
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

655 | P a g e

www.ijacsa.thesai.org

Regression Test Case Prioritization: A Systematic

Literature Review

Ali Samad
1
, Hairulnizam Mahdin

2
, Rafaqut Kazmi

3
, Rosziati Ibrahim

4

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, 86400 Batu Pahat, Johor, Malaysia
1, 2, 4

Faculty of Computing, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
1, 3

Abstract—The techniques associated with the Test Case

Prioritization (TCP) are used to reduce the cost of regression

testing to achieve the objectives that the modifications in the

target code would not impact the functionality of updated

software. The effectiveness of the TCP is measured based on the

cost, the code coverage, and fault detection ability. The

regression testing techniques proposed so far are focusing on one

or two effectiveness parameters. In this paper, we presented a

state-of-art review of the approaches used in regression testing in

detail. The second objective is to combine these effective

adequacy measures into a single or multi-objective TCP task.

This systematic literature review is conducted to identify the

state-of-the-art research in regression TCP from 2007 to 2020.

The research identifies fifty-two (52) relevant studies that were

focusing on these three selection parameters to justify their

findings. The results reveal that there were six families of

regression TCP in which meta-heuristic regression TCP were

reported in 38% and generic regression TCP techniques in 31%.

The parameters used as prioritization criteria were cost, code

coverage, and fault detection ability. The code coverage is

reported by 38%, cost in 17%, and cost and code coverage in

31%. There were three sources for datasets were identified

named Software artefact Infrastructure Repository (SIR),

Apache Software Foundation, and Git Hub. The measurement

and metrics used to validate the effectiveness are inclusiveness,

precision, recall, and retest-all.

Keywords—Software testing; regression testing; test case

prioritization; cost; code coverage; fault detection ability

I. INTRODUCTION

Regression Testing (RT) is an iterative fragment of the
software testing and also the primary activity during the
maintenance phase. In the literature, it is mentioned that 70% of
the testing cost is consumed by regression testing [1]. Once a
software system is reorganized, code is modified. Whenever a
software needs to be re-tested, the tester may prioritize, select or
reduce the test suite size, to achieve multiple objectives of
testing like code coverage, fault detection rate, cost of testing, or
time. The objective of regression testing is to provide the
confidence that changes did not affect the new product and
reduce the overall cost of the testing. All these objectives are
difficult to achieve in a single testing cycle. If the coverage
should increase, cost and time also increased [2]. In regression
testing, 100% of code coverage may not be preferred. The
efficiency of prioritization may raise the yield of the testing
procedure by the means of fault detection ability.

RT helps in testing the code by analyzing the target code
both in original and updated form. Furthermore, it performs
checking with the assumption that the updates in the target code
has minimum or negligible effects on the services provides by
the software [3]. The reports claim that code testing is 80% of
the total cost of the software cost which is different from the
maintenance cost that is about 50% of the total cost [4-6]. One
of the objectives of regression testing is to reduce the testing
cost by using the state-of-art approaches used in Test Case
Selection (RTS), Test Case Prioritization (TCP) along Test
Case Reduction (RTR) [7].

The classic techniques of TCP consist of three general
components, TCP framework, prioritization parameters and
prioritization adequacy measures as shown in Fig. 1. This
generalized process takes original program P, modified program
P′ and test suites T as input. The prioritization process may have
a framework which identifies the code change information from
P and P′ and other relevant information like code coverage, fault
detection ability, and executional cost. The test case
prioritization measure may prioritize the test cases from T and
move them to T′ (a subset of T), based on computations
performed by selection logic described in the framework. The
TCP adequacy measures are used to assess the effectiveness of
TCP technique and results produced by this technique.

The TCP adequacy measures are effective in judging the
effectiveness of the TCP process. These measures are computed
in two ways in the TCP process, the first is to prioritize the test
cases on these prioritization contexts like TCP based on
coverage measures, TCP based on cost measures, and TCP
based on fault rates. The second use is to assess the
effectiveness of TCP by coverage or cost optimization. There
are four challenges to organizing the three parameters (cost,
coverage, and fault detection) in a fashion to assess their
importance, dependencies, and priority concerning each other.
The other challenge is to choose the appropriate type of these
measures, like coverage subtypes, cost subtypes, fault types,
and severity. The third challenge is to identify the relevant
frameworks that adjust the three parameters for the
prioritization of test cases and their adequacy scale and use as
adequacy measure. The fourth challenge is to identify the
techniques based on these effectiveness measures, such as
execution cost, code coverage, and fault detection ability. The
primary objective of this paper is to define the TCP
effectiveness based on cost, code coverage, and fault detection
ability as effectiveness contributors. Furthermore, this survey
assesses the current state-of-the-art algorithms in the design of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

656 | P a g e

www.ijacsa.thesai.org

the regression test case prioritization frameworks and
techniques so far. The secondary objectives of this research are
to identify the available datasets and methods for the solution of
test case prioritization problems.

Test Case Prioritization

Algorithm/Process/Model or

Framework

Test Case Prioritization

Measures

Test Case Prioritization Adequecy Measures

Test Case Prioritization

P(old)

TS 1

P(new)

TS 2

Fig. 1. Maintenance Process Model.

The rest of the paper is organized as follows: Section II
formulates the literature selection process of the studies; Section
III encompasses data extraction and Section IV includes the
related work that reviews operational profiles. Finally, Section
V concludes this research.

II. SYSTEMATIC LITERATURE REVIEW PROCESS

To conduct this SLR, three guidelines are followed [1-3].
These guidelines provide the steps to conduct the literature
review. The SLR method of conducting a literature review is
borrowed from clinical research to organize the data from
previous research and systematically deducing the results. The
sub-sections include these step by step details to conduct the
research process. These steps are review protocol, framing
research questions, the primary studies selection, search
keyword selection, inclusion and exclusion criteria for primary
studies and results and synthesis based on selected primary
studies. Initially few papers were handpicked seeing the titles
and abstracts. Then, a citation based on forwarding snowballing
strategy was adopted [16], computing inclusion and exclusion
criteria and examining search statistics of the focused domain.
In the subsequent stage, specialized search queries were formed
to gather the studies that satisfied the inclusion-exclusion
criteria and their match relevance.

A. Review Protocol

The SLR review protocol helps us to execute this research
process with necessary actions and outputs. The SLR research
protocol is shown in Fig. 2. The SLR process is started to
provide the rationale for the purpose and need of study. The
research questions are framed to collect the data for the purpose
of fulfilling the research objectives. The next step is to collect
the primary studies, inclusion and exclusion criteria, which
helps to collect the most relevant research studies with respect
to the research questions framed for this SLR. The data
extraction method is devised to collect data from primary
studies and then finally the data has been collected for synthesis
and analysis purpose.

Search Strategy

Protocol Review

Inclusion/

Exclusion Criteria

1. Planning

Rational For

Need of SLR

Define

Review

Protocol

Specify RQ’s

2. Conduct

Primary

Studies

Selection

Data

Synthesis

Data

Extraction

Data

Analysis

Frame work

3. Document

Observations

Result

Report

Quality

Threats

Report

Fig. 2. The Review Protocol for Systematic Literature Review.

B. Research Questions

The research questions are framed with the help of
discussions with the domain experts and software testing
literature blind searches. The primary focus of these research
questions is to find out the most relevant research on regression
based test case prioritization adequacy criterions for test case
prioritization, datasets available and used in controlled
experiments for test case prioritization, measurements, and
metrics available for regression testing and test case
prioritization. The focus of these research questions was also to
find those test case prioritization techniques which use more
than one or two prioritization parameters and the effects of these
parameters on the results of these techniques. The SLR also
tries to focus on effectiveness as a measurable fact which so far
discussed in the literature as a qualitative fact instead of a
quantitative parameter [3, 12, 13]. The research questions are
shown in Table I, with their justification to include in this SLR.

C. The Study Selection Procedure

The most important part of an SLR is its selection of
primary studies which provides the ground for synthesis and
analysis of data. The objective is to collect the most relevant
data for results that identify the domain trends and dominant
research problems with their solution space [3]. The quality of
results based on the relevance of these primary studies. The
selection of primary studies for this SLR based on the following
steps.

 The selection of research repositories.

 The formulation and choice of keywords for search
queries.

 The inclusion and exclusion criteria for searched
studies with respect to the research questions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

657 | P a g e

www.ijacsa.thesai.org

TABLE I. THE RESEARCH QUESTIONS FOR SYSTEMATIC LITERATURE

REVIEW

No Research Questions Justification

RQ-1

What is the state of the

art research in regression
TCP types/techniques?

The objective of this research question

is to identify the important trends in the
regression TCP research domain in

order to collect the evidence for design

and analysis for new and emerging
regression TCP techniques.

RQ-2

What are the selection

parameters used in

regression TCP
techniques?

The objective of this research question
is to identify all possible selection

parameters for regression TCP

techniques and to find why they are
used as selection criteria for test case

selection.

RQ-3
What type of datasets
used in regression TCP

experiments?

The purpose of this research question is
to find out the datasets for regression

TCP experimentation and their usage.

RQ-4

What type of metrics/

evaluation criterions are

used to verify the

regression TCP
techniques?

This research question helps to identify

the possible metrics to evaluate and
verify the regression TCP techniques

and methods.

1) The selection research repositories: The process to

identify the primary studies has been initiated by randomly

entering the search keywords to research repositories. These

retrieved research studies are then compared to the objectives

of the research questions and inclusion/ exclusion criterion has

been applied to these retrieved research studies. The choice of

research repositories is quite important because of the quality

dependent on these choices. For this purpose, in mind, the

authors used the following research repositories is used for

this process.

a) Science Direct.

b) IEEE Explore.

c) ACM Library.

The choice of these repositories based on the fact that IEEE
Explore and ACM Library contains almost every important
conference in the software testing domain. The Science Direct
contains the research studies of almost all important journals
relevant to the software testing research domain [4, 5].

2) Search keywords selection: A precise and systematic

approach has been devised to search the search keywords. The

approach is comprising of the following steps.

a) The most repeated keywords are selected from

review papers on software testing and regression testing.

b) Find out the matching words, alternative keywords,

similar words for these most frequently used terms in software

testing literature.

c) Then devised search strings and search queries by

using AND, OR and NOT operators available in research

repositories search engines.

d) In the last step, we apply manual verification on

searched studies that the research studies are relevant to the

research questions.

In order to collect the most relevant research studies, authors
try to switch the keywords with OR operator with author titles
and author keywords are switched. The time period is also
defined from 2007 to 2019 to limit the number of studies and
covering the last twelve years of progress in the domain. This
time limit was applied to the reason that software testing has a
tremendous amount of research papers, but the systematic
methodology was adopted in the year 2007, so it is helpful to
limit the most relevant studies by applying this time limit. The
search queries are shown in Table II.

TABLE II. THE SEARCH QUERY FOR SYSTEMATIC LITERATURE REVIEW

Repository Search Query

IEEE

(((((("Publication Title":test case prioritization) OR
"Abstract":test case prioritization) OR "Author

Keywords":test case prioritization) OR "Publication

Title":test suite prioritization) OR "Author
Keywords":test suite prioritization) OR "Abstract":test

suite prioritization)

 Filters Applied: Conferences Journals 2007 - 2019

ACM

"query": { acmdlTitle:(+Test +case + prioritization) OR
recordAbstract:(+Test +case + prioritization) OR

keywords.author.keyword:(+Test +case + prioritization)

"filter": {"publicationYear":{ "gte":2007 }},

{owners.owner=HOSTED}

Web of

science

TITLE: (Test case prioritization) OR TITLE: (Test suite

prioritization)
Timespan: years 2007. Indexes: SCI-EXPANDED,

SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-
SSH, ESCI.

3) Inclusion and exclusion criteria for searched studies:

The regression test case prioritization has many different

objectives with application domains, testing scope and testing

environments. The test case prioritization in general

considered as test suite optimization technique, but it is also

observed that optimization research has many viewpoints,

applications other than software testing. The challenge in

study selection was the diversity of the topics covered under

software testing such as software test suite prioritization,

reduction, and augmentation. The experimental scope and size

is also the main concern while selecting primary studies. As it

was stated that the focus of this SLR was to collect the

evidence for research studies considering cost, coverage and

fault detection ability as test case prioritization criteria and

effectiveness of the proposed techniques must be considered

as one of the objectives of these studies. Therefore, it was

required to design some rules while including or excluding the

searched studies. Here, the inclusion and exclusion criteria

applied to search studies were discussed.

a) The search queries are applied to selected research

repositories and found 855 research studies. Then the authors

applied two-stage inclusion criteria as shown in Table II.

b) The studies must be in the English language.

c) On the first level, the studies selected which have test

case prioritization, test suite optimization with test case

prioritization, test suite effectiveness, cost/coverage/fault

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

658 | P a g e

www.ijacsa.thesai.org

detection based test case prioritization in their title are

selected.

d) The studies not included test case prioritization, test

suite effectiveness or test case prioritization with some

optimization criteria in their title or abstract are excluded.

e) The research studies that are not experiments,

controlled experiments, case studies or without empirical

results are also excluded.

Table III presents a two-Stage Spectrum of Research
Studies Inclusion/Exclusion.

TABLE III. THE TWO STAGE SPECTRUM OF RESEARCH STUDIES

INCLUSION/EXCLUSION

Research DB
First Searched

Studies

First Round

Exclusion

Second Round

Inclusion

Science Direct 135 23 15

ACM Library 623 108 8

IEEE Explorer 900 260 29

Total 1658 391 52

After the first level of exclusion/inclusion, the authors
started the second level of exclusion/inclusion. In this phase the
studies are organized as per the research question framed. The
content of each research study is compared with the objectives
of the research questions especially the experimental process
and result section of the study. The studies are now
excluded/included based on the following rules.

1) The studies that did not report any experimental, case

study or controlled experimental results are excluded.

2) The studies less than five pages and without

experimental details are excluded.

3) The posters, PhD or Master thesis are excluded.

4) The technical reports are excluded.

5) The studies that did not focus on test case

prioritization, test case prioritization optimization is excluded.

6) The studies that did not consider cost, coverage and

fault detection ability as prioritization criteria or effectiveness

criteria are excluded.

The purpose of the second phase of exclusion was to collect
the most relevant and reasonably high-quality research studies
with some experimental insights towards the domain. After
second phase of inclusion/exclusion, authors left with fifty-two
research studies that focus on regression test case prioritization
with focus on cost, coverage or fault detection ability as test
case prioritization parameters or used as effectiveness measure
from these three parameters (cost, coverage and fault detection
ability).

D. The Data Collection Strategy

After collecting the most relevant studies from
inclusion/exclusion criteria, the data collected from these
studies have been followed [6, 7]. The data also collected into
two phases. The first phase consists of a study title, publication
year and source, summary of the research study and comments
of the researcher. In the second phase, the technical information
with respect to the research questions has been collected to

answer the research questions framed for this SLR. The first
phase data collection helps the researchers to execute the
inclusion and exclusion phase. The second phase of data
collection helps the researchers to synthesis and analysis the
results of this SLR.

III. RESULTS AND DISCUSSION

In this section, the results are presented based on the data
collected from the primary studies to answer the research
questions framed in the previous section. There were four
questions framed for synthesis and analysis. These questions
were framed to identify the main research gaps and important
trends in the development and design of the regression test case
prioritization research domain. The second focus was to identify
the datasets and experimental evaluation trends and features in
the regression test case prioritization research domain. The
results for Research Question 1: The state of the art research in
each research questions are as followed regression test case
prioritization types/techniques.

The objective of this research question was to assess the
state-of-the-art research conducted in the domain of regression
test case prioritization with the focus on cost, coverage and fault
detection ability. The analysis performed on the data collected
from primary studies shown the following regression test case
prioritization techniques families as in Fig. 3. Each technique
has common input, processing, and output styles but differs in
their designing parameters and context of usage.

Fig. 3. The RTS Techniques Classification based on Primary Studies.

From Fig. 3, the major families of regression test case
selection techniques as follows.

1) The meta-heuristic based TCP

2) Model-based TCP

3) Generic Based TCP techniques.

4) The test case ranking based TCP.

5) The Code slicing based TCP.

6) The Oracle Based TCP.

The meta-heuristic based TCP techniques were found 38%,
as a leading trend in TCP methods. There were 20 out of 52
studies that used these algorithms to solve or implement the
solution for the TCP problems. The reason for its popularity
was its capability to handle the multi-criteria problems with
emerging tools and technologies for analysis and design for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

659 | P a g e

www.ijacsa.thesai.org

these algorithms. From these meta-heuristic family Genetic
Algorithm (GA) was observed in seven (7) out of twenty (20)
studies and become the most widely used algorithm for TCP
problems. The GA is considered as evolutionary optimization
technique with the inbuilt believe in survival to the fittest. The
GA is popular for TCP solution design due to its nature of
selection the stronger population based on some fitness
function. The design and process of GA very much like TCP
design and process of selection. TCP selects the test cases to
prioritize from already used test suites based on some criteria
while GA selects the stronger population from previous
populations based on fitness functions. The second reason for
the choice of GA for TCP problems was its maturity and there
were so many comparative studies available for this algorithm.
There are many datasets available with evaluation metrics with
GA in the test case prioritization research domain. The different
types of GA used in these studies are the Co-evolutionary
Genetic Algorithm (CGA), Diversity Based Genetic Algorithm
(Div-GA), Multi-Objective Genetic Algorithm (MOGA) and
Non-Dominated Sorting Genetic Algorithm (NSGA-II).

The second most used algorithm in TCP problem solving
was Particle Swarm Optimization (PSO) observed in five (5)
studies out of twenty (20) studies. PSO is a greedy algorithm
that tries to find a local maximum from the problem space. It is
easy to implement as compared to GA. But the choice between
GA and PSO depends on the nature and design of the problem.
The different types of implementations of PSO from primary
studies are simple PSO, Multi-objective PSO and Additional
Greedy based on voting mechanism PSO.

The fuzzy algorithm is the third most used algorithm four
(4) out of twenty studies. The fuzzy is used with types of rule-
based fuzzy, fuzzy classification and fuzzy expert system. The
fuzzy is quite a simple but static decision-making system. The
prior defined rules are used to decide the different decisions
required during the selection of TCP. The K-means and semi-
supervised clustering also used in two different studies for TCP
problems.

The second class of solutions for TCP problems were
Generic TCP solutions found in 31% of the studies. There were
sixteen (16) out of fifty-two studies (52) studies that used these
methods, tools, and algorithms. These are self-designed custom
solutions for specific tools and problems. Normally they are
applied to industrial-scale case studies to solve TCP problems.

Model-based TCP is the third popular class of TCP
solutions. It was used in nine (9) studies out of fifty-two (52)
studies. It is based on Unified Modeling Language (UML)
artifacts to prioritize the test cases for software under testing.
The used artifacts were activity diagrams, state machines, and
use case diagrams. But these diagrams appear so early in the
software life cycle, so, they are so much imprecise to use as test
case prioritization solutions. The code slicing and chopping
techniques are used in four (4) studies out of fifty-two (52)
studies, 8% of the total studies. These techniques were relevant
due to code modifications are the primary focus of regression
TCP techniques. The code changes and modifications are easy
to identify by code slicing and code chopping techniques. But
due to the complexity of new coding environments, it is difficult
to chop the code with modern code editors and code generators.

The test case ranking regression TCP techniques were seen in
two out of fifty-two studies. The test cases and their results were
used to rank the test cases for future use in these techniques.

A. Research Question 2 The Selection Parameters used in

RTP Techniques

This research was framed to identify the number of
parameters used for test case prioritization techniques. The
objective was to understand the fact that available space for
research in designing new test case prioritization techniques,
their design trends and the dependency among these parameters
if there is any dependency among these parameters. The well-
known parameters are cost, coverage and fault detection ability
[8]. The definitions of these measures are as following.

1) Cost: The time or resources consumed by a test suite/

test case to complete its execution on source code to return its

results. The further types of cost observed are time to run a

test suite, time to create a test suite, time to analysis for a test

suite and time to prepare the results of a test suite.

2) Code coverage: The ratio of source code executed by a

test case/test suite to the total number of source lines expected

to execute by that test suite/test case is known as code

coverage. Its special sub-groups are statement coverage,

condition coverage, modified condition coverage, loop

coverage, branch coverage, modified branch coverage, and

modified statement coverage.

3) Fault detection ability: The number of the faults

identified by a test suite/test case is known as fault detection

ability of that test suite/test case. The sub-types of faults

observed in primary studies are structural faults, real faults,

hand seeded faults and mutation faults.

The results of the research question are shown in Fig. 4
below. The observed classes of these prioritization criteria are
cost, code coverage and fault detection ability as single criteria
to test case prioritization techniques. The code coverage with
Fault detection ability and cost and code coverage are observed
as bi-criteria test case prioritization parameters. The cost, code
coverage, and fault detection ability are observed as tri-criteria
test case prioritization parameters.

Fig. 4. Test Case Prioritization Parameters Classification based on Primary

Studies.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

660 | P a g e

www.ijacsa.thesai.org

The code coverage is the most dominant trend observed in
selected primary studies. It was found in twenty (20) out of
fifty-two (52) primary studies which were 38% of the total
primary studies. The reasons for using code coverage were its
simple computation with respect to other parameters. There
were a good number of the tools available for measuring code
coverage of different types and its integration is quite simple
with available code editors and code generators like Eclipse,
Junit, Code Cover, Mue-java, etc. The measurement of code
coverage is simple enough and decision making is also very
straight forward. The more code coverage provides more
confidence in testing teams that their code is tested. The code
coverage is used as a proxy in many test scenarios which means
for testing teams, quality assurance groups, management teams
and customers of the product.

The second dominant test case prioritization parameter
group was cost and code coverage, which is also a bi-criteria
test case prioritization family. It was observed in sixteen (16)
out of fifty-two (52) primary studies, which was 31% of the
total primary studies. The reason for this was in close
resemblance in the measurement of these parameters. Both code
coverage and cost metrics returned the results in measurable
numbers. The available tool support for measuring cost and
code coverage. The code coverage and cost measurement both
dependent on each other, more coverage means more cost for a
test suite. The more cost means a less effective regression TCP
technique. Both code coverage and cost were primary
objectives for the optimization of test case prioritization
techniques.

The third trend found in primary studies was cost-based test
case prioritization techniques. It was found in nine (9) out of
fifty-two (52) primary studies which were 17% of the total
primary studies. The optimization of the cost was the primary
objective of a test case prioritization technique because the
reduction in cost means a better test case prioritization
technique which may replace the previous regression TCP
technique. The cost measures are observed with many different
viewpoints like execution cost of a test suite, size of the source
code under testing, size of the test cases in a test suite, analysis
time for results of a test suite, preparation of the test suite for a
software under testing and post-analysis and prioritization time
of a test suite. The choice of cost measures depends on the local
requirements of optimization of test case prioritization
problems. The fourth trend was the tri-criteria test case
prioritization parameter comprises of three measures cost, code
coverage, and fault detection ability. The combination of these
three parameters makes test case prioritization more effective
because fault detection ability is the primary objective of all
software testing techniques. The fault detection ability in test
case prioritization techniques used as adequacy criteria so far,
but in a few techniques, it was used as test case prioritization
parameters as well. The tri-criteria optimization seen as a
challenge in test case prioritization problems due to the huge
size of the code and test suite sizes for software under testing.
The last test case prioritization parameter was code
modifications, the identification of code changes from code in
code chopping techniques. The code chopping was not practical
due to increase in size and complexity of the source code in
modern software. The second reason was the security and safety

requirements of the third-party source codes which may not
provide direct access to the critical pieces of the source codes.

B. Research Question 3: Datasets used in Regression TCP

Experiments

The research question was framed to identify the datasets
used in software testing experimentation with a special focus on
designing the novel techniques for regression testing. The
software testing datasets are quite different in nature as
compared to other artifacts used in software engineering
research. The point of differences and important features
considered during datasets for regression testing are as follows
continue Table IV.

1) There must be a reasonable source code size for the

software under testing.

2) There is must be a test suite available for testing with

previous testing cycle’s history or results which justify the

usage of that test suite.

3) There must be some tool/framework/methodology

support available to execute that testing technique on software

under testing.

4) There should be some measurement mechanism to

evaluate and compare the results for that testing technique.

5) The source code and test suite collections must

available to other research communities to use as an artefact

for their experiments.

6) The results and conclusions must be based on some

environment available to other research communities to

evaluate and compare with their findings with the previous

research findings.

There were three sources identified providing software
source code, test suites, test results and tool information used to
collect the results for software testing experiments. These
sources are as follows:

1) SIR (Software Artefact Infrastructure Repository).

2) Open Source (Apache Software Foundation).

3) Git-Hub.

The Software-Artefact Infrastructure Repository (SIR) [9] is
the collection of software source codes with multiple versions
and associated test suites. It has the artifacts that have a wide
range of software with many different programming languages
like Java, C, C++, PHP and C-sharp. These datasets are
prepared for unit testing, integration testing, system testing. The
fault types supported by these datasets are real faults, hand
seeded faults and mutation faults [9]. The detailed primary
studies and subject software are listed in Table IV.

The second repository which offers a wide range of datasets
for software testing artifacts is Apache Software Foundation
[61]. This repository contains 200 Million lines of source code
and 350 projects with multiple versions of source code and test
suites for each version. The Git Hub is also a very huge size
code repository for software source codes and their test suites.
The third repository Git Hub [62] is a general-purpose
repository in which individual developers and software
engineers upload their code and test suites. The choice of
datasets depends upon the nature and design of the problem,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

661 | P a g e

www.ijacsa.thesai.org

available tool support for technique under analysis and
measurement methods used to evaluate results produced with
these datasets.

TABLE IV. THE DATASETS IDENTIFIED FOR RTS EXPERIMENTS IN

PRIMARY STUDIES

Study Reference Dataset

1 [10] Custom Product/Code

2 [11] Custom Product/Code

3 [12] SIR (Siena, Jtopas)

4 [13] Not Reported

5 [14] Not Reported

6 [15] Custom Product/Code

7 [16]
Aspect Compiler example
package = 3 programs

8 [17] ABB = 3 programs, SIR = 2 programs

9 [18] ABB program

10 [19] Custom Product/Code

11 [20] SIR (Jmeter), XML(Security, ANT)

12 [21] Custom Product/Code

13 [22] Custom Product/Code

14 [23] SIR (Flex, Space, Schedule)

15 [24] Student Enrolment System.

16 [25] SIR (Nano,ant,Galileo, Jmeter,XML)

17 [26] SIR (nanoXML,jtops,jmeter,xml- security, any)

18 [27] Custom Product/Code

19 [28] Safety Monitoring Component

20 [29] Open-Source (Apache,Log 4j, common-Math)

21 [30] Open-Source (Polo)

22 [31] SIR(Space)

23 [32] Custom Product/Code

24 [33]
Video-conference system Safety Monitoring

Components

25 [34] Not Reported

26 [35] Microsoft Dynamics AX

27 [36] Not Reported

28 [37] Custom Product/Code

29 [38] Scheduler

30 [39]
SIR(print tokens, printtokens1, scheduler, scheduler2,

space)

31 [40] Custom Product/Code

32 [41] SIR 11 programs

33 [42] SIR(printtokens, printtokens2)

34 [43] Custom Product/Code

35 [44] SOFIE is the tax accounting system

36 [45] Custom Product/Code

37 [46] Custom Product/Code

38 [47] Not Reported

39 [48] SIR (space)

40 [49]
Calendar, triangle, time-date,Kmap generation, tax

calculation.

41 [50] Custom Product/Code

42 [51] Custom Product/Code

43 [52] Custom Product/Code

44 [53] 11 Large Open-source projects

45 [54] 61 open source systems

46 [55] 11 open-source projects

47 [56] 21 Java projects

48 [57] Grep v1 to v7

49 [58] Custom datasets for 3 sprints

50 [59] JFree Chart, Apache Tomcat, Argo UML

51 [60] 37 projects on Git Hub

C. Research Question 4: Type of the Metrics/ Evaluation

Criterions are used to Verify the Regression TCP

Techniques

The research question was framed to identify the
measurements and methods to evaluate the results collected
from regression TCP experiments. The important features are
those which classify the effectiveness abilities of one technique
to another technique. There are so many different viewpoints
observed from primary studies collected for this SLR. The
notable trends were comparing the results in terms of their
input, process and output styles, their method to prioritize the
test cases, their ability to identify the faults and fault types and
their presentation method of the finding for analysis performed
on datasets.

The code-based regression TCP techniques primarily
designed to reduce the cost of testing in terms of execution time,
test suite size and try to satisfy the code coverage required
criteria and cost evaluation and fault detection ability. In the
evaluation of regression TCP experimental results, a framework
has been proposed in the study [63]. This evaluation structure
classifies the test suites in the following types.

1) Obsolete Test Cases: A test case that uncovers nothing

new like faults or code modifications.

2) Modification Revealing: A test case that executes a

modified part of the code under testing.

3) Non-Modification Revealing Test Case: A test case

that does not execute a modified part of the code under testing.

4) Fault Revealing Test Cases: The test cases which

identify the faults from the source code under testing.

The other metrics identified from the primary studies are
inclusiveness, precision, fault measure, fault rate, code
coverage, fault metrics, and retest-all. The studies are compared
in terms of effectiveness, cost, code coverage, and fault
detection ability. These metrics are mentioned because there
were proper mathematical grounds for these metrics were
available. The second reason was that many experiments
reported from primary studies may be useful to compare the
results with future studies.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

662 | P a g e

www.ijacsa.thesai.org

IV. CONCLUSION AND FUTURE WORK

The research study was conducted by following a systematic
literature review methodology. The review protocol was
designed and conduct the search from relevant research
repositories with the research questions framed in the review
protocol. There were 1658 studies found from three research
repositories. There were two-stage inclusion/exclusion criteria
to choose the most relevant studies with respect to the research
questions. There were 391 studies left on the first level of
inclusion/exclusion criteria. On the second level of
inclusion/exclusion criteria, there were fifty-two studies left.
The analysis of primary studies reveals that there are six main
classes of test case prioritization techniques such as meta-
heuristic regression TCP, code slicing regression TCP, model-
based regression TCP, test case ranking regression TCP,
Oracle-based regression TCP, and Generic regression TCP
techniques. The regression TCP parameters have cost, coverage
and fault detection, as single criteria regression TCP, the cost
and coverage and fault and coverage as bi-criteria regression
TCP and cost, coverage and fault detection as tri-criteria
regression TCP techniques. There was a long list of datasets
available for controlled experiments of regression testing
experiments. The main sources to obtain these datasets were
SIR, Git Hub, and Open Source Apache Software Foundation.
It is also concluded that meta-heuristic techniques are the most
researched trend so far. The genetic algorithm was the most
used algorithm for regression TCP solutions. The code coverage
is the most used parameter for test case prioritization. Based on
these results, the authors recommend that more experimental
research is required to investigate bi-criteria and tri-criteria test
case prioritization techniques. It is also concluded that cost,
coverage, fault detection ability and code modifications are
equally important for selecting a test suite for software under
testing. The results reviewed from primary studies show that
these studies ignore one or two prioritization parameters. It is
also observed that the local constraints like tools, programming
languages, and measurement and metrics also need to be
researched experiment to produce generalized results for the
whole testing community.

REFERENCES

[1] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
"Lessons from applying the systematic literature review process within the
software engineering domain," Journal of systems and software, vol. 80,
pp. 571-583, 2007.

[2] D. Budgen and P. Brereton, "Performing systematic literature reviews in
software engineering," in Proceedings of the 28th international conference
on Software engineering, 2006, pp. 1051-1052.

[3] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S.
Linkman, "Systematic literature reviews in software engineering–a
systematic literature review," Information and software technology, vol.
51, pp. 7-15, 2009.

[4] M. Younas, D. N. Jawawi, I. Ghani, T. Fries, and R. Kazmi, "Agile
development in the cloud computing environment: A systematic review,"
Information and Software Technology, vol. 103, pp. 142-158, 2018.M.
Khatibsyarbini, M. A. Isa, D. N. Jawawi, and R. Tumeng, "Test case
prioritization approaches in regression testing: A systematic literature
review," Information and Software Technology, vol. 93, pp. 74-93, 2018.

[5] B. Kitchenham, H. Al-Khilidar, M. A. Babar, M. Berry, K. Cox, J. Keung,
et al., "Evaluating guidelines for reporting empirical software engineering
studies," Empirical Software Engineering, vol. 13, pp. 97-121, 2008.

[6] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, et al., "Preliminary guidelines for empirical research

in software engineering," IEEE Transactions on Software Engineering,
vol. 28, pp. 721-734, 2002.

[7] M. Huang, S. Guo, X. Liang, and X. Jiao, "Research on regression test
case selection based on improved genetic algorithm," in Computer Science
and Network Technology (ICCSNT), 2013 3rd International Conference
on, 2013, pp. 256-259.

[8] H. Do, S. Elbaum, and G. Rothermel, "Supporting controlled
experimentation with testing techniques: An infrastructure and its potential
impact," Empirical Software Engineering, vol. 10, pp. 405-435, 2005.

[9] C. Tao, B. Li, X. Sun, and C. Zhang, "An approach to regression test
selection based on hierarchical slicing technique," in Computer Software
and Applications Conference Workshops (COMPSACW), 2010 IEEE
34th Annual, 2010, pp. 347-352.

[10] W.-T. Tsai, X. Zhou, R. A. Paul, Y. Chen, and X. Bai, "A coverage
relationship model for test case selection and ranking for multi-version
software," in High Assurance Systems Engineering Symposium, 2007.
HASE'07. 10th IEEE, 2007, pp. 105-112.

[11] C. Tao, B. Li, X. Sun, and Y. Zhou, "A hierarchical model for regression
test selection and cost analysis of java programs," in Software Engineering
Conference (APSEC), 2010 17th Asia Pacific, 2010, pp. 290-299.

[12] W. S. A. El-hamid, S. S. El-etriby, and M. M. Hadhoud, "Regression test
selection technique for multi-programming language," in 2010 The 7th
International Conference on Informatics and Systems (INFOS), 2010, pp.
1-5.

[13] S. Huang, Z. J. Li, J. Zhu, Y. Xiao, and W. Wang, "A novel approach to
regression test selection for J2EE applications," in 2011 27th IEEE
international conference on software maintenance (ICSM), 2011, pp. 13-
22.

[14] Z. Xu, Y. Liu, and K. Gao, "A novel fuzzy classification to enhance
software regression testing," in Computational Intelligence and Data
Mining (CIDM), 2013 IEEE Symposium on, 2013, pp. 53-58.

[15] G. Xu and A. Rountev, "Regression test selection for AspectJ software," in
Software Engineering, 2007. ICSE 2007. 29th International Conference
on, 2007, pp. 65-74.

[16] T. Yu, X. Qu, M. Acharya, and G. Rothermel, "Oracle-based regression
test selection," in Software Testing, Verification and Validation (ICST),
2013 IEEE Sixth International Conference on, 2013, pp. 292-301.

[17] J. Zheng, L. Williams, B. Robinson, and K. Smiley, "Regression test
selection for black-box dynamic link library components," in Proceedings
of the Second International Workshop on Incorporating COTS Software
into Software Systems: Tools and Techniques, 2007, p. 9.

[18] P. K. Chittimalli and M. J. Harrold, "Recomputing coverage information to
assist regression testing," Software Engineering, IEEE Transactions on,
vol. 35, pp. 452-469, 2009.

[19] N. Rachatasumrit and M. Kim, "An empirical investigation into the impact
of refactoring on regression testing," in Software Maintenance (ICSM),
2012 28th IEEE International Conference on, 2012, pp. 357-366.

[20] A. Pasala, Y. L. Y. Fung, F. Akladios, G. A. Raju, and R. P. Gorthi,
"Selection of regression test suite to validate software applications upon
deployment of upgrades," in 19th Australian Conference on Software
Engineering (aswec 2008), 2008, pp. 130-138.

[21] E. Fourneret, J. Cantenot, F. Bouquet, B. Legeard, and J. Botella, "Setgam:
Generalized technique for regression testing based on uml/ocl models," in
2014 Eighth International Conference on Software Security and Reliability
(SERE), 2014, pp. 147-156.

[22] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso, "Regression
testing in the presence of non-code changes," in 2011 Fourth IEEE
International Conference on Software Testing, Verification and Validation,
2011, pp. 21-30.

[23] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, "Using semi-supervised
clustering to improve regression test selection techniques," in Software
Testing, Verification and Validation, 2011 IEEE Fourth International
Conference on, 2011, pp. 1-10.

[24] M. Z. Z. Iqbal, Z. I. Malik, and M. Riebisch, "A model-based regression
testing approach for evolving software systems with flexible tool support,"
in 2010 17th IEEE International Conference and Workshops on
Engineering of Computer Based Systems, 2010, pp. 41-49.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 2, 2021

663 | P a g e

www.ijacsa.thesai.org

[25] S. Mirarab, S. Akhlaghi, and L. Tahvildari, "Size-constrained regression
test case selection using multicriteria optimization," IEEE Transactions on
Software Engineering, vol. 38, pp. 936-956, 2012.

[26] Y. Pang, X. Xue, and A. S. Namin, "Identifying effective test cases
through k-means clustering for enhancing regression testing," in Machine
Learning and Applications (ICMLA), 2013 12th International Conference
on, 2013, pp. 78-83.

[27] L. S. de Souza, R. B. Prudêncio, and F. d. A. Barros, "A Hybrid Binary
Multi-objective Particle Swarm Optimization with Local Search for Test
Case Selection," in Intelligent Systems (BRACIS), 2014 Brazilian
Conference on, 2014, pp. 414-419.

[28] H. Hemmati and L. Briand, "An industrial investigation of similarity
measures for model-based test case selection," in 2010 IEEE 21st
International Symposium on Software Reliability Engineering, 2010, pp.
141-150.

[29] H. Cibulski and A. Yehudai, "Regression test selection techniques for test-
driven development," in Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE Fourth International Conference on,
2011, pp. 115-124.

[30] A. A. L. de Oliveira, C. G. Camilo-Junior, and A. M. Vincenzi, "A
coevolutionary algorithm to automatic test case selection and mutant in
mutation testing," in Evolutionary Computation (CEC), 2013 IEEE
Congress on, 2013, pp. 829-836.

[31] L. S. de Souza, P. B. de Miranda, R. B. Prudencio, and F. d. A. Barros, "A
multi-objective particle swarm optimization for test case selection based
on functional requirements coverage and execution effort," in 2011 IEEE
23rd International Conference on Tools with Artificial Intelligence, 2011,
pp. 245-252.

[32] H. Hemmati, A. Arcuri, and L. Briand, "Empirical investigation of the
effects of test suite properties on similarity-based test case selection," in
2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation, 2011, pp. 327-336.

[33] M. E. Delamaro and J. Offutt, "Assessing the influence of multiple test
case selection on mutation experiments," in 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation
Workshops, 2014, pp. 171-175.

[34] J. Anderson, S. Salem, and H. Do, "Improving the effectiveness of test
suite through mining historical data," in Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp. 142-151.

[35] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, "An enhanced test case
selection approach for model-based testing: an industrial case study,"
Proceedings of the 8th ACM SIGSOFT international symposium on
Foundations of software engineering, 2010, pp. 267-276.

[36] S. Huang, Y. Chen, J. Zhu, Z. J. Li, and H. F. Tan, "An optimized change-
driven regression testing selection strategy for binary Java applications," in
Proceedings of the 2009 ACM symposium on Applied Computing, 2009,
pp. 558-565.

[37] H. Hemmati, A. Arcuri, and L. Briand, "Reducing the cost of model-based
testing through test case diversity," in IFIP International Conference on
Testing Software and Systems, 2010, pp. 63-78.

[38] S. Yoo and M. Harman, "Pareto efficient multi-objective test case
selection," in Proceedings of the 2007 international symposium on
Software testing and analysis, 2007, pp. 140-150.

[39] L. Yu, L. Xu, and W.-T. Tsai, "Time-constrained test selection for
regression testing," in International Conference on Advanced Data Mining
and Applications, 2010, pp. 221-232.

[40] A. Panichella, R. Oliveto, M. Di Penta, and A. De Lucia, "Improving
multi-objective test case selection by injecting diversity in genetic
algorithms," IEEE Transactions on Software Engineering, vol. 41, pp. 358-
383, 2014.

[41] M. Kumar, A. Sharma, and R. Kumar, "Fuzzy entropy-based framework
for multi-faceted test case classification and selection: an empirical study,"
IET software, vol. 8, pp. 103-112, 2013.

[42] Z. Xu, K. Gao, T. M. Khoshgoftaar, and N. Seliya, "System regression test
planning with a fuzzy expert system," Information Sciences, vol. 259, pp.
532-543, 2014.

[43] E. Rogstad, L. Briand, and R. Torkar, "Test case selection for black-box
regression testing of database applications," Information and Software
Technology, vol. 55, pp. 1781-1795, 2013.

[44] L. S. De Souza, R. B. Prudêncio, F. d. A. Barros, and E. H. d. S. Aranha,
"Search based constrained test case selection using execution effort,"
Expert systems with applications, vol. 40, pp. 4887-4896, 2013.

[45] B. Li, D. Qiu, H. Leung, and D. Wang, "Automatic test case selection for
regression testing of composite service based on extensible BPEL flow
graph," Journal of Systems and Software, vol. 85, pp. 1300-1324, 2012.

[46] Y.-D. Lin, C.-H. Chou, Y.-C. Lai, T.-Y. Huang, S. Chung, J.-T. Hung, et
al., "Test coverage optimization for large code problems," Journal of
Systems and Software, vol. 85, pp. 16-27, 2012.

[47] Z. Chen, Y. Duan, Z. Zhao, B. Xu, and J. Qian, "Using program slicing to
improve the efficiency and effectiveness of cluster test selection,"
International Journal of Software Engineering and Knowledge
Engineering, vol. 21, pp. 759-777, 2011.

[48] Y. Singh, A. Kaur, and B. Suri, "A hybrid approach for regression testing
in interprocedural program," Journal of Information Processing Systems,
vol. 6, pp. 21-32, 2010.

[49] N. Mansour, H. Takkoush, and A. Nehme, "UML‐based regression testing
for OO software," Journal of Software Maintenance and Evolution:
Research and Practice, vol. 23, pp. 51-68, 2011.

[50] E. G. Cartaxo, P. D. Machado, and F. G. O. Neto, "On the use of a
similarity function for test case selection in the context of model‐based
testing," Software Testing, Verification and Reliability, vol. 21, pp. 75-
100, 2011.

[51] L. Zhang, "Hybrid regression test selection," in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), 2018, pp. 199-
209.B. Fu, S. Misailovic, and M. Gligoric, "Resurgence of Regression Test
Selection for C++," in 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST), 2019, pp. 323-334.

[52] A. Labuschagne, L. Inozemtseva, and R. Holmes, "Measuring the cost of
regression testing in practice: a study of Java projects using continuous
integration," in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 821-830.

[53] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric, "File-level vs.
module-level regression test selection for. net," in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, 2017, pp.
848-853.

[54] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, "Regression test
selection across JVM boundaries," in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 809-820.

[55] B. Miranda and A. Bertolino, "Scope-aided test prioritization, selection
and minimization for software reuse," Journal of Systems and Software,
vol. 131, pp. 528-549, 2017.

[56] P. Kandil, S. Moussa, and N. Badr, "Cluster‐based test cases prioritization
and selection technique for agile regression testing," Journal of Software:
Evolution and Process, vol. 29, p. e1794, 2017.

[57] B. Guo and M. Song, "Interactively decomposing composite changes to
support code review and regression testing," in 2017 IEEE 41st Annual
Computer Software and Applications Conference (COMPSAC), 2017, pp.
118-127.

[58] K. Wang, C. Zhu, A. Celik, J. Kim, D. Batory, and M. Gligoric, "Towards
refactoring-aware regression test selection," in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), 2018, pp. 233-
244.

[59] Apache. (2017). JodaTime. Available: http://www.joda.org/joda-time/

[60] GitHub. Software code Hosting [Online]. Available: https://github.com/

[61] G. Rothermel and M. J. Harrold, "A framework for evaluating regression
test selection techniques," in Software Engineering, 1994. Proceedings.
ICSE-16., 16th International Conference on, 1994, pp. 201-210.

