
Data Instance, and 
Data Set 

No 
duplication  
in Gate  

Connected 
components 
Set of  
Interaction 

No 
duplication 
in Data Set 

Action reference 
Component 
Interaction 
Data model  

TTCN-3 
Testcase 

Port, Record,  
Record field, 
Send, Receive 
Template, and 
Function 

No 
duplication 
in Port 

Gate  
Interaction 
Data Set 
Data Instance 
Action reference 

V. APPROACH APPLICABILITY AND EVALUATION 
The application and the evaluation of the traceability 

framework have been demonstrated by conducting two case 
studies from the avionics industry. The first case study is 
called the landing gear system [48], used to demonstrate the 
applicability of the approach, where the second one is the 
FMS used for the evaluation. 

A. Test Cases and Trace Model Generation 
The description of the landing gear behaviour is captured 

in UCM scenarios and explained in the following. The goal of 
the landing gear in an aircraft is to provide support during taxi, 
take-off and landing. Before landing, the landing order of an 
airplane is: unlock the landing gear doors, extend the gears 
and lock the landing gear doors. Fig. 7 depicts a successful 
deployment of extending sequence scenario 
[DeploymentSucceeded], and two unsuccessful deployment 
scenarios; [DeploymentFailed] and [NormalModeFailed]. 

Pilot LGCU

X

X X

X
X

X
X

X

X

X

XX
StartExtending Handle_Down

Timer_0 Timer_1

EndExtending

RedON

Timer_6
Timer_5

Timer_4

Timer_3

Timer_2

OpenDoors

LockDoorsIn
OpenedPos

ReleaseUp_
Lock

AmberON

Lock_Down
Gears

GreenON_
AmberOFF

CloseDoors

LockDoorsIn
ClosedPos

ConfirmGearsDown

EndNormalMode

EndFailure
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Fig. 7. Visual UCM Scenario Describing the Extending Sequence Case. 

The creation of the UCM model was described as step 1 of 
the approach (Fig. 1). The next step is to transform the UCM 
model into a TDL test specification, and create the traceability 
information. The test data for the successful scenario 
[DeploymentSucceeded] is shown in Table III. 

The graphical representation of the transformed model, 
composed of test description and test configuration elements, 
is depicted in Fig. 8. Traceability information for the test 
configuration is depicted in Fig. 9, while part of the 
traceability information for the test description is depicted in 
Fig. 10. 

In Fig. 9, the traceability model is named 
TraceUCMModel2TDLModel. It relates models 
UCMScenarioModel and TDLTestScenarios. It has one trace 
link named DSScenarioTraceLink that relates the 
UCMDSScenario in the UCMScenarioModel to the 
TDLDSTTestSpecification in the TDLTestScenarios. 
DSSScenarioTraceLink has many children; the figure shows 
the link DSTestConfigurationTraceLink, which relates the 
component Instances (Pilot and LGCU) in the 
UCMDSScenario to the gate instances (Tester and SUT) in the 
TDLDSTestSpecification. 

In Fig. 10, the trace link DSSScenarioTraceLink has 
another child DSTestDescriptionTraceLink, which relates the 
interactions and action references in the UCMDSScenario to 
the interactions and action references in the 
TDLDSTestSpecification. The figure shows one “Interaction” 
and one “Action Reference”. 

The last step in the approach is the generation of test cases 
and the creation of the traceability information in the TDL test 
model and the generated test cases. Information from the data 
model in Table II, from the trace model in Fig. 10 and from 
the test specification model in Fig. 8 is used to complete the 
step. The data model is developed from the testing 
requirement and represents the input space for the scenario 
model [DeploymentSucceeded] under transformation. The 
instances in the data model are grouped into two sets; stimulus 
(Tester) and response (SUT) to build the TDL Data Sets 
elements. Each Data Set is mapped to records and variables 
elements in TTCN-3 using the transformation rules between 
the two languages. In Fig. 11, the trace link 
DSSScenarioTraceLink has a child 
DSTestDataModuleTraceLink, which relates the Data Set, 
Data Instance and Interaction in the TDLDSTestSpecification 
to the Record, Record field and Send in the TC_DS_[seq]. The 
figure shows one “Data Set”, one “Instance” and one 
Interaction. The TDL test scenario [DeploymentSucceeded] is 
transformed into a test case in TTCN-3. The approach defined 
in [8] applies structural transformation where each TDL 
element is transformed into a number of TTCN-3 modules. 
Based on transformation rules, the resulting test case is 
composed of three types of modules: (1) a Test Configuration 
module, (2) a Test Description module, (3) and a Data 
module. The TTCN-3 data module is refined with test input 
and expected output when this data becomes available. A new 
test case is added “TC_DS_01” to the test suite “TTCN-
3_DC_TestSuite” for each new pair of test input and expected 
output found in the Data model in Table II. 
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TABLE III. THE DEVELOPMENT OF TEST DATA FOR [DEPLOYMENTSUCCEEDED] SCENARIO [42] 

Test Data  Requirement UCM responsibility Stimulus/Response TDL Data Instance TTCN-3 Template 
Send stimulus when handle is 
pushed down Handle_Down instance Handle_Down Template String Handle_Down_Type 

Receive a response when locking 
doors in opened position LockDoorsInOpenedPos instance 

LockDoorsInOpenedPos 
Template String 
LockDoorsInOpenedPos_Type 

Receive a response when Gear is 
in transition AmberON instance AmberON Template String AmberON_Type 

Receive a response when locking 
Gears in down position GreenON_AmberOFF instance GreenON_AmberOFF Template String 

GreenON_AmberOFF_Type 
Receive a response when locking 
doors in closed position LockDoorsInClosedPos instance 

LockDoorsInClosedPos 
Template String 
LockDoorsInClosedPos_Type  

<< Test Description >>

DeploymentSucceeded

<< Atomic Behavior >>

SD_Behaviour

<< ActionBehavior >>

Target = SUT

<< ActionBehavior >>

Target = Tester

<< Interaction >> [1]
Argument = Handle_Down

Source = Tester
Target = SUT

<< Interaction >> [3]

Argument = AmberON
Source = SUT

Target = Tester

<< Interaction >> [4]

Argument = 
GreenON_AmberOFF

Source = SUT
Target = Tester

<< Action Reference >> [2]

action = Lock_DownGear
actualParameter = “”

<< Action Reference >> [1]

action = ReleaseUp_Lock
actualParameter = “”

<< Interaction >> [2]

Argument = LockDoorsInOpenPos
Source = SUT

Target = Tester

<< Interaction >> [5]

Argument = 
LockDoorsInClosedPos

Source = SUT
Target = Tester

<< Test Configuration >>

DeploymentSucceeded

<< ComponentInstance 
>>

role = Tester

<< ComponentInstance 
>>

role = SUT

<< GateInstance >>

TesterGate

<< GateType >>

GType

<< GateInstance >>

SUTGate

<< Connection >>

<< ComponentType 
>>CType

<< ComponentType 
>>CType

 
Fig. 8. Test Specification Model for [DeploymentSucceeded] Scenario (Kesserwan Dissertation [42]). 
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Fig. 9. Traceability Model shows Traceability Links between the UCM and TDL Models for [DeploymentSucceeded] Scenario (Kesserwan Dissertation [42]). 
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TraceUCMModel2TDLModel

aModelRef bModelRef

UCMScenarioModel TDLTestScenarios

UCMDSScenario TDLDSTestSpecification

ref ref
DSScenarioTraceLink
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Action Reference
ReleaseUp_Lock
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b3TraceLinkEnd
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ref ref

a4TraceLinkEnd

a4ElementRef

b4TraceLinkEnd
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sourceElements TargetElements

ref ref

 
Fig. 10. A Small Part of Traceability Links between the Two Models for [DeploymentSucceeded] Scenario (Kesserwan Dissertation [42]). 
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Fig. 11. Traceability Information between TDL and TTCN-3 (Kesserwan Dissertation [42]). 
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B. Traceability Links and Alignment with Test Result 
To evaluate the extended testing methodology in this 

work, the experiment method described in [8] is reused to 
generate the test case. The new obtained result is a trace model 
(tracemodel.ecore) which relates UCM scenario models to 
TTCN-3 test cases grouped in test suites. Each test case, 
generated with a unique identifier, is a sequence of actions and 
interactions with defined input parameter values and output 
parameter values. The execution of the test case results in the 
assignment of a test verdict; pass or fail. In the trace model, 
the links between requirements and test cases may have 
several possible cardinalities: 

• One-to-one: one requirement is tested exactly by one 
test case and this test case tests only this requirement. 

• One-to-many: one requirement is tested by several test 
cases and these test cases participate to test only this 
requirement. 

• Many-to-many: one requirement is tested by several 
test cases, which are used to test several requirements. 

Fig. 12 shows the relationships between the testing 
artifacts for the [DeploymentSucceeded] scenario. The 
traceability link DSScenarioTraceLink  [1] relates the model 
UCMDSScenario to the model TDLDSTestSpecification 
which is related to several test cases via the traceability link 
DSScenarioTraceLink [2]. The generated test cases are 
children of the test suite TTCN-3_DS_TestSuite. 

The trace model takes a significant importance in the test 
generation process. On one hand, it provides a clear meaning 

for each generated test case: the tested requirement(s) gives 
the purpose of the associated test case(s). It is a kind of 
rationale for the generated test suite. On the other hand, the 
trace model exhibits clearly which requirements are actually 
tested (and how), and which requirements are not tested. For 
the not tested requirements, this suggests completing the test 
suite to obtain full functional coverage. During test execution 
of the test case, the traceability links in the trace model help to 
identify the related requirements when it fails. Similarly, when 
the test case passes, they certify that the related requirements 
were implemented and tested. 

C. Requirement Coverage and Compliance with DO-178C 
The trace model helped analyze the generated TDL test 

description from UCM models to check if the test cases cover 
the requirements. The trace model showed full coverage 
between UCM scenarios and their developed TDL 
specifications. The trace model realized complete requirement 
and scenario coverage. For each path in the UCM model, there 
is a TDL test scenario linked to it and the number of links in 
the trace model equals the number of scenarios found in the 
UCM model. 

Furthermore, the trace model helped analyze the generated 
TDL test description to check if they are actually traceable to 
the original software requirements (UCM elements). The trace 
model meets the traceability objective as defined by DO-178C 
standard where an association between a requirement and its 
related items is necessary. The trace model contains links 
between the UCM models and the TDL test scenarios which in 
turn are traced to the generated test cases in TTCN-3. 
Therefore, compliance with DO-178C is achieved. 

Source Target

UCMDSScenario TDLDSTestSpecification

DSScenarioTraceLink  [1] DSScenarioTraceLink [2]
Source Target

TC_DS_01

TC_DS_n

…………..

TTCN-3_DS_TestSuite

Req.1

Req.2

Req.n

Dev. Req.1

Dev. Req.2

Dev. Req.n

 
Fig. 12. Traceability Links among Testing Models for [DeploymentSucceeded] Scenario. 
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VI. DISCUSSION AND FUTURE WORK 
Similar to the approaches discussed in the related work 

section (Section 3), this paper proposes to create traceability 
links among testing artifacts. However, this work differs from 
them as the proposed method extends the model-driven testing 
methodology to create explicit relationships in a trace model 
among testing artifacts. The approach creates UCM behavioral 
models and relates them to test cases via abstract test models 
during model transformation where n-ary links among models 
could be visualized. This is an important factor in visualizing 
relationships among models because it is almost impossible to 
represent more than one link in a two-dimensional traceability 
matrix in an understandable way. Moreover, the number of 
relationships in traceability matrices is high and fixed. The 
trace model records a small number of relationships from 
model to a testcase to enable the support for model-based 
coverage analysis, visualizing traceability and result 
evaluation. 

Another important difference is creating a semiautomatic 
process for trace recording. This reduces some of the 
repetitive and time consuming tasks testers need to do to 
generate these traceability connections. Most models 
discussed require manual recording. This also distinguishes 
this work from the earlier research in this specific topic as it 
extends the scope and capabilities of the model developed and 
improves its processes. 

This work is the start of research efforts to offer more 
effective ways to ensure traceability and create better 
pathways for validation. Following this contribution, future 
work will focus on enhancing the model to provide additional 
traceability aspects and addressing some of the current 
limitations. More research into enhancing the traceability 
process such that it could use additional sources (other than 
UCM) to provide access to non-functional requirements. This 
will further improve the traceability model and provide a more 
robust coverage of requirements. In addition, methods to 
automate the steps in this process will be investigated and a 
fully automated process of recording traces in the trace model 
will be explored. This will create a faster and more effective 
process for test traceability. 

As a result, non-functional requirements, generally not 
captured by UCM, cannot be used. In addition, the semi-
automatic recording improved the process, yet it still requires 
manual work to complete the process. 

VII. CONCLUSION 
Our main contribution in this paper is the proposal and 

presentation of a model-based approach that leverages 
available methods to generate test artefacts based on model 
transformations. This approach enables creating traceability 
links among testing artifacts. It also extends the 
transformation methodology to create and document 
relationships as a set of metadata in a trace model through 
consecutive transformation steps. A traceability scheme with 
constraints that determines which testing artifacts and at which 
level of detail the traces can be recorded was defined. The 
proposed traceability scheme guides the recording of traces 
(manual) and makes them persistent. Relationships are created 

and made explicit among scenario definitions in UCM models, 
their test specifications in TDL notation, and the 
corresponding test suite scenario in TTCN-3 language. The 
documented relationships in a trace model enable the support 
for visualizing traceability, coverage analysis and test result 
evaluation. This paper shows the developed infrastructure and 
workflow for MBT that applies model transformation and test 
generation techniques to create test scenarios, test cases, and 
traceability models. 
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