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Abstract—Fifth generation of wireless cellular networks 

promise to enable better services anytime and anywhere. Non-

orthogonal multiple access (NOMA) stands as a suitable multiple 

accessing scheme due to the ability to allow multiple users to 

share the same radio resource simultaneously via different 

domains (power, code, etc.). Through the introduced power 

domain, users multiplexed at the radio resource within different 

power levels.   This paper studies power allocation in downlink 

NOMA, an optimization problem formulated that aims to 

maximize the system's sum rate. To solve the problem, a genetic 

algorithm based power allocation (GAPA) was proposed that 

uses genetic algorithm (GA) that employs heuristics to search for 

suitable solutions. The performance of the proposed power 

allocation algorithm compared with full search power allocation 

(FSPA) that gives an optimal performance. Results show that 

GAPA reaches a performance near to FSPA with lower 

complexity. In addition, GAPA simulated with various user 

paring algorithms. Channel state sorting based user pairing with 

GAPA achieves the best performance comparing to random user 

pairing algorithm and exhaustive user pairing. 

Keywords—Non-orthogonal multiple access; power allocation; 

genetic algorithm; user pairing 

I. INTRODUCTION 

Conventional orthogonal multiple access (OMA) takes an 
incredible role starting from the first generation of wireless 
cellular networks (1G) to the fourth generation (4G) that uses 
orthogonal frequency division multiple access (OFDMA) for 
downlink network and single carrier (SC-OFDMA) for the 
uplink network [1]. Although OMA provides a various number 
of advantages to the network, it cannot handle massive 
connectivity under the diversity of quality of services (QoS) 
demands by users. Fairness, scarcity of the spectrum, and 
increasing number of connected devices add additional 
obstacles for OMA [2]. Non-orthogonal multiple access 
(NOMA) introduced for the fifth generation (5G) [3] [4]. 
NOMA represented as a suitable multiple accessing scheme 
due to the ability to handle an increased number of users and 
boosting the performance of the system such as spectrum 
efficiency [5]. Various schemes of non-orthogonal multiple 
access proposed such as Multiple User Shared Multiple Access 
(MUSA), Interleaver Division Multiple Access (IDMA), Spare 

Code Multiple Access (SCMA), and Pattern Division Multiple 
Access (PDMA). These schemes are divided into several 
categorize based on their properties [6], where MUSA and 
Resource Spread Multiple Access (RSMA) use spreading 
sequences. Otherwise, a structured coding matrix is used in 
SCMA and PDMA where IDMA based on interleaver and 
NOMA schemes is build based on the power domain. 

In power domain NOMA, multiple users assigned to one 
resource block (RB) through different power levels utilizing 
superposition coding (SC) and successive interference 
cancelation (SIC) [7]. Channel condition plays a critical role in 
the performance and to the amount of power assigned to each 
user sharing the same RB [8], such that users coupled with 
distinctive channel conditions where the user with a bad 
channel condition allocated with higher power level than the 
user with good channel condition. One of the main designing 
issues to consider is the resource allocation in NOMA that can 
be identified by user pairing and power allocation. User pairing 
helps to identify the perfect couple of users to share a single 
RB while power allocation divide the power among the users 
sharing this RB.   The optimal approach reached through the 
brute force strategy where all the possible solutions of user 
pairs and power allocation coefficients searched. Though the 
optimal performance gained, it is highly complex not to 
mention the complexity of SIC performance and excessive 
signaling overhead [9]. Reducing SIC execution can be 
established through the user pairing scheme that widely studied 
in different researches over the past years. Another designing 
aspect of downlink NOMA is power allocation which in 
addition helps boosting the performance of the system due the 
power domain multiplexing strategy. In [10], a general 
overview of downlink NOMA and a comparative simulation of 
different user pairing and power allocation schemes 
maintained. Random user pairing and channel state sorting 
based user pairing evaluated with fixed power allocation 
(FPA), through the simulation channel state sorting based user 
pairing achieves higher system sum rate than random user 
pairing. On the other hand, Full Search Power Allocation 
(FSPA) proven to reach optimal performance of the system 
though it is highly complex. Therefore, it is strictly essential to 
understand the tradeoff between the system performance and 
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the complexity of the system.   Resource allocation received 
great attention from research society but optimal resource 
allocation still a very challenging task. In the downlink and 
uplink NOMA system, user clustering and power allocation 
were studied in [11]. Considering the channel gain difference a 
near-optimal user clustering algorithm proposed that aim to 
maximize the sum rate, for each cluster, an optimal power 
allocation strategy is given. The author in [12], propose 
iterative water-filling power allocation used with a greedy 
algorithm based user pairing to maximize users rate. 
Optimization of user pairing using matching theory proposed 
in [13], where a game between user and subchannel is 
estimated to match users into subchannels to maximize the sum 
rate of the system.  Matching problem-based subchannel 
allocation and DC programming power allocation across 
subchannels and between users in each subchannel to boost 
energy efficiency studied in [14]. In [15], a bisection based 
iterative algorithm proposed for solving the non-convex 
problem yield from power allocation, the main objective of the 
proposed algorithm is to enhance the fairness of the system. 

Genetic algorithm (GA) was introduced as a programming 
technique based on biological evolution [16]. It is characterized 
by overwhelming searching capability, which is usually 
utilized to find the optimal solution for complex problems. GA 
is employed for multiple domains of interest such as: data 
mining [17], fault diagnoses [18], cloud computing [19], 
Wireless Sensor Networks (WSN) [20], where cellular 
networks are no exception. In the LTE OFDMA system, GA 
utilized to learn antennas coverage pattern which leads to 
enhance the capacity of the system and decrease the network 
interference [21]. In the downlink NOMA system, a resource 
allocation algorithm using GA is proposed for pairing users 
that share the same frequency resource with an optimal power 
allocation strategy [22], results show that through the proposed 
algorithm a fast coverage to the target solution is achieved. On 
the other hand, GA utilized for power allocation in [23]. The 
proposed GA power allocation algorithm aims to maximize the 
achievable sum rate, results show that GA based NOMA 
overcome the performance of OMA. From the discussed 
works, reaching optimality in power allocation is still very 
challenging task especially with higher number of users 
sharing a single RB.  Therefore, GA adopted for power 
allocation to maximize the system's sum rate considering 
power conditions and QoS of users which is assumed in this 
work as the minimum user's data rate. 

The rest of the paper organized as follows: Section II 
discuss the mathematical model of the system. Power 
allocation problem formulated in Section III where the next 
Section IV presents the proposed power allocation algorithm. 
In Section V, the performance scenarios and performance 
metrics are evaluated to simulate, analyze, and compare 
performance. Finally, Section VI represents the conclusion and 
future works. 

II. SYSTEM MODEL 

In a single cell, we study a downlink Multiuser NOMA 
with one Base Station (BS) and an arbitrary set of K users (kϵ 
1,2,…, K) served over N RB (nϵ1,2,…,N). Channel gains of 

allocated users to nth  RB ordered as  |h1,n |≥|h2,n|≥|hk,n|≥⋯≥
|hK,n|, such that channel gain utilized to define the transmission 
power for each user in the users set allocated to that RB. 
Nevertheless, power allocation, user pairing, and SIC decoding 
order depend on channel gain sequence. At receiver side, the 
scheduled strong user on the nth  RB uses SIC to exclude inter-
user interference which is estimated through decoding other 
multiplexed signals of other users messages and subtracting 
these signals to be able to decode the signal of its own 
message. Weak users on other hand decode their own signals 
treating other signals as an interference, this process have 
negligible degradation on the performance due to power 
allocation policy followed in NOMA systems where weak 
users associated with high power levels.  In downlink system, 
BS multiplex the messages of users sharing n

th
 RB via 

superposition coding, thus superimposed signal is expressed as: 

   ∑ √      
 
                (1) 

Considering the RB total power ∑        
 
    where pi,n 

denote the power coefficient for UEi in RBn. The system total 
power is ∑      

 
   , where n and m (mϵ1,2,…, M) represent 

the index of RB and the index of users multiplexed over a RB, 
respectively.  Assuming perfect knowledge of the channel state 
information of all users and Additive White Gaussian Noise 
(AWGN) channel is considered, user's k received signal on 
RBn is calculated by: 

     √    |    |   ∑ √    |    |  
 
                      (2) 

where the signals sk and si is multiplexed over |hk,n| that 
represents the channel attenuation factor between user k and 
BS on RBn. Vk,n is the power spectral density with AWGN  N0  
(W/Hz). Total bandwidth is divided equally among RB such 

that the bandwidth of a specific RB is defined as    
 

 
  . The 

total power on all RBs is assumed to be equivalent thus Signal 
Interference to Noise Ratio (SINR) for user K in RBn is 
represented as [24]: 

         
    |    |

    ∑     |    |
   
   

             (3) 

UEK as the weakest user allocated in RBn do not perform 
SIC where the signals of other users allocated in the same RB 
and the environmental noise treated as an equivalent noise. In 
contrast UEk, based on NOMA concept, performs SIC which 
enable successful decoding and subtracting (UEk+1, UEk+2, ….., 
UEK) message signals on while treat other (UE1, … ,UEk-2, 
UEk-1) message signals and the environmental noise as an 
equivalent noise. Thus SINR for user k in RBn is expressed as: 

         
    |    |

    ∑     |    |
   
   

             (4) 
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Assuming M=2, two users can concurrently share a RBn. 
      and       represent user1 rate and user2 rate in RBn and 
are calculated as follow: 

            (  
        
    

)             (5) 

            (  
        

             
)            (6) 

where |h1,n|≥|h2,n| , UE2,n do not perform SIC. On the other 

hand, UE1,n needs to extract UE2,n signal then decode its own 
signal. Generally, under a successful decoding and no error 
propagation system with a randomized inter-cell interference 
that can be seen as white noise, where the power coefficient of 

UE2,n given higher ratio than UE1,n such as p1≤p2. Therefore, 

the achievable throughput of user k on RBn is expressed as: 

            (  
    |    |

     ∑     |    |
   
   

)           (7) 

Whereas, the total system sum rate equals to the summation 
of total sum rate calculated over the RBs, which is represented 
as: 

   ∑   
 
     ∑ ∑     

 
   

 
               (8) 

It is worthy to mention that not only exclusive sum rate 
optimization of the system is provided, a spectral efficiency 
and energy efficiency performance metrics is also simulated. 
For each RB in NOMA system given the total sum rate 
calculated at the RBn as Rn and the bandwidth of this RBn is Bn, 
then the spectral efficiency of the regarded RBn is expressed as: 

     
  
  

               (9) 

Thus, the total spectral efficiency or as regarded as the 
system's spectral efficiency is calculated by: 

    ∑    
 
               (10) 

Additionally, energy efficiency over RBn given that ps and 
pc as the total RB power and the additional circuit power 
consumption, respectively. Therefore, energy efficiency of the 
RBn is defined as: 

     
  

     
            (11) 

where the total energy efficiency or as known by system's 
energy efficiency is expressed as: 

    ∑    
 
               (12) 

Due to the effect of the factor of dividing the power to 
paired users, an optimization of power allocation is needed. 
Additionally, most of the works presented to optimize power 
allocation consider two user multiplexing strategy according to 
simplicity, rather multiple user multiplexing strategy need to be 
researched. Motivated by that, the main contribution of this 
work is to propose a power allocation algorithm that maximize 
system's sum rate, the problem related to the power allocation 
formulated in the next section followed by the solution 
approach. 

III. PROBLEM STATEMENT 

In this section, we formulate a maximization of system's 
sum rate power allocation as an optimization problem. In order 
to enhance system's sum rate, it is important for each user to 
reach or exceed a minimum rate. Therefore, power allocation 
optimization problem is formulated as: 

       ∑  

 

   

 

Subject to: 

C1:             

C2:   ∑     
 
       

C3:          

Where       represents the minimum user rate requirement, 
constraint C1 applies that each user data rate have to reach or 
exceed a specific user rate. Power allocation constraints 
discussed in C2 and C3, where the available power of an 
individual RB divided among the users sharing it as expressed 
in C2 such that the summation of power coefficients equals to 
total power of the RB. C3 on other hand indicates that power 
allocation coefficient must be higher than zero. 

IV. GENETIC ALGORITHM BASED POWER ALLOCATION 

(GAPA) 

Genetic algorithm (GA) adopted as an intelligent search 
algorithm to find the optimal solution, is defined as an 
optimization method that explores huge search space based on 
a powerful meat-heuristic. To solve the power allocation 
problem formulated in the previous section, the Genetic 
Algorithm based Power Allocation (GAPA) processes are 
shown in Algorithm 1. The process of resource allocation 
performed iteratively beginning by pairing users to a specific 
RB then GAPA is utilized. Therefore, the processes of GAPA 
held where the number of genes in chromosomes is highly 
dependent on the multiplexing number such that for two users 
sharing the same RB (scenario1), the genes of chromosomes in 
the generations is equivalent to 2. Moreover, considering the 
case of three users multiplexing genes of chromosomes in 
every generation is equal to 3 also. Due to the nature of 
solutions, a string of real number representation was adopted 
such that the power level of an individual user presented in real 
numbers. 

A random set of L chromosomes are generated, each 
representing a feasible solution. For some cases, the coverage 
of the population was maintained without a limitation in size. 
Rather in this work, we limit the number of chromosomes in a 
generation to L= 100 and the number of generations to be 50. 
Chromosomes of each generation including the initial 
generation evaluated based on a predefined fitness function 
represent the optimization objective, by that means the fitness 
function in this paper is the sum rate formulated in (8). Then 
generations of chromosomes go through other GA operations 
of selection, crossover, and mutation to explore and invoke 
modified solutions. 
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Algorithm 1: GAPA 

for RB1 to RBn do  

    for l=1 to L do 

         //generate the initial population of chromosomes 

          //chromosomes represent the power coefficient for users   

            sharing the RB power= (P1,n ,..., Pm,n); 

           for g=1 to G do 

                //evaluate each chromosome through fitness function   

                  calculated in (4.8) 

                //create a measurement array that calculate not only the  

                  fitness function additionally rates of users sharing RB   

                 (4.7), sum rate (4.8), spectral efficiency (4.9) and  

                 energy efficiency (4.11) 

                Measurement=(R1,n ,...,Rm,n,Rn,SEn,EEn); 

                for c=1 to L*crossoverratio do 

                    //perform crossover over a portion of population 

                    //randomly select parents from the population and   

                      swap the genes between every two parents 

                    if crossoverpoint=1 then 

                       swap all genes between the parents; 

                       else if crossoverpoint=2 then 

                           swap the genes from the second gene between the  

                           parents; 

                            else 

                               swap the third gene between the parents; 

                            end  

                       end 

                    end  

                end 

                for m=1 to L*mutationratio do 

                     //perform mutation over a portion of the population 

                      if mutationpoint=1 then 

                         change the value of the first gene randomly; 

                           else if mutationpoint=2 then 

                                  change the value of the second gene randomly; 

                                else 

                                    swap the third gene between the parents; 

                                end 

                            end 

                     end  

               end 

                 Repeat evaluation; 

                 for l=1 to L do 

                      select the next population based on the roulette wheel selector; 

                 end  

            end 

    end 

end 

 

Through crossover and mutation, or as known by 
reproduction, a new offspring of chromosomes are generated 
where crossover ratio is assumed to be 0.5 and mutation ratio 
equals to 0.25. A 50% of the current population perform 
crossover where two arbitrary selected chromosomes referred 
to as parents swap their genes such that in GAPA, crossover 
have to consider the main requirements such that after 
swapping the genes among two chromosomes power levels of 
users with higher channel gain should not be higher than the 
power level of users with lower channel gain. Another point to 
be taken into consideration that the summation of power levels 
after exchanging the genes should be equal to the total RB 
power based on the second condition of the formulated 
problem, where a one point crossover is applied. The process 
of crossover is based on the number of genes summarized in 
Table I. 

TABLE I.  CROSSOVER OPERATION IN GAPA 

Crossover 

cases  

Two user multiplexing  

(scenario 1) 

M=2 

Three user multiplexing  

(scenario 2) 

M=3 

Case 1 

  

Case 2 

  

Case 3  

 

On the other hand, 25% of chromosomes in a population 
chosen for mutation where random chromosomes are selected 
such that for the randomly chosen gene the value will be 
altered. Based on the dependability of the solved problem to 
real numbers a uniform mutation is utilized. Therefore, the 
altered value on a specific gene is randomly generated such 
that it should not exceed an upper bound or not be less than a 
lower bound which in our case determined by the total 
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transmission power on a RB such that by adding the power 
ratios assigned to each user associated in this RB the value 
should be equal to the total RB power. Selection then held 
which plays a huge role in forming the new generations, from 
different approaches for selection a roulette wheel selection is 
employed which is based on a probability distribution that 
gives the probability of selection to each chromosome. Thus, 
the probability of selection for chromosome j is defined as: 

   
  

∑   
 
   

            (13) 

These processes go in a cycle until the stopping criteria is 
reached which is assumed to be the number of generations that 
assumed earlier to be 50. Therefore, user pairing and GAPA 
performed iteratively for each RB available in the system. 

V. RESULTS AND DISCUSSION 

For the simulation results, the performance of our proposed 
power allocation algorithm is compared with FSPA that 
present an optimal solution. The simulation runs into a NOMA 
system with one BS. A single transmitting antenna and 
multiple users, each is occupied with one receiver antenna in a 
single cell. System's sum rate, spectral efficiency, and energy 
efficiency are evaluated for GAPA with exhaustive search user 
pairing in downlink NOMA system. Through this simulation, 
we assume the channel to be the product of free-space path loss 
and Gaussian white noise. Table II presents the most 
commonly used simulation parameters that is used commonly 
in similar researches. RBs are characterized with equivalent 
amount of bandwidth and downlink transmission power. For 
this scenario, the number of users in the system is considered to 
be 6 and 12 due to the high complexity produced by the large 
number of users in the system. We set the minimum rate that 
can be achieved by each user Rmin to 100 kbps. In addition the 
number of GA individuals, crossover ratio, mutation ratio, and 
the number of generations as a stop criteria are set to 100, 0.50, 
0.25, 50, respectively. 

In the beginning, the performance of the system with 
different number of users served among the cell is simulated. 
Therefore, the number of users are assumed to be either K=6 or 
K=12. Both cases are evaluated with GAPA and FSPA for 
power allocation and exhaustive search user pairing, with three 
users multiplexed per RB (M=3). That implies with K=6, the 
number of RBs needed for users to be served among equals 
N=2. On other hand, with K=12 the number of RBs for users to 
be paired on as a triple is N=4. 

A comparison between FSPA and GAPA as a function of 
the system's sum rate is illustrated in Fig. 1. The figure shows 
that with the increase in the transmitted power, the gap 
between FSPA and GAPA increase for both downlink NOMA 
systems. Considering the system with six users (K=6), both 
power allocation algorithms reaching the same performance at 
lower transmitted power while GAPA outperforms FSPA for 
higher transmitted power due to the heuristic searching 
method. On the other hand, in downlink NOMA with twelve 
users (K=12) GAPA achieves superior system's sum rate than 
FSPA for higher transmitted power where on lower transmitted 
power FSPA is better though GAPA is low complex. 

TABLE II.  SIMULATION PARAMETERS 

Parameter  Value 

Transmitted Power (  ) 316 mW (25 dBm) 

Total Bandwidth (B) 5 MHz  

Number of resource blocks RPs (N) 24 

Number of subcarrier  12 per RP 

 Noise Spectral Density (  ) -150  dBw/Hz 

Channel estimation  Ideal  

Channel  AWGN 

Traffic Model  Full Buffer 

Circuit power (  ) 1 w 

Multiplexed users over single RB (M) 2,3 

Number of users (K) 6,12 

Number of transmit antenna at BS 1 

Number of receiver antenna at UE  1 

Minimum user's data rate  (    ) 100 kbps 

Number of chromosomes per generation (L) 100  

Number of generations (G) 50 

Crossover ratio  0.50 

Mutation ratio  0.25 

 

Fig. 1. Sum Rate Performance of 3-users Multiplexing Downlink NOMA 

(M=3) with FSPA and GAPA. 

Fig. 2 and Fig. 3 illustrate the performance of the system 
based on spectral efficiency that is expressed as the ratio of 
sum rate and bandwidth. In downlink NOMA with K=6, 
GAPA performs better than FSPA especially with higher 
transmitted power as shown in Fig. 2. Additionally, Fig. 3 
illustrates the performance of spectral efficiency in downlink 
NOMA system with K=12. Searching based on heuristics 
benefit with the system's performance such that GAPA is more 
spectrally efficient than FSPA. Number of users served in the 
system effect the performance where with the growth in the 
number of users the spectral efficiency increase. 
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Fig. 2. Spectral Effeciency Performance of 6-users (K=6) Downlink NOMA 

with FSPA and GAPA. 

 

Fig. 3. Spectral Effeciency Performance of 12-users (K=12) Downlink 

NOMA with FSPA and GAPA. 

Energy efficiency (EE) of the system is presented in Fig. 4. 
The value of Pc is assumed to be constant and equal to 1W. 
Results shows that both FSPA and GAPA have reached an 
equivalent performance based on overall system energy 
efficiency for 6 users case.  In contrast, downlink NOMA with 
K=12 GAPA has consumed less energy than FSPA due to the 
utilized searching technique. It is also found that with the 
increase in transmission power system, the energy efficiency 
decreased due to transmission with large power to maximize 
overall sum rate. Referring to Fig. 1, GAPA with 12 users gain 
has the highest system sum rate which lead to deceased system 
EE. 

Time complexity of simulated power allocation algorithms 
in both systems is evaluated. Fig. 5 shows that GAPA in both 
system decreases the complexity of the system with higher 
performance gain than FSPA that represent the best optimum 
performance. FSPA used in downlink NOMA with K=12 takes 
the longest time where with GAPA the time complexity 
decreased significantly. Additionally, in downlink NOMA with 
K=6 FSAP reach higher complexity in GAPA. 

 

Fig. 4. Energy Effeciency Performance of  Downlink NOMA with FSPA 

and GAPA. 

 

Fig. 5. Time Complexity of Power Allocation Algorithm in Downlink 

NOMA Systems. 

A second scenario for simulation is done through a 
simulation of different resource allocation schemes, where we 
assume that these schemes differentiated by the user pairing 
algorithms. Three user pairing schemes simulated with GAPA.  
A random user pairing that works by pairing arbitrary users 
into a cluster to be allocated into an individual RB, a channel 
state based sorting user pairing that is based on dividing the 
users based on their channel conditions into different NOMA 
clusters each must contain a strong and weak users. In addition, 
exhaustive search based user pairing is considered. All 
algorithms invoked with GAPA. 

As illustrated in Fig. 6 to Fig. 8, channel state information 
based sorting user pairing gain the best performance among 
other algorithms in term of system sum rate, spectral efficiency 
and energy efficiency. Such that with the increase in transmit 
power the performance gain of the three user pairing 
algorithms increase as well. System's sum rate and overall 
spectral efficiency performance of exhaustive approach are 
slightly higher than random user pairing, where in term of 
energy efficiency the performance of these two user pairing 
algorithms are equivalent. 
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Fig. 6. Sum Rate Performance of 3-users Multiplexing Downlink NOMA 
(M=3) with Different User Pairing Algorithms. 

 

Fig. 7. Spectral Efficiency Performance of 3-users Multiplexing Downlink 

NOMA (M=3) with Different User Pairing Algorithms. 

 

Fig. 8. Energy Efficiency Performance of 3-users Multiplexing Downlink 

NOMA (M=3) with Different User Pairing Algorithms. 

Finally, in downlink NOMA with K=12 the effect of the 
number of users multiplexed over the same radio resource is 
investigated. For evaluation, two multiplexing scheme M=2 
and three multiplexing scheme M=3 for downlink NOMA 
system is simulated. Therefore, the number of RB needed for 
tow multiplexing scheme M=2 given as N=6. Where on the 
case with three user multiplexing scheme M=3, four RBs N=4 
needed. The result in Fig. 9 shows that the sum rate of the 
system with three users multiplexing system M=3 overcome 
system's sum rate with two user multiplexing scheme M=2. 
Therefore, increasing the number of users sharing the same 
resource helps to increase system's sum rate performance. In 
addition, utilization of GAPA with both multiplexing schemes 
scenarios increase the performance of the system especially 
with higher transmitted power levels. 

 

Fig. 9. Sum Rate Performance of 2-users and 3-users Multiplexing 

Downlink NOMA (M=2 and M=3). 

VI. CONCLUSION 

Next generation cellular networks needs a new and highly 
effective technologies to be adopted, one of the promising 
recommended technology for radio accessing technique is 
NOMA. The basic concept of NOMA is to utilize power as its 
new diminution. In a downlink NOMA system, power 
allocation optimization problem is formulated where total 
subchannel power and minimum user's data rate are taken in 
consideration. Genetic algorithm power allocation (GAPA) is 
proposed to solve the problem, which can not only achieve 
high performance gain but can decrease the complexity. GAPA 
is utilized with an exhaustive user pairing scheme and is 
evaluated through comparing the performance with FSPA. 
Results show that the proposed algorithm reach a good 
performance in addition the complexity is decreased. GAPA 
outperform FSPA with large number of users and high 
transmission power. Moreover, exhaustive, random, and 
channel state based sorting user pairing algorithms were 
invoked with GAPA. Through these experiments, channel state 
based user pairing overcome the other two user pairing 
algorithms based on system's sum rate, spectral efficiency, and 
energy efficiency. Finally, the impact of multiplexed users in a 
single subchannel was studied, where results revealed that with 
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higher number of multiplexed users, the system's sum rate 
increased. For future investigations, enabling the proposed 
algorithm with a downlink system with imperfect channel state 
information and further enhancement of the spectral efficiency 
by adding MIMO technology needed to be studied. 

REFERENCES 

[1] Kalhoro, S., Umrani, F. A., Khanzada, M. A., & Rahoo, L. A. (2019). 
Matched Filter Based Spectrum Sensing Technique for 4G Cellular 
Network. Mehran University Research Journal of Engineering and 
Technology, 38, 973–978. 
https://doi.org/https://doi.org/10.22581/muet1982.1904.10. 

[2] Vamvakas, P., Tsiropoulou, E. E., & Papavassiliou, S. (2019). Dynamic 
Spectrum Management in 5G Wireless Networks: A Real-Life Modeling 
Approach. In IEEE INFOCOM 2019 - IEEE Conference on Computer 
Communications. Paris, France,: IEEE. 
https://doi.org/10.1109/INFOCOM.2019.8737443. 

[3] Vaezi, M., & Poor, H. V. (2019). NOMA: An Information-Theoretic 
Perspective. In Multiple Access Techniques for 5G Wireless Networks 
and Beyond (pp. 167–193). Springer, Cham. 
https://doi.org/https://doi.org/10.1007/978-3-319-92090-0_5. 

[4] Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & 
Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for 
cellular future radio access. In 2013 IEEE 77th Vehicular Technology 
Conference (VTC Spring) (pp. 1–5). Dresden. 
https://doi.org/10.1109/VTCSpring.2013.6692652. 

[5] Agyapong, P. K., Iwamura, M., Staehle, D., Kiess, W., & Benjebbour, 
A. (2014). Design considerations for a 5G network architecture. IEEE 
Communications Magazine, 52(11), 65–75. 
https://doi.org/10.1109/MCOM.2014.6957145. 

[6] Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. 
(2017). Non-orthogonal multiple access for 5G and beyond. Proceedings 
of the IEEE, 105(12), 2347–2381. 
https://doi.org/10.1109/JPROC.2017.2768666. 

[7] Choi, J. (2018). Throughput analysis for multiuser diversity of two users 
with SIC in NOMA systems. In 2018 International Conference on 
Signals and Systems (ICSigSys) (pp. 120–124). Bali. 
https://doi.org/10.1109/ICSIGSYS.2018.8372649. 

[8] Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative Non-Orthogonal 
Multiple Access in 5G Systems. IEEE Communications Letters, 19(8), 
1462–1465. https://doi.org/10.1109/LCOMM.2015.2441064. 

[9] Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., & 
Nakamura, T. (2013). Concept and practical considerations of non-
orthogonal multiple access (NOMA) for future radio access. In 2013 
International Symposium on Intelligent Signal Processing and 
Communication Systems (pp. 770–774). Naha. 
https://doi.org/10.1109/ISPACS.2013.6704653. 

[10] Alghasmari, W. F., & Nassef, L. (2020). Power Allocation Evaluation 
for Downlink Non-Orthogonal Multiple Access (NOMA). International 
Journal of Advanced Computer Science and Applications(IJACSA), 
11(4). https://doi.org/10.14569/IJACSA.2020.0110417. 

[11] Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic User 
Clustering and Power Allocation for Uplink and Downlink Non-
Orthogonal Multiple Access (NOMA) Systems. IEEE Access, 4, 6325–
6343. https://doi.org/10.1109/ACCESS.2016.2604821. 

[12] Cai, W., Chen, C., Bai, L., Bai, Y., & Choi, J. (2017). Subcarrier and 
power allocation scheme for downlink OFDM-NOMA systems. IET 
Signal Processing, 11(1). https://doi.org/10.1049/iet-spr.2016.0188. 

[13] Di, B., Bayat, S., Song, L., & Li, Y. (2015). Radio Resource Allocation 
for Downlink Non-Orthogonal Multiple Access (NOMA) Networks 
Using Matching Theory. In 2015 IEEE Global Communications 
Conference (GLOBECOM). San Diego, CA, USA: IEEE. 
https://doi.org/10.1109/GLOCOM.2015.7417643. 

[14] Fang, F., Zhang, H., Cheng, J., & Leung, V. C. M. (2016). Energy-
Efficient Resource Allocation for Downlink Non-Orthogonal Multiple 
Access Network. IEEE Transactions on Communications, 64(9), 3722–
3732. https://doi.org/10.1109/TCOMM.2016.2594759. 

[15] Timotheou, S., & Krikidis, I. (2015). Fairness for Non-Orthogonal 
Multiple Access in 5G Systems. IEEE Signal Processing Letters, 22(10), 
1647–1651. https://doi.org/10.1109/LSP.2015.2417119. 

[16] Kramer, O. (2017). Genetic Algorithm Essentials. Springer, Cham. 
https://doi.org/https://doi.org/10.1007/978-3-319-52156-5. 

[17] Ting, C.-K., Wang, T.-C., Liaw, R.-T., & Hong, T.-P. (2017). Genetic 
algorithm with a structure-based representation for genetic-fuzzy data 
mining. Soft Computing, 21, 2871–2882. 
https://doi.org/https://doi.org/10.1007/s00500-016-2266-z. 

[18] Zhu, X., Xiong, J., & Liang, Q. (2018). Fault Diagnosis of Rotation 
Machinery Based on Support Vector Machine Optimized by Quantum 
Genetic Algorithm. IEEE Access, 6, 33583–33588. 
https://doi.org/10.1109/ACCESS.2018.2789933. 

[19] Mahmood, A., Khan, S. A., & 3, R. A. B. (2017). Hard Real-Time Task 
Scheduling in Cloud Computing Using an Adaptive Genetic Algorithm. 
Computers 2018, 6(2), 15. 
https://doi.org/https://doi.org/10.3390/computers6020015. 

[20] Jha, S. K., & Eyong, E. M. (2018). An energy optimization in wireless 
sensor networks by using genetic algorithm. Telecommunication 
Systems, 67, 113–121. https://doi.org/https://doi.org/10.1007/s11235-
017-0324-1. 

[21] Yang, X., Wang, Y., Zhang, D., & Cuthbert, L. (2010). Resource 
Allocation in LTE OFDMA Systems Using Genetic Algorithm and 
Semi-Smart Antennas. In 2010 IEEE Wireless Communication and 
Networking Conference. Sydney,Australia: IEEE. 
https://doi.org/10.1109/WCNC.2010.5506423. 

[22] Gemici, Ö. F., Kara, F., Hokelek, I., Kurt, G. K., & Çırpan, H. A. 
(2017). Resource allocation for NOMA downlink systems: Genetic 
algorithm approach. In 2017 40th International Conference on 
Telecommunications and Signal Processing (TSP). Barcelona, Spain: 
IEEE. 

[23] Ma, X., Wu, J., Zhang, Z., Zhang, Z., Wang, X., Chai, X., … Dai, X. 
(2017). Power Allocation for Downlink of Non-orthogonal Multiple 
Access System via Genetic Algorithm. In 5GWN 2017 (pp. 459–470). 
Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-319-
72823-0_43. 

[24] Hanif, M. F., Ding, Z., Ratnarajah, T., & Karagiannidis, G. K. (2016). A 
Minorization-Maximization Method for Optimizing Sum Rate in the 
Downlink of Non-Orthogonal Multiple Access Systems. IEEE 
Transactions on Signal Processing, 64(1), 76–88. 
https://doi.org/10.1109/TSP.2015.2480042. 

 


