
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

153 | P a g e

www.ijacsa.thesai.org

Design of Modern Distributed Systems based on

Microservices Architecture

Isak Shabani
1
, Endrit Mëziu

2
, Blend Berisha

3
, Tonit Biba

4

Department of Computer Engineering

Faculty of Electrical and Computer Engineering

University of Prishtina

Prishtina, Kosovo

Abstract—Distributed systems are very commonplace

nowadays. They have seen an enormous growth in use during the

past few years. The idea to design systems that are robust,

scalable, reliable, secure and fault tolerance are some of the

many reasons of this development and growth. Distributed

systems provide a shift from traditional ways of building systems

where the whole system is concentrated in a single and indivisible

unit. The latest architectural changes are progressing toward

what is known as microservices. The monolithic systems, which

can be considered as ancestors of microservices, cannot fulfill the

requirements of today’s big and complex applications. In this

paper we decompose a monolithic application into microservices

using three different architectural patterns and draw

comparisons between the two architectural styles using detailed

metrics that are generated from the Apache JMeter tool. The

application is created via .NET framework, uses the MVC

pattern and is fictive. The two comparable apps before testing

with Apache JMeter, will be deployed in almost identical hosting

environment in order to gain results that are valuable. Using the

generated data, we deduce the advantages and disadvantages of

the two architectural styles.

Keywords—Distributed systems; microservice; monolithic; web

services; JMeter

I. INTRODUCTION

Microservices are a new development, coming into light
just a few years ago. They offer many advantages compared to
the old monolithic architectures. That is why many of the big
tech companies have successfully made the switch to
microservices. Currently, the monolithic architecture is the
default model for creating a software application. Its trend is
decreasing as it cannot keep up with the demands and the
challenges of the new applications that are now quite big and
complex.

In the monolithic architecture, application is built as a
single indivisible unit. This usually means that the application
has three core components that interchange information with
each other: a user interface, a server-side and a database [1].
This architecture is characterized by a huge code base and has
almost no modularity. Because they have a single code base,
they can become so large and hence difficult to maintain. The
whole application will need to be redeployed from a single
small change in the code. More crucial is the fact that it is not
very reliable since a bug in any part of the code can bring
down the whole application [1].

Monolithic architecture, however, has some subtle
advantages and with some tweaks it can still be useful to many
modern applications. These include: the easiness of
deployment (since only one file needs to be deployed), the
easiness of development (compared to the microservices) and
the network latency and security which are more noticeable in
the microservices architecture. Monolithic architecture is also
very easy to test. We can do so by simply launching the app
and testing the UI with Selenium. However, some of the
drawbacks of this architecture have made the switch to
microservices a necessity [2].

Because today’s apps are big and complex, in order to be
useful, they need to be robust and reliable. The resources must
be utilized efficiently so the users can get a seamless
experience while surfing the app. Many components of the
app might have different resource requirements. Some might
need more CPU cycles, some others more memory etc. This
imposes the need to scale the different components,
independently. Scaling in the monolithic architecture is done
by creating copies of the app. This means that all of these
copies will access all of the data which in turn makes caching
less effective and increases memory consumption and I/O
traffic [2].

As authors in [3] put it, one of the problems that can arise
from the monolithic applications is the evolvement into a “big
ball of mud” state, which is a situation in which none of the
developers understand the entire application. To overcome the
obstacles, microservices provide a very reasonable and
effective architectural style, which as mentioned, are
increasingly being used and deployed in many modern
applications. In fact, microservices are considered as the
future of distributed systems.

On the other hand, despite its name, microservices are by
no means, small. In this architectural style, the application is
made up of a suite of small devices, all of which have their
own unique codebases.

Microservices use lightweight mechanisms, somewhat like
an API, to communicate between different services. Contrary
to monolithic architecture, these services can be deployed
together or separately. These services are loosely coupled (or
headless) making this architectural style mostly
decentralized [3].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

154 | P a g e

www.ijacsa.thesai.org

It must be understood that a microservice is not a layer
within a monolithic application. It has its self-contained
functionalities with clear interfaces, and through its own
internal components, must implement a layered architecture.
According to the author in [4] this architecture follows the
Unix philosophy of “do one thing and do it well”. In the
following sections we will explore some of the main
advantages of microservices and whether it is a good idea to
fully deploy an application into microservices.

The research questions we will try to answer from our
experiment and analysis of literature, are

 Does decomposing into microservices impact the
system’s average response time?

 Is it always adequate to develop an app using the
microservices logic?

 To what extent should the monolithic application be
decomposed into a microservice?

A. Design and Structure of Monolithic Applications

A monolithic application describes a single-tiered software
application in which the user interface and data access code
are combined into a single program from a single platform.
Schematically, this can be seen Fig. 1.

It is self-contained, and independent from other computing
applications.

The design philosophy is that the application is responsible
not just for a task but can perform every step needed to
complete a particular function. Layered architecture is a
common pattern seen in monolithic applications. This
architecture allows for the technical capability to be changed
fairly easily, especially if they are isolated to a particular layer
[5].

The main idea behind this architecture is the separation of
concerns, the main monolithic application components which
include authorization, presentation, business logic and
database are organized into four main categories or layers:

 The presentation layer contains all of the classes
responsible for presenting the UI to the end-user or
sending the response back to the client.

 The application layer contains all the logic that is
required by the application to meet its functional
requirements.

 The domain layer represents the underlying domain,
mostly consisting of domain entities and, in some cases,
services.

 The infrastructure layer (also known as the persistence
layer) contains all the classes responsible for doing the
technical stuff, like persisting the data in the database
including DAOs or repositories.

An example of monolithic system architecture of real-
world application is shown on Fig. 2. The diagram shows
main components needed to build an Ecommerce application
which authorizes costumer, takes an order, checks products
inventory, authorizes payment and ships ordered products [6].

Fig. 1. Monolithic Application Architecture.

Fig. 2. Monolithic Architecture (Ecommerce Application).

Despite having many components which are independent
from each other the system as shown in Fig. 2 is build and
deployed as one application. With issues regarding
maintenance, response time and scaling, monolithic
architecture should be avoided when designing large and
complex applications which may be used in different
environments with different configurations or in applications
which may change and need to be frequently updated.

This paper is structured as follows: Section II presents the
state of the art, Section III methodology and results,
Section IV case study and Section V conclusions.

II. STATE-OF-THE-ART

As mentioned previously, over the last decades, industry
demands have pushed software design and architectures in
various directions. The ever-growing complexity of enterprise
applications, along with change and evolution management
ushered in the rise of different architectures with an aim to
replace or improve the traditional unified software designing
model known as monolithic architecture.

Various architectures (besides the eminent ones) have been
designed, researched, and used in industry, in recent years
there has been a lot of hype regarding the new architectural
model called microservice architecture. Considered new,
microservice architecture has found itself being researched
and compared a lot with existing architectures including SAO,
serverless and monolithic architectures. Most of research

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

155 | P a g e

www.ijacsa.thesai.org

studies were oriented on performance analysis, cost, and
resource usage.

In a research that was done by Singh and Peddoju, the
performance of a monolithic application is compared to a
microservices application, the applications that were built
were tested for their response time and throughput. Obtained
results made it clear that microservices architecture has a
better performance especially when it is used for a large
number of requests [7].

Similar approach was used by the IBM research team in
Tokyo, they compared the performance of the monolithic and
microservices applications in different environments and
configurations. The results were compared for throughput,
scalability, number of CPU instructions for request and
number of clock cycles to complete one instruction. The
results showed a significant performance boost in monolithic
architecture applications in many configurations and
environments, which in a way contradicts the results shown by
Singh and Peddoju [8].

Microservices are often compared to Service Oriented
Architecture. The research paper done by Cerny, Donahoo and
Pechanec compares and analyses microservices, service-
oriented architecture and self-contained systems in terms of
service and architecture, characteristics, integrations,
capabilities, and flexibility. The drawn conclusion presented at
the end of the paper favorizes SOA for large systems with
many shared components and suggests using microservices for
medium distributed systems which may need to scale in the
future [9].

A different approach was used on research paper done by
Chen, Li and Zheng from Nanjing University. This paper
discusses ways to decompose a monolithic application to
microservice architecture. Throughout the paper the
researchers used a top-down analysis approach and developed
a dataflow-driven decomposition algorithm. They defined a
three-step procedure for process decomposition involving
business requirement analysis, usage of dataflow-driven
algorithm and individual modules extraction [10].

According to the fourth annual Developer Ecosystem
Survey conducted by JetBrains, about 85% of 19,696
developers who were surveyed in the beginning of 2020, use
the microservices-based system design [11]. The
programming languages of choice for building microservices
are JavaScript and TypeScript; REST APIs are used for
communication between microservices the most, whereas the
favorite cloud provider for microservices is Amazon Web
Services, as shown in [12].

Improving scalability and improving performance are two
of the most important topics when it comes to microservices.
In the State of Microservices 2020 research project [12], over
650 developers (CTOs, Lead Developers, and Senior
Developers) were asked to rate in scale 1-5 how they enjoy
working with microservices when it comes to different
aspects.

As shown in [2] Table I, most experts are happy with
microservices for solving scalability issues, whereas
maintenance and debugging seem to be a challenge for them.

TABLE I. WORKING WITH MICROSERVICES

Category Average rating (1-5)

Setting up a new project 3.8

Maintenance and debugging 3.4

Efficiency of work 3.9

Solving scalability issues 4.3

Solving performance issues 3.9

Teamwork 3.9

Regarding security, there are still many challenges due to
the complexity of the developments, the hardness of
monitoring, and debugging and auditing of the full application
in foreign environments [13].

Before moving to microservices, we should be aware of
the architectural challenges. Some of the main architectural
challenges, as presented in [14], are:

1) Dispersed business logic – microservices approach

distributes the operating logic and execution flow of complex

features among many applications.

2) Lack of distributed transactions – attempting to

maintain consistency among many microservices involved in

business transaction is extremely complicated.

3) Inconsistent dynamic overall state – it is related to lack

of distributed transactions. Overall consistency gets more

complicated with data that is geographically distributed data

within the same domain because of sharding and data

replication.

4) Difficulty in gathering composite data – joining data for

analytics of the overall system in a microservices architecture

is not straightforward.

5) Difficulty in debugging failures and faults – attempting

to pinpoint the source of an error might require debugging

multiple applications. Identification of the root cause of the

problem is difficult primarily because of deep hierarchies of

microservices (AC1) and the inability to determine the exact

state of the system (AC3).

6) Difficulty in evolving – software evolution is a hard

concept in an environment different where parts of the system

evolve continuously, in parallel.

III. METHODOLOGY AND RESULTS

This section gives an overview on which methods and
tools were used.

The goal of this section is to offer a way of passing
between monolithic architecture to microservices approach
and comparing them. So, we are going to demonstrate how to
identify key design issues of monolithic applications and how
they should be reflected in microservices approach. For that
purpose, we will use a monolithic application that is
developed in Model-View-Controller approach, which is
based on monolithic architecture, and we will try to offer a
way of decomposing it in microservices approach.

We are aware that there are a lot of design patterns that
exists for developing web applications. But based on usage we

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

156 | P a g e

www.ijacsa.thesai.org

have decided to use MVC as one of most used architectural
patterns for developing web applications that are based on
monolithic architecture and not only.

A. E-Shop Monolithic Application

As we said earlier, we will use an application that uses
MVC approach, which is developed in Asp.NET Core with
MVC approach. Before analyzing this application, we want to
make purely understood that the term “monolithic”, in this
context refers to the fact that these applications are deployed
as a single unit, not as a collection of interacting services and
applications [15].

Application that we have developed for this paper is based
on application of Microsoft [16], for e-shop. The main reason
why we have chosen to develop an e-shop application is to
demonstrate how to pass between monolithic to microservices
is because there is an almost perfect example that
microservices should be used there.

In Fig. 3, we have presented schematically controllers of
the application that are developed.

As is can be seen there are four controllers that monolithic
application currently has. First controller, Order, is for
handling requests that are for ordering items on application.
Second controller, Product, it is used for managing products.
The third controller, Home, is for main and privacy terms. The
last controller which is default controller for authentication
and authorization is Identity, it used to manage accounts and
roles. In Fig. 3 we have presented Identity as a Controller, but
in latest version of Identity Microsoft uses Razor pages for
this module, but we will abstract this, and we will consider as
a controller.

In Fig. 4 we have presented schematically structure of
application that is developed as a monolithic application in
Visual studio.

As it can be seen from Fig. 4, all application logic,
including presentation, business and data access logic is in one
place.

In the next section we will offer a way of passing
microservices approach and how we should identify parts of
application that should be microservice itself.

B. Decomposing to Microservices

In this section we will try to offer a way of how to
decompose E-shop application to microservices approach.

Before starting to identify microservices we want to make
purely understood that there is no general method that can be
applied to every monolithic application. This means that we
need to study very deeply application before architecting to
microservices.

For E-Shop application, the first thing that must be
transformed to microservice is Identity service, which is used
for authentication and authorization purpose. One the most
important services in E-Shop application, and in most
applications, is security. Identity service is an IdentityServer4
[17], which is a typically used for managing authentication
and authorization in microservices environment. Typically,

IdentityServer4 acts as a middleware [18] that adds the spec
compliant OpenID Connect and OAuth 2.0. With
IdentityServer4 all access to microservices can be managed
and this service is responsible for generating access token for
clients.

Other important microservice for E-Shop application is
product microservice, which is responsible for managing
products for this application. So, this microservice can register
new products, edit them, or see details about products. So, this
microservice does only one thing but it does in a perfect way.

Last microservice is responsible for handling orders of
customers. So, this microservice is focused only on processing
orders, and offers a payment for orders.

For testing purpose is developed a client which will use
microservices over RESTful API [19]. A schematic
presentation of E-Shop application decomposed to
microservices is displayed in Fig. 5.

Controllers

Order

Product

Home

Identity

Fig. 3. Controllers for E-Shop.

Identity

Controllers

Models

Views

Fig. 4. E-Shop Application with Monolithic Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

157 | P a g e

www.ijacsa.thesai.org

Web browser

Identity microservice

Product microservice

Order microservice

Web application (.Net)

Fig. 5. E-Shop Application Decomposed to Microservices.

As it can be seen from Fig. 5, in this case we have 3
microservices, which we have described before. This
decomposition offers a very good way to deal with scenarios
where ordering a product is not possible, still application can
offer service by listing all product that are there. So, with this
decomposition we have archived a good way to handle
problems with no function of order product, but order product
currently contains functionality for checkout and payment. As
part of comparison is this model of decomposition with E-
Shop monolithic system, and other types of microservices
architecture that will be presented.

As it can be seen from Fig. 5, the main problem with
decomposition of E-Shop application in microservices
architecture that is offered, is Order microservice, which needs
to be decomposed to three microservices. These 3
microservices that will be derived from Order microservice
are:

 Order microservice.

 Checkout microservice and.

 Payment microservice.

Schematically this decomposition is presented in Fig. 6.

With decomposition of Order microservice, are archived
many things.

The last feature that will be applied when decomposing to
microservices, in Fig. 6, is adding an API Gateway.
Schematically this is presented in Fig. 7.

Decomposition that has been displayed in Fig. 7, contains
an API Gateway, which acts as reverse proxy, hides
functionality of microservices that are currently implemented
in E-Shop application. This is a very good place to implement
security for microservices.

C. Load test Comparison

In this section we will compare monolithic application
with microservices for our fictive application. Comparison is
made by using Apache JMeter [20] with different parameters.
To have results that are comparable with each other we have
hosted to Docker, with Linux container, all microservices,
monolithic application and Client which consumes

microservices is hosted in Internet Information services for
Windows. For this purpose, we have deployed to test
environment which is identic for microservices and monolithic
application. Database is in Microsoft SQL server and contains
same tables for both applications. Architecture of
infrastructure for monolithic and microservices is presented in
Fig. 8.

Web browser Web application (.Net)

Identity microservice

Product microservice

Order microservice

Checkout microservice

Payment microservice

Fig. 6. E-Shop Application Decomposition Second Version.

Web browser Web application (.Net)

Identity microservice

Product microservice

Order microservice

Checkout microservice

Payment microservice

API Gateway

Fig. 7. Decomposition that has API Gateway.

Web

application

Identity

Product

Order

Web

application

Database

Database

Database

Database

Fig. 8. Infrastructure of Microservices and Monolithic.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

158 | P a g e

www.ijacsa.thesai.org

The first scenario will perform Get request to home page,
then to list of products and finally to edit product page. All
three requests are Get requests. Parameters of testing are set
same for all applications. Parameters in Apache JMeter are:

 Number of Threads (users) = 100.

 Ramp-up period(seconds) = 50.

 Loop count = 5.

After creating test plan in Apache JMeter, we have gained
results as can be seen in Table II.

In second comparison, as additional will be added post
request which is responsible for adding new products to
database. Parameters for Apache JMeter are same as above.
After creating test plan in Apache JMeter, we have gained
result as can be seen in Table III.

The final comparison will be made to order part. There
will be added get request for checkout, order detail for specific
product, update to database number of orders and finish
payment.

After creating test plan in Apache JMeter, we have gained
result as displayed in Table IV.

TABLE II. RESULTS FOR FIRST TEST

Parameter\Application Monolithic
Microservices

First

Microservices

Second

Request Get Get Get

Samples 1500 1500 1500

Average 6 10 9

Min 2 6 6

Max 41 159 98

Std. Dev. 5.14 8.83 5.33

Error % 0.00 % 0.00 0.00

Throughput 30.2/sec 10.1/sec 10.1/sec

Received KB/sec 247.14 81.38 81.53

Sent KB/sec 3.78 1.17 1.17

Avg. Bytes 8368.6 8268.6 8273.7

TABLE III. RESULTS FOR SECOND TEST

Parameter\Application Monolithic
Microservices

First

Microservices

Second

Request Get, Post Get, Post Get, Post

Samples 2000 2000 2000

Average 872 1851 1219

Min 2 7 8

Max 5024 7931 6361

Std. Dev. 1161.98 1858.53 1428.10

Error % 0.00 % 0.00 % 0.00 %

Throughput 22.5/sec 18.0/sec 20.7/sec

Received KB/sec 2197.87 1855.62 2154.23

Sent KB/sec 4.50 3.54 4.08

Avg. Bytes 100061.3 105852.1 106604.9

TABLE IV. RESULTS FOR THIRD TEST

Parameter\Application Monolithic
Microservices

First

Microservices

Second

Request Get, Post Get, Post Get, Post

Samples 2000 2000 2000

Average 7 22 21

Min 3 6 6

Max 113 127 319

Std. Dev. 5.38 15.52 16.53

Error % 0.00 % 0.05 % 0.15 %

Throughput 40.4/sec 39.8/sec 40.1/sec

Received KB/sec 220.37 3576.13 2270.08

Sent KB/sec 7.61 8.90 8.95

Avg. Bytes 5591.9 91920.7 57980.4

Very important statistic that can be derived from Table IV,
is average response time that is from First and Second
microservice. Decomposing to Microservices of course that
has many benefits, but sometimes benefits that can be
archived from decomposing might hurt performance of the
system. This is proved by results displayed in Table IV.

IV. CASE STUDY

In case study will be discussed for complex system, which
is implemented in Kosovo, which is Health Insurance Fund
Information System of Kosovo. Because of data sensitivity we
have decided to not use this system to decompose to
microservices approach, so we have used a fictive application.

Results that are archived by using fictive application are
very important and there can be draw parallel with Health
Insurance Fund Information System and other systems.

Based on results that are archived there should be made a
tradeoff between current architecture that has this system,
which is monolithic application and is developed in Asp.Net,
to decompose to Microservices approach. Again, based on
results from Results for First Test Table II, Table III and Table
IV, is evident that decomposing to microservices would
decrease average response time, but benefits that could be
archived from microservices, especially for this system, are
bigger than the average response time. Benefits that will be
archived are same as mentioned in Section C of III.

V. CONCLUSIONS

It is obvious that microservices offer a lot of advantages
compared to the traditional monolithic architecture. Many of
the core functionalities of microservices were described
throughout the paper. Our approach in this paper, was to
analyze and then compare the same application but developed
with the two architectural styles. From the results obtained we
saw that microservices can increase the system’s average
response time since there are different services that need to
communicate and exchange information with one another.
Testing for different parameters with Apache JMeter we saw
the differences in response times between them. Results from
Apache JMeter, for three cases, also told that not only
response time, but also error rate is better than architecture
based on microservices. On the other hand, architecture based

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

159 | P a g e

www.ijacsa.thesai.org

on microservices performs better in number of Kilo Bytes
send and received per second, in case when test scenario
contains post method as can be seen from Table IV.

One big advantage of microservices, is that they are not
tied to a programming language. They also overcome the
cumbersomeness of dealing with databases as we saw while
developing our fictive application. To conclude, choosing
whether to use the monolithic or the microservices
architecture is not always clear cut. It all boils down to the
type of application and what the developer wants to achieve.
Big applications will benefit from the robustness, efficiency,
and the well-organized code that the microservices make
possible.

REFERENCES

[1] R. Amen, "Monolithic vs Microservices architecture," 2017.

[2] A. Kharenko, "Microservices Practioner Analysis," January 2019.
[Online]. Available: https://articles.microservices.com/. [Accessed 03
June 2020].

[3] T. Jack, C. Bredley and L. Casey, "Content Stack," 03 02 2018.
[Online]. Available: https://www.contentstack.com/cms-guides/decoup
led-cms/monolithic-vs-microservices-cms-architectures. [Accessed 27
05 2020].

[4] K. Telai, "Medium," 09 04 2019. [Online]. Available:
https://medium.com/@kenlynterai/microservices-and-distributed-syste
ms-36a90d5d8ce. [Accessed 26 05 2020].

[5] [Online]. Available: https://medium.com/@shivendraodean/software-
architecture-the-monolithic-approach-b948ded8c333. [Accessed 30 05
2020].

[6] [Online]. Available: https://medium.com/koderlabs/introduction-to-
monolithic-architecture-and-microservices-architecture-b211a5955c63.
[Accessed 31 05 2020].

[7] V. Singh and S. K. Peddoju. [Online]. Available: https://www.
researchgate.net/publication/322001375_Container-based microservice
architecture_for_cloud_applications. [Accessed 02 06 2020].

[8] T. Ueda, T. Nakaike and M. Ohara. [Online]. Available:
https://dominoweb.draco.res.ibm.com/reports/RT0973.pdf. [Accessed 03
06 2020].

[9] T. Černý and M. J. Donahoo. [Online]. Available:
https://www.researchgate.net/publication/320765439_Disambiguation_a
nd_Comparison_of_SOA_Microservices_and_Self-Contained_Systems.
[Accessed 05 06 2020].

[10] L. Chen, S. Li and Z. E. Li. [Online]. Available:
https://www.researchgate.net/publication/323562483_From_Monolith_t
o_Microservices_A_Dataflow-Driven_Approach. [Accessed 07 06
2020].

[11] JetBrains, "Microservices," 2020. [Online]. Available:
https://www.jetbrains.com/lp/devecosystem-2020/microservices/.
[Accessed 29 January 2021].

[12] P. Mamczur, T. C. M. Mol and M. Nowak, "State of Microservices,"
THE SOFTWARE HOUSE, 2020.

[13] N. Mateus-Coelho, M. Cruz-Cunha and L. G. Ferreira, "Security in
Microservices Architectures," in CENTRIS Conference, 2020.

[14] C. Rajasekharaiah, Cloud-Based Microservices: Techniques,
Challenges, and Solutions, Suwanee: Apress, 2021.

[15] Microsoft Developer Division, .NET, and Visual Studio product teams,
"Architecting Modern Web Applications with ASP.NET Core and
Microsoft Azure," in Architecting Modern Web Applications with
ASP.NET Core and Microsoft Azure, One Microsoft Way, 2020.

[16] Microsoft, "Github," Microsoft, 11 May 2020. [Online]. Available:
https://github.com/dotnet-architecture/eShopOnWeb. [Accessed 11 June
2020].

[17] B. A. &. D. B. Revision, "IdentityServer4," [Online]. Available:
https://identityserver4.readthedocs.io/en/latest/. [Accessed 1 June 2020].

[18] R. A. a. S. Smith, "Microsoft," Microsoft, 5 June 2020. [Online].
Available: https://docs.microsoft.com/en-
us/aspnet/core/fundamentals/middleware/?view=aspnetcore-3.1.
[Accessed 5 June 2020].

[19] E. J. R. E. R. Fielding, "ietf," ietf, June 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7231#section-4. [Accessed 07 June 2020].

[20] Apache JMeter, "Apache," Apache, [Online]. Available:
https://jmeter.apache.org/. [Accessed 11 June 2020].

