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Abstract—WiFi based human motion recognition systems
mainly rely on the availability of Channel State Information
(CSI). Embedded within WiFi devices, the present radio sub-
systems can output CSI that describes the response of a wireless
communication channel. Radio subsystems as such, use complex
hardware architectures that consume lots of energy during data
transmission, as well as exhibit phase drift in the sub-carriers.
Although human motion recognition (HMR) based on multi-
carrier transmission systems show better classification accuracy,
transmission of multiple sub-carriers results in an increase in the
overall energy consumption at the transmitter. Apparently CSI
based systems can be perceived as process intensive and power
hungry devices. To alleviate the process intensive computing and
reduce energy consumption in WiFi, this study proposes a human
recognition system that uses only one radio carrier frequency. The
study uses two software defined radios and a machine learning
classifier to identify four humans, and the study results show that
human identification is possible with 99% accuracy using only one
radio carrier. The results of this study will have an impact on the
development process of smart sensing systems, particularly those
that relate to healthcare, authentication, and passive monitoring
and sensing.

Keywords—Motion detection; pattern recognition; received sig-
nal strength indicator; Software Defined Radio (SDR); supervised
learning

I. INTRODUCTION

In recent years, the role of smart environments has attracted
most of the research communities across the globe, and the
research activities undertaken by such communities, are trans-
forming the existing natural, or made-man setups to smart
environments. The areas that are influenced by these transfor-
mations also include indoor sensing, pattern recognition and
classification systems, and smart environments. Smart home
applications, spanning across various domains, enable support
to build smart home environments, and human motion sensing
environments, in particular, enable support to motion sensing,
analysis, and evaluation of ambient environmental settings, or
parameters, as a response to human activities.

At present, various state-of-the-art analytical methods have
been devised to explore the analogous, and discriminative
physiological and behavioral characteristics of humans, so as to
model human motion behavior as well as to recognize different
human motion patterns. A smart home is realized as a subunit
in a smart environment, wherein human motion recognition,
and localization applications may be deployed, both in indoor
and outdoor environments. Indeed device free passive indoor
localization [1] has been of great interest to researchers, and it
plays a key role in the applications that enable assisted living

facilities for elderly, children, physically challenged, and in
smart home, etc. [2], [3], [4].

The combined motion sensing approaches and their reason-
ing deliver context-aware data from human motion, as well as
from the analysis of human activities. The data collected is then
next employed to provide personalized support in many appli-
cations [5]. Human motion sensing, analysis and prediction is
classified into three categories: vision-based systems, wearable
sensor-based systems, and RF based systems [6][7]. Sensing
systems based on the approach of vision sensing are classified
under the category of passive sensing systems. Sensing systems
as such, use cameras as a light sensor for tracking human
motion patterns [8] [9]. Human behavioral patterns captured
in images can be processed using the computer vision and
machine learning techniques. Typically, images captured with
a camera, often needs a camera to have sufficient ambient
light, and insufficient lighting effects visibility, which leads to
significant decrease, or even no sensing capabilities in cameras.
Moreover, any physical barriers such as walls completely
alienate camera based sensing systems.

Wearable sensor-based approach [10] [11] [12], is one
of the alternatives to monitoring human activities. Wearable
sensing needs attaching sensors to the human body, and often
pose challenges of electrical wiring, power supply management
and in particular mainly cause inconvenience. Consequently,
elderly patients abstain to carry electrical wires and monitoring
sensors. Typically, subjects’ data are recorded with inertial
sensors such as gyroscopes, accelerometers, or magnetometers,
enabling human motion data acquisition as electrical signals
varying over time [13]. For consistent observation and mon-
itoring of subjects’ necessitates subjects carrying monitoring
devices, often demanding power supply and other accessories
items to supply. Thus, proposing solutions to eliminate sensor
deployment on the human body is imperative and directs re-
search to incorporate passive sensing and monitoring elements.

The shadowing effects left over by any moving targets
intercepting line of sight (LoS) path between the transmitter
and receiver, enable tracking of objects in motion in indoor
environments [14] [15] [16]. An interception caused by a
human walking across the LOS of the RF signal, results in
variations in the received strength signal (RSS) at the receiver
[17]. To Identify and track the unique human motion patterns
out of RSS, requires analyzing the embedded unique human
motion signatures, using various methods of signal processing.

On the other hand, advancements in wireless technology
are driving researchers to devise solutions exploiting wireless
communication systems in localization and pattern recogni-
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tion based applications. In fact, several attempts addressing
issues concerning motion detection [18][19], gesture detec-
tion [20][21], and facial recognition systems [22] have been
successful. With current wireless devices embedding multiple
radio sub-units, allow sub-carriers for data communications.
However, SDRs can also provide estimated Channel State
Information (CSI), and many commercially available off-the-
shelf (COTS) devices support CSI data directly via in-built
subsystems.

Although CSI based localization and pattern recognition
studies reveal real higher performances, developed systems still
exhibit challenges such as increased processing complexity,
portability, adaptability, unreliability, lower precision, and in-
efficient system designs. Solutions based on existing wireless
communication systems infrastructure, no doubt extend the
scope of research in the current context, however, processing
multiple sub-carriers in CSI based systems is of concern.
Statistical CSI data retrieved either from commercially or
customized firmware modified routers provides human activity
and gesture data [23]. Recent attempts made using CSI of WiFi
devices have shown higher motion recognition accuracies,
nonetheless, it solely relies on available WiFi channels for
monitoring. Therefore, developing efficient system designs
will significantly impact potential applications implementing
elementary and straightforward prototyping methods of local-
ization and pattern recognition. This study aims to address the
problem of human recognition. Our proposed solution bases on
one sub-carrier frequency only, rather than multiple subcarrier
frequencies, to identify and classify human motion patterns
using machine learning.

The study will impact future works that relate to human
recognition systems, employing SISO channel model of com-
munication instead of using CSI based systems. The proposed
testbed in this study can be used for further investigation of
works like, random human motion detection, motion speed
detection, trespasser detection, and many other applications,
wherein human motion detection may be carried out passively
from a remote monitoring station. Moreover, when using cur-
rent system with multiple deployments at different locations,
would eventually lead to a passive sensing system, analogous
to sensor networks that transmits sensed information via nodes
mounted at various location within a network. Thus, human
recognition is possible under the domain of a passive sensing
system.

A. Research Contribution

The main contributions of this paper are listed below:

• The study proposes a testbed for recognizing humans
in indoor environments using two NI-USRPs, and
it highlights the main challenges, experienced while
setting up the testbed for the study.

• The study identifies possible setup for experiment,
parameters that help in tuning of SDRs to the optimum
level, along with setup to conduct further research
in the domain of human recognition systems that
may employ just single-input-single-output model of
communication channel.

• The study provides a comparative analysis of two dif-
ferent machine learning models employed in this study
for human identification. Moreover, the study accesses
the level of accuracy of two different machine learning

models that show an accuracy of 99% in identifying
humans based on their patterns of locomotion.

The study is organized according to the following sections.
Section II, provides a detailed background to the study. Section
III provides a theoretical perspective, system model, and the
method of data collection. Section IV describes the SVM
based machine learning solution for pattern detection and
classification. Section V provides a discussion on the study
results and comparison of SVM performances. Finally, Section
VI concludes the overall study.

II. BACKGROUND

Wireless signal propagation is influenced by various envi-
ronmental factors, wherein wireless signal strength is mainly
attenuated by multipath fading, path loss, and shadowing.
Multipath results in a transmitted signal to arrive at the
receiver, as multiple reflections of the original signal, from
different paths, thereby causing severe distortion in the original
signal component. Whereas the signal strength attenuates due
to increased propagation distance and mainly relies on channel
behavior, shadowing results in power loss due to physical
objects appearing in signal propagation path.

The CSI of subcarrier [23], [24] frequencies show random
variation, with an added distortion as a result of reflections in
multipath propagation of a signal. Typically, random variations
observed under normal conditions describe dynamics of CSI,
whilst without the presence of nearby objects within the range.
The CSI pertaining to various sub-carrier frequencies require
methods of signal processing to de-noise and decompose
the distinguishing features embedded in the signal, should be
extracted for the purpose of motion pattern recognition. On the
other hand, random human motion inevitably influences CSI
elementary behaviour, and extracting meaningful information
even becomes harder. Prior studies conducted explore the
dynamic nature of RSS and extract patterns by applying ma-
chine learning algorithms on acquired data from multiple sub-
carriers. For example, [23], [24], [25] have applied Principal
Component Analysis (PCA), [26] used Discrete Wavelet
Transform (DWT),the CLEAN algorithm by [27], Doppler
spectrum by [28] and even scale and time shift projections by
[26], were used. Nonetheless, proposed signal processing and
patterns recognition methods require high speed processing
elements including scaled hardware resources that, in general,
contribute to inefficient, unreliable and expensive methods of
human recognition.

The random phase drift, as a result of sampling time
offsets, is common in CSI phase measurements [27]. Conse-
quently, for observed motion patterns, contrasting results can
be seen with similar devices enabling CSI data generation.
Processing devices with lower CSI-subcarrier sampling rate
leads to processing delays and hence limits CSI based motion
sensing in real time applications. Indoor environments include
surrounding objects and motion observations may include
background clutters. The Background elimination algorithm,
for example by [27], subtracts static paths from the observed
data, thus enables background clutter removal. While the like-
lihood criterion removes target reflection path from observed
motion path, challenges in defining descriptor variables in
noisy measurements still post serious concerns [28].CSI sub-
carriers in turn reflect random noise intensity levels. Each
CSI sub-carrier component requires processing at an individual
level, thus adding requirements of additional processing.
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MIMO systems [25] [27], on the other hand, employ
multiple antennas in accretion to multiple receivers. Motion
sensing systems based on MIMO, thus add increased device
accessories and deployment costs. In addition, 5GHz CSI
receivers implementing 114 and 132 sub-carriers for human
motion sensing reveal only 94.0% accuracy [25], [24],
meaning recognition accuracy is independent of added CSI
channels. Here True Positive Rate (TPR) of CSI sub-carriers
is independent, hence, added channels do not contribute to
sensed motion recognition accuracy level.

As outlined in the previous sections, motion recognition
based on CSI acquired from WiFi, is process intensive, and
requires a lot of resources for processing than processing only
one radio carrier frequency. Therefore, this study proposes a
single-input-single-output (SISO) communication model based
human motion recognition, and the proposed system is evalu-
ated using testbed setup employing two National Instruments
universal radio peripherals (NI-USRPs) to discover patterns
embedded in the dynamics of a radio signal. The optimal con-
figuration settings of TX / RX subsystem are highlighted, along
with the method of experimentation, and how to apply AI for
classifying different human motion patterns to reveal identities
of people, in particular four participants. The proposed system
aims to show that human recognition is possible with only
one radio carrier, which is far better than CSI based human
recognition system that reveals human motion signatures based
on multiple radio subcarrier frequencies.

III. METHODOLOGY

Our experimental setup was based on two NI-USRP [29]
SDR devices. SDRs alleviate the hardware and software level
tuning, and initial experimental setup was based on NI-USRP
2901 model and LabVIEW Communication Design Software
[30]. For initial systematic trials, randomized control trials
(RCT) based setup was used to search for the optimal align-
ment parameters as well as control configuration of the used
SDRs. For data collection, four participants were employed to
walk through a predefined path, whilst following the directions
given prior to the conduct of trails. Using the developed
software application, enabled collection of RSSI patterns that
embedded human motion signatures, in the spreadsheet files
having CSV format. Our experimental foundation relies on the
following theoretical perspective, provides bases to software
application development to capture human motion data.

A. Transmitter-Receiver Sub-System

Our testbed setup implements a Continuous Wave (CW)
transmitter modulated with 10kHz sine-tone. Both the trans-
mitter and receiver sub-system are equipped with one omni-
directional antenna (VERT2450) for transmission and recep-
tion respectively. For indoor environments, exhibit radio signal
propagation characteristics wherein a transmitted signal con-
verts to alias forms due to multipath propagation. In the current
setup, transmitted CW arrives through multiple paths at re-
ceiver, and each different path adds delay and attenuation. CW
transmission over longer distances, attenuates signal strength
and wavelength considerably. In addition, RSS drastically
varies due to small variations in multipath propagation, and
variations equivalent to 5 dB in 1 minute have been observed
in fixed receiver-transmitter pairs [31]. This study employs
a fixed NI-USRP 2901 transmitter and receiver for effective
results.

Fig. 1. Proposed System Model for Human Motion Patterns Recognition
System.

CW signal strength arriving via mulipath at the receiver is
given by the following relation:

V =

N∑
k=1

∥Vk∥ e−jθk (1)

where Vk, θk are the magnitude and phase of the kth
multipath component respectively. Symbol N denotes total
multipath components arriving at the receiver.

The NI USRP-2901 SDR model amplifies, down-converts,
filters, digitizes, and decimates the received signal before the
signal is transferred to the host computer. Similarly, the device
up-samples, reconstructs, filters, up-converts, and amplifies
the CW signal before its transmission into space. Testbed
setup used two NI-USRP 2901 devices connected to two host
computers. Fast Fourier Transform (FFT) is applied to extract
frequency pilot signal in frequency domain. The demodulation
process on the receiver recovers pilot signal strength, and the
FFT provides the pilot RSS, which is expressed in decibel
milliwatt (dBm) and given by relation:

RSS(dBm) = 10log10

(
∥V ∥2

)
(2)

B. System Model

Our proposed system model is based on two NI-USRP
devices and required a software application for data collection
and processing. Two NI-USRP devices were set up with
a LOS separation distance of 5 meters. Both devices were
placed on computer tables with a height 1 meter above the
ground. NI-USRPs devices are connected to host computers via
USB 3.0 cabling, and custom developed LabVIEW application
software enabled data collection. As depicted in Fig. 1, our
proposed system model implements single input single output
(SISO) channel. Clutters in the background are removed in
this experiment, and the lab environment is completely an
open space holding two tables placed opposite to each other,
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Fig. 2. Human Motion Recognition and Processing Application (HMRPA).

though a projector device is available in the room displaying
the signal waveform on the side wall. Testbed setup using NI
a single transmitter (TX) and receiver (RX) operate at 5 GHz
band. The proposed system model allows monitoring motion
(walking) patterns in four different directions. Testbed setup
was complete in the two phases – Software Application setup
and Software application development,and both phases were
sequentially carried out:

1) Phase I – Application Development: A human motion
recognition and processing application (HMRPA) (see Fig.
??) was developed. Nex the developed software module was
added to the NI-USRP RX application. Initially, the prelim-
inary study testbed supported measurements and recordings
of motion patterns for a single participant only. The HMPRA
software module was integrated with the modified NI receiver
application available in LabVIEW communication design soft-
ware. HMPRA allowed parameter setting like experiment
time, sampling, walking interval spacing and also the signal
processing logic at baseband level. The HMRPA generated raw
text files containing RSS samples of executed motion in one
direction only. Subsequently, the Randomized Control Trial
(RCT) experiment allowed collecting multiple motion patterns
of a single person in four different directions (see Fig.1).

2) Phase II – Hardware Setup: Two NI-USRP 2901 SDRs
were employed to set up the testbed. Both TX and RX appli-
cations were custom developed in LabVIEW IDE (Communi-
cations Design Software CDS)). NI-USRP set in transmitter
mode, transmit a pilot tone of 10KHz at a carrier frequency of
5GHz using an omni-directional antenna. At the receiver, the
RX application implemented a Fast Fourier Transform (FFT),
with the Power Spectral Density (PSD) enabled estimations
of recovered side-tone. The baseband Power Spectral Density
(PSD) of RSS provided best possible TX – RX orientation,
whilst having no obstacles in the line of sight (LoS).

With no motion LoS path, RSS stayed showed small devi-
ations, even when a person staying 10 meters away from LoS.
However, any participant walking through the LoS pilot tone

drastically changed the pilot side-tone magnitude. Variations as
such contained motion patterns samples, which were output in
text files by the software application. Prior to testing, TX and
RX were properly aligned to show maximum and stable pilot
side-tone signal strength, and optimum results were observed
with individual gains of both set to 50. RSS power levels
observations at different gain settings for TX and RX (see
Table II), and RCTs for control group RCT were carried out at
room with zero human movements. RSS values here indicated
nominal variations (see Fig. 3) at normal room temperature of
20oc. Table I lists the recorded observations during orientation
and alignment experiments.
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Fig. 3. Pilot RSSI Variations under Normal Conditions (Devoid of any
Object in between TX and RX),and the ”L” denotes Six observed levels of

RSS. [32].

The NI-USRP based TX and RX orientation results re-
vealed that TX and RX pair, with individual gains set to 50,
show an optimal transmission characteristics at 0o, with both
the devices placed one meter (1m) above the ground level.
The RSS drastically reduced to the minimum level at alternate
orientations, and only maximized at 0 degrees. Therefore, LOS
orientation of TX and RX established a direct communication
link for our system model.
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TABLE I. OBSERVED VALUES FOR PROPER ORIENTATION OF TX AND RX

TX-RX
distance

TX
Gain

RX
Gain

Orientation
(degrees)

RSS (dBm)

5 m 50 50 0 -15 dBm
90 -29 dBm
180 -36 dBm
270 -34 dBm

5 m 50 40 0 -25 dBm
90 -33 dBm
180 -44 dBm
270 -42 dBm

5 m 50 30 0 -31 dBm
90 -42 dBm
180 -52 dBm
270 -51 dBm

5 m 50 20 0 -43 dBm
90 -54 dBm
180 -66 dBm
270 -63 dBm

5 m 50 10 0 -53 dBm
90 -65 dBm
180 -75 dBm
270 -73 dBm

TABLE II. OPTIMAL GAIN SETTING FOR TX AND RX

TX and RX distance TX Gain RX Gain RSS (dB) (Noise)
5 m 0 0 -115 dB
5 m 0 50 -78 dB
5 m 50 0 -68 dB
5 m 50 50 -15 dB

3) Dataset distribution: Two individual datasets collected
for each participant enabled creation of Training and Test
datasets. Both the datasets contained 10872 data samples
acquired during 90 seconds. Thus, for four participants, the
train CSV file contained 43488 samples. However, sequentially
placed moves in the test set were used for estimating the
classification accuracy of the selected ML model. The raw
datasets were transformed into Comma-separated values (CSV)
files since the ML model in LabVIEW required CSV type
input. All the data sets were class labelled manually, and each
dataset contained six numbers corresponding to six different
classes of moves. Next, human motion data in CSV files –
train and test, were input to the SVM classifier of LabVIEW
for evaluating the training and test accuracies respectively.

4) Data cleansing and anomaly correction: During the
experiment, high frequency random noise was observed in all
the four collected datasets. To filter out unwanted noise and
glitches, a low pass filter and two consecutive moving average
filters with a window size of 50 were applied on datasets.
Effects of removing high frequency components and random
noise can be seen in Fig. 4 and Fig. 5, with Fig. 4 showing
a move set with added random noise, whereas a cleansed
dataset can be observed in Fig. 5 after applied filtering. Abreast
removing noise content, unusual movements such as hand
gestures, or leaning backwards on a wall, or turning around for
the next move, were observed, however, these inconsistencies
were manually removed by overwriting the unwanted samples
with mean variations.

For each move of each subject, RSS motion patterns em-
bedded distortion and severe noise components. Each motion
signature also showed anomalies resulting in trends in the
data patterns. RSS strength drastically reduced with taller
participants, leading to a change in scale of measurement.
Thus, before RSS data was input to the SVM algorithm,
processing was carried out at an earlier stage. Data processing
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Fig. 4. Raw Movement Patterns before Filtering.

involved computing mean, standard deviations, detrending,
normalization, and windowing to extract the required motion
pattern only. Fig. 9 to 12, depict the extracted motion patterns.
Notice some motion signatures contain unusual variations
ranging over the last 300 samples. Variations as such represent
participants movements such as turning around, raising arm,
and leaning. These undesired data variations were manually
removed, and finally cleaned motion signatures were acquired
for human motion predictive analysis.

IV. HUMAN CLASSIFICATION USING MOTION
SIGNATURES

The study classifies humans based on identified unique
motion patterns observed in variations revealed by pilot signal.
Recognizing and classifying human motion requires designat-
ing a class to each unique move dataset of each participant.
Therefore, machine learning based motion recognition and
classification algorithms are realized. Motion patterns observed
from pilot signal variations exhibit nonlinear behavior, and
Support Vector Machine (SVM) algorithms are mostly ap-
plicable to such applications, enabling exploration of hidden
patterns in linear as well as non-linear data [33]. SVMs
employ support vectors set out of training data to classify any
unknown data sample q by comparing given input samples
against the support vectors:

sign
(∑

yiαiK(pi, q) + b
)

(3)

where yi represents class association (-1 or +1); αi is the
weight coefficient or Lagrange multiplier; K is the kernel
function; pi is the support vector data; i is the index from
i = 1, 2, 3, . . . l; and b represents the hyperplane distance from
the origin. Next, subsections outline the variations of SVM
algorithms.

A. SVM - Multiple Class input Categorization

Classification using the SVM algorithm typically requires
defining a minimum of two classes or categories. Classes
exceeding more than two, directs SVM algorithms to im-
plement a one-versus-one approach for generating a binary
classification model that corresponds to every possible class
combination. Abreast, SVM algorithm implements polling
method to derive most suitable class for a known input.
For multiple classes resulting out of a polling method, the
algorithm determines the class nearest to the sampled input.
Thus, for the s number of classes generates s × (s − 1)/2
classification models, enabling a contrast in each category of
input data.
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B. Optimum Model Selection

SVM model determines classification of data samples, and
classification problems involving single and multiple classes in
the input data, employ either one-class model or multi-class
models, known as C-SVC or nu-SVC.

1) SVM – Type C-SVC: To minimize the estimated error
function, C-SVC model targets segregation of data samples
separated by close or narrow margins using trained C-SVC
model:

min
z,b,ξ

1

2
zT z + α

l∑
i=1

ξi (4)

Subject to

yi
(
zTK (pi) + b

)
≥ −ξi; ξi ≥ 0, i = 1, 2, . . . l (5)

where z, α and ξ represent normal vector of the hyperplane
to origin, cost parameter, and the slack variable respectively.
α – the Cost parameter uses partial training errors to define
new soft margins subject to SVM algorithm failing to set out a
an optimized margin. Selecting high values of cost parameter
enables partial error removal, thereby resulting in a narrower
margin and perfect classifications.

2) SVM – Type Nu-SVC: SVM class comparisons using
Nu-SVC model enable precise controlling of training errors
and support vectors set, using a parametric control called nu.
Nu-SVC model requires training with input data to minimize
the error function:

min
z,b,ξ

1

2
wTw − vλ+

1

l

l∑
i=1

ξi (6)

Subject to

Yi

(
zTK (xi) + b

)
≥ ρ− ξi; ξi ≥ 0, i = 1, 2, . . . l;λ ≥ 0

(7)
where v and ξ represent nu parameter and the slack variable,
respectively. nu (0 ≤ nu ≤ 1) parameter specifies maximum
training errors ratio and minimum support vector count cor-
responding to sample count. Abreast increasing acceptance
of texture defects, high value to nu increases probability of
acceptance of texture dissimilarities.

The C-SVC classification model is used and a multi-
featured vector data sets of four participants with associated
label sets is prepared. During training, training data is manually
labelled, however, testing determines the classes from the
model itself.

C. Kernels

The SVM classifier comes with different kernel types. One
of the kernels is categorized as a linear classifier, generally
implements a linear kernel as a product of the input sample
feature vector times the sample support vector, however, SVMs
also support non-linear type of classifiers. Table III shows the
most commonly used nonlinear kernels in SVM classifiers.

TABLE III. KERNEL TYPES [34]
Kernel type Model Equation
Linear Kernel (xi, x)
Polynomial (γ×Kernel (xi, x)+ Coefficient)

RBF e−γ ∥xi − x∥2

Sigmoid e
−
∥xi− x∥2

2×σ2

D. Feature Extraction

Feature extraction required preparing feature vectors out
of the collected pilot signal variation datasets of all the
four participants. The extracted feature vector space con-
sisted of RSS variations for each participant observed in four
directions, including features such as mean, variance, stan-
dard deviation, and skewness. For four participants, datasets(
p1i , q

1
j

)
,
(
p2i , q

2
j

)
,
(
p3i , q

3
j

)
and

(
p4i , q

4
j

)
were collected, pro-

cessed and then manually assigned class labels 1,2,3 and 4,
corresponding the to four different participant, respectively
(superscripts and superscripts denote index of participant and
collected data points, respectively). The extracted feature vec-
tors can be expressed in matrix as:

(p11,1) (p11,2) (p11,3) · · · (p11,n) → (q11)
...

...
...

...
...

...
(p1i,1) (p1i,2) (p1i,3) · · · (p1i,n) → (q11)

(p21,1) (p21,2) (p21,3) · · · (p21,n) → (q22)
...

...
...

...
...

...
(p2i,1) (p2i,2) (p2i,3) · · · (p2i,n) → (q22)

(p31,1) (p31,2) (p31,3) · · · (p31,n) → (q33)
...

...
...

...
...

...
(p3i,1) (p3i,2) (p3i,3) · · · (p3i,n) → (q33)

(p41,1) (p41,2) (p41,3) · · · (p41,n) → (q44)
...

...
...

...
...

...
(p4i,1) (p4i,2) (p4i,3) · · · (p4i,n) → (q44)



(8)

Where i represents a sample index taking value i = 1 → 1812
for each subset matrix. j = 1 → 4. p11,1 to p1i,n represent a
subset matrix representing a dataset comprising pilot samples
p1 including assigned label vector q1 for each participant.
Similarly, three participants’ feature vectors p21,1 to p2i,n, p31,1
to p3i,n and p41,1 to p4i,n are designated labels q22 , q33 and q44 ,
respectively.

E. Training – SVM Model

The SVM model was generated using the randomized
optimization algorithm (ROA) available in LabVIEW. ROA
running on the laptop equipped with Intel Core I3 processor
and 8 GB of RAM, enabled fine tuning and optimization of
SVM model parameters. After 250 iterations, the generated
SVM model depicted approximately 99% training accuracy.
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Observed training results on selected kernel types are given in
Table IV. Both C-SVC and Nu-SVM models showed compara-
tive results, however, SVM model of type C-SVC using Radial
Bias Function (RBF) kernel resulted in nominal parameter
settings with highest efficiency among all (see Table IV entry
at row 3). With lowest prediction error against, the competitors
(linear, polynomial, and sigmoid) guided us to select the C-
SVC model with RBF kernel type, for this study. Results
in Table IV explain that the RBF kernel function shows the
lowest classification error. Fig. 6 to 9 depict each participants’
raw motion pattern datasets, embedded with unwanted noise
components, emerging as a result of pilot signal variations.
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Fig. 6. Raw Motion Patterns of Participant – 1.
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Fig. 7. Raw Movement Patterns of Participant – 2.
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Fig. 8. Raw Movement Patterns of Participant – 3.

F. Prediction – Testing the SVM Model

Test datasets prepared initially, were used to test the
prediction accuracy of trained SVM models. Test set con-
tained sequentially arranged moves, however, without class
labels this time, and using an overall test dataset containing
1812× 4 = 7248 (in each feature vector) samples in total
allowed performance measurements. The overall test data set
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Fig. 9. Raw Movement Patterns of Participant – 4.

was used to measure the performance of the SVM model,
which resulted in predicting each participant’s identity with an
accuracy of approximately 98%. Fig. ?? shows the screenshot
of a human prediction application developed in LabVIEW, and
the upper plot here shows four individual motion patterns input
to the SVM algorithm, whereas lower plot shows the prediction
results. The prediction result indicates some deviations in
estimating accuracy of some samples. Abreast using the overall
test dataset, each participant’s motion dataset were isolated,
and then tested using the trained SVM model individually
on each participant’s motion dataset. Here, the SVM model
predicted each participant’s identity with an accuracy of nearly
99%. Fig. 10 illustrates the True Positive Rate (TPR) and False
Positive Rate (FPR) accuracies observed on the overall dataset
containing moves of all the participants.
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Fig. 10. Confusion Matrix of Overall Prediction Results.

V. RESULTS AND DISCUSSION

Our testbed setup revealed numerous challenges, particu-
larly with the lower strength of the pilot signal. The NI-USRP
2901 RX, showed that the pilot signal is highly sensitive to
ambient variations, and hence considerable variations can be
observed in the pilot RSS, having fine human movements, such
as turning of head, raising arm or speaking. Our experimental
setup ensured zero human motion, during the installation and
initial testing. Fig. 3 shows the pilot signal strength variations,
recorded under 27o room temperature, with Tx and RX gains
both set to 70 . The six of the pilot signal variations, show
how pilot RSS varies at the nominal room temperature, with
zero human presence.

The pilot signal variations range between -15.4 dB to -
17.5 dB approximately. When the testbed was exposed to
detect the human movements, the pilot RSS showed drastic
variations, mostly with a power level below -45 dBm, thereby
presenting unique motion patterns via pilot signal. Thus, the
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TABLE IV. A RANDOMIZED SEARCH OPTIMIZATION CRITERIA EVALUATED IN LABVIEW

Sno. kernel svm type c nu deg gamma coeff accu

1 RBF CSV-C 0.7 0 3 0.7 0 0.999
2 RBF CSV-C 0.9 0 3 0.4 0 0.999
3 RBF CSV-C 0.8 0 3 0.7 0 0.999
4 RBF CSV-C 1 0 3 0.6 0 0.999
5 RBF CSV-C 1 0 3 0.7 0 0.999
6 Polynomial CSV-C 0.4 0 3 0.4 1 0.998
7 Polynomial CSV-C 0.9 0 8 0.1 1 0.998
8 Polynomial CSV-C 0.8 0 4 0.1 1 0.998
9 Polynomial CSV-C 1 0 3 0.7 1 0.998
10 Polynomial CSV-C 0.7 0 2 0.7 1 0.998
11 Polynomial CSV-C 0.5 0 4 0.5 1 0.998
12 Polynomial CSV-C 1 0 2 0.6 1 0.998
13 Polynomial CSV-C 0.7 0 9 0.1 1 0.998
14 Polynomial CSV-C 0.2 0 3 0.8 1 0.998
15 Polynomial CSV-C 0.9 0 2 0.6 1 0.998
16 RBF CSV-C 0.4 0 3 0.7 0 0.998
17 Polynomial CSV-C 0.2 0 4 0.7 1 0.998
18 Polynomial CSV-C 0.7 0 2 0.5 1 0.998
19 Polynomial CSV-C 0.6 0 6 0.2 1 0.998
20 Polynomial CSV-C 0.1 0 5 0.4 1 0.998
21 Polynomial CSV-C 0.7 0 3 0.8 0 0.998
22 Polynomial CSV-C 0.1 0 3 0.7 1 0.998
23 Polynomial CSV-C 0.4 0 4 0.6 1 0.998
24 Polynomial CSV-C 0.1 0 2 0.4 1 0.998
25 Polynomial CSV-C 0.4 0 7 0.1 1 0.998
26 Polynomial CSV-C 1 0 3 0.8 0 0.998
27 Polynomial CSV-C 0.8 0 4 0.6 1 0.998
28 Polynomial CSV-C 0.1 0 2 0.6 1 0.998
29 Polynomial CSV-C 0.6 0 6 0.1 1 0.998
30 Polynomial CSV-C 0.8 0 3 0.6 1 0.997
31 Polynomial CSV-C 0.6 0 3 0.7 0 0.997
32 Polynomial CSV-C 0.6 0 2 0.8 1 0.997
33 Polynomial CSV-C 0.4 0 3 0.4 0 0.997
34 Polynomial CSV-C 0.9 0 2 0.8 1 0.997
35 Polynomial CSV-C 0.1 0 3 0.6 0 0.997
36 Polynomial CSV-C 0.8 0 5 0.2 1 0.997
37 RBF CSV-C 0.2 0 3 0.4 0 0.997
38 Polynomial CSV-C 0.2 0 3 0.7 0 0.997
39 Polynomial CSV-C 0.9 0 4 0.5 1 0.997
40 Polynomial CSV-C 0.9 0 4 0.7 1 0.997
41 Polynomial CSV-C 1 0 4 0.7 1 0.996
42 Polynomial CSV-C 0.5 0 2 0.1 1 0.996
43 Polynomial CSV-C 1 0 4 0.5 1 0.996
44 Polynomial CSV-C 0.6 0 2 0.1 1 0.996
45 Polynomial CSV-C 0.1 0 3 0.3 0 0.996
46 Polynomial CSV-C 1 0 6 0.3 1 0.996
47 Polynomial CSV-C 0.5 0 5 0.8 1 0.996
48 Polynomial CSV-C 0.5 0 4 0.7 0 0.996
49 Polynomial CSV-C 0.5 0 5 0.7 1 0.996
50 Polynomial CSV-C 0.9 0 3 0.2 0 0.996

proposed human motion recognition and identification method
is highly sensitive, and our analysis of collected results (see
Fig. 12 to 17) suggests that fluctuations in pilot RSS due to
human motion can be extracted and analyzed to uncover unique
human motion patterns for recognizing a person’s identity.
Therefore, our study results are applicable to environments
such as smart authentication systems, or patient monitoring
systems, and healthcare monitoring systems, wherein passive
sensing is mostly preferred over traditional methods, typically
based on active sensing devices.

1) Comparative Analysis: SVM algorithm prediction accu-
racy was estimated on four different kernel functions – linear,
radial basis function (RBF), sigmoid and polynomial. Using
grid-search optimization, setting different input parameters,
as required by the kernel functions, enabled the prediction
model to achieve maximum classification accuracy level [35].
Table IV defines the first 50 configuration parameters used
for tuning the SVM prediction model. As shown in the
Table IV, the SVM type C-SVC models using a polynomial
kernel reveals the most efficient hyperplane model. The CSV-
C kernel with RBF kernel implemented in labVIEW showed

99.9% training accuracy, whereas classification accuracy of
human identification (participant identity prediction) on the
train dataset was observed to be approximately 98% with
polynomial kernel. CSV-C with sigmoid type kernel is strongly
competitive with the other CSV-C types, however, resulting
in a prediction accuracy of just below 95%. Fig. ?? and ??
show the probability distribution of training accuracy levels
realized against the different kernels and SVM model types
respectively. The CSV-C type RBF kernel is observed to
deliver higher prediction accuracy than other kernel types.
CSV-C with linear kernel was realized to be least efficient
as compared to the sigmoid kernel, which showed a mean
accuracy level at 91%.

Estimation accuracy of linear kernel shows the least prob-
ability distribution, while the sigmoid shows 83%, 87%, 91%,
94% and 97%, for minimum, lower quartile, median, upper
quartile and maximum distributions respectively. Among all
the four, the polynomial kernel spans lower distribution, and
shows lower and upper quartiles at 95% and 98% respectively,
affirming that polynomial has considerable training accuracy
compared to the RBF kernel with overlapped upper and lower
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Fig. 11. LabVIEW: SVM Prediction Results on Test Dataset of all Participant.
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Fig. 12. Processed Move(1) Motion Signatures.

quartiles. On the other hand, sigmoid kernel has a more wider
distribution, spanning approximately from 88% to 95%.

Observing the boxplot of SVM model types, describes
higher efficiency of CSV-C on non-linear human motion
dataset with lower and upper quartiles, both above the 95%
accuracy level. Although Nu-SVC showed wider accuracy
distribution than its counterpart CSV-C, the observed accuracy
range on the non-linear human motion dataset is still lower
than CSV-C, with both lower and upper quartiles below the
mean of CSV-C type kernel. This clearly shows the CSV-C is
suitable for applications involving non-linear data distributions,
in particular human motion recognition using highly sensitive
pilot signal RSS.

2) Testbed requirements: NI-USRP devices may use dif-
ferent hardware clock signal generators. Often this raises
critical concerns since mismatch in clock signal frequency can

result in the receiver showing incorrect data. The NI-USRP
devices employed by this study, showed deviating results due
to mismatch in their clock signals. Since the devised system
needed recognizing motion patterns in microsecond time, the
USRPs experienced jitter including pilot signal frequency
drift to ± 4 KHz. Thus, pilot signal appeared 10 KHz ±
4 KHz, and to abase frequency offsets in the pilot signal,
manually changing sampling frequency in NI-USRP devices
enabled tuning the receiver (RX) to show correct pilot signal
frequency response, which in our case was 10 KHz. Thus,
tuning of both the TX/RX parameters, such as transmitted
power, sampling frequency, pilot signal frequency, distance
and receiver orientation, ensured optimal system behaviour.
Although sampling rate is adjusted manually in this study, use
of an external reference clock generator is recommended for
future studies.

Moreover, this study employed NI-USRP 2901, connected
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Fig. 13. Processed Move(2) Motion Signatures.
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Fig. 14. Processed Move(3) Motion Signatures.
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Fig. 15. Processed Move(4) Motion Signatures.
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Fig. 16. Processed Move(5) Motion Signatures.
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Fig. 17. Processed Move(6) Motion Signatures.
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Fig. 18. Boxplot of Training Accuracy versus Kernel Types.

to a host computer via USB-3.0 port. Despite the high speed
access offered by the USB-3.0 communication protocol and
wideband capabilities (from 70 MHz to 6 GHz) of NI-
USRP 2901, the LabVIEW communication design software
application posed start up delays, and even during the device
initialization phase, often lag to communicate with the host
device, the NI-USRP. Therefore, for future research work,
high speed devices such as NI-USRP 2921 [30], offering 1
Gigabit Ethernet speeds is highly recommended since real time
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Fig. 19. Boxplot of Training Accuracy versus SVM Types.

processing requires instant processing, and communication
devices must ensure higher data throughput. With the manually
tuned testbed, our observed results indicate high precision in
the training and test accuracies compared to the accuracies
observed with multi sub-carrier based human motion detection
systems.
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VI. CONCLUSION

This study proposed a human motion recognition and
identification system, implementing a single sub-carrier CW
and SVM based pattern recognition system. The study em-
ployed a testbed for human motion data acquisition using
state-of-the-art Software Defined Radios – NI-USRP 2901 and
LabVIEW software. Operating at 5GHz frequency, a SISO
channel created by transmitter (TX) and receiver (RX) enabled
human motion patterns analysis using Support Vector Machine
algorithm (SVM)to uncover human identities. Experiment was
carried out in a controlled environment enabling us to set up
environmental parameters as well as to fine tune the custom
designed transmitter receiver. The findings in this study reveal
that highly sensitive pilot RSS and SVM algorithm information
can significantly help in recognizing human motion, which
in turn guides to human identification (4 subjects) with the
prediction accuracy of 98.92%. Our proposed testbed system
can be devised and validated on any of the commercially
available NI-USRP added with LabVIEW Communication
Design Software Suite.

The study anticipates a live motion recognition system in
the future works, prototyping the current setup on an embedded
device. SDRs in association with the high speed FPGA, sup-
port running SVM models directly. Therefore, this will serve as
a guide to researchers interested in developing real time human
motion recognition testbeds, thereby enabling them to test and
evaluate system performances in other available ISM bands.
Envisioned here is the development of more efficient, robust,
and highly accurate human motion recognition systems, while
using pilot signal RSS can also in human motion direction
identification, still remains to be an open research problem.
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