
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

Parallelization Technique using Hybrid Programming
Model

Abdullah Algarni1, Abdulraheem Alofi2, Fathy Eassa3
Department of Computer Science, King Abdulaziz University (KAU)

P.O. Box 80221, Jeddah 21589, Saudi Arabia

Abstract—A multi-core processor is an integrated circuit
that contains multiple core processing unit. For more than two
decades, the single-core processors dominated the computing
environment. The continuous development of hardware and
processors led to the emergence of high-performance computers
that able to address complex scientific and engineering programs
quickly. Besides, running the software codes sequentially increases
the execution time in huge and complex programs. The serial
code is converted to parallel code to improve the program perfor-
mances and reduce the execution time. Therefore, parallelization
helps programmers solve computing problems efficiently. This
study introduced a novel automatic translation tool that converts
serial C++ code into a hybrid parallel code. The study analyzed
the performance of the proposed S2PMOACC tool using linear
algebraic dense matrix multiplication benchmarking. Besides, we
introduced Message Passing Interface (MPI) + Open Accelerator
(OpenACC) as a hybrid programming model without preliminary
knowledge of parallel programming models and dependency
analysis of their source code. The research outcomes enhance
the program performances and decrease the implementation time.
Moreover, our proposed technique offers better performance than
other tools.

Keywords—Serial code translation; parallel code; C++; hybrid
programming model; auto-translation; S2PMOACC

I. INTRODUCTION

A single-core microprocessor dominated the computing
environment for more than two decades as it offered better
performance in execution of computer programs. With a rise in
issues, such as power dissipation, design complexity, and high
energy consumption [1] in the single-core, multicore architec-
tures were proposed to address these problems. The multicore
architectures [2] opened a new door for high-performance
computing, dividing each task into different cores during
execution. Also, the multi-core architecture plays a crucial role
in developing parallel applications. Therefore, many industries
build their programs using parallel computing architectures [3].
Besides, complex scientific programs require a huge comput-
ing power [4], which individual computer fails to provide.
Therefore, programmers must write parallel programs to be
running in multicore architectures. Also, parallel programming
is computationally complex and requires different execution
effort.

Nowadays, with the advent of computer technology, people
rely heavily on computer systems to conduct all business-
related tasks. A standard desktop computer or workstation
can easily solve small computing problems, but it provides
poor performance and runs into technical problems while
performing a high number of operations per second. Besides,

a standard computer faces challenges in completing a time-
consuming operation in less time, completing operations under
a tight deadline, and solving complex large problems. High-
Performance Computing (HPC) eliminates these problems.
Compared to a traditional desktop computer, HPC systems
can perform complex calculations and process data at high
speed. Fig. 1 shows HPC systems with CPUs. Each of the
CPUs processors has local memory and multicores, which
help to execute different applications and challenging tasks.
Besides, HPC solves extensive problems via thousands of
parallel processors.

Fig. 1. An Overview of HPC System.

The HPC offers significant benefits to different sectors such
as education, health, engineering, government, and business
owing to its ability to solve complex and demanding problems.
Additionally, HPC is an essential driver of innovation and
fosters economic growth. Besides, HPC facilitates R&D in
science and technology and enhances new products time-to-
market. HPC also helps researchers to solve complex problems,
such as developing new drugs through advanced computer
simulation. Parallel computing is a computation that breaks
larger computing problems into smaller tasks, in which many
calculations are executed concurrently. Massive problems are
divided into smaller units in order to enhance the overall
performance of HPC systems. Besides, the development of
future Exascale machines can become complex, which requires
writing parallel programs [5], [6]. Parallel programming [3] is
a multi-threaded or multi-processes mechanism used to write
and run the parallel programs on the HPC. There are many
existing parallel programming languages like OpenMP (Open
Multi-Processing), OpenACC (Open accelerators) and MPI
(Message Passing Interface).

www.ijacsa.thesai.org 682 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

Creating parallel programs manually is a hard job and leads
to consuming time and so may not free from human mistakes
[6]. Thus [7], programmers are increasingly using automatic
parallelization tools owing to their ability to automatically
translate serial code into parallel code, thereby saving pro-
gramming time and costs. Many automatic parallelization tools
we will discuss in the related works section, these tools are
available to convert sequential codes to parallel codes in order
to minimize programming errors, and offer accurate results [7].
Besides, these tools take different inputs and combine different
programming models. Combining more than one model is
crucial in achieving optimal performance through parallelizing
programs [8]. Therefore, the hybrid MPI+OpenMP [5] model
is perfect for parallel computing,because it is combine between
shared and distributed memory. Clearly, each tool only suitable
for specific parallel model [9], and no tool is good enough for
all applications .

The current study highlighted there is no parallelization
tool exists on the cluster/hybrid system that converts the
serial code into parallel. In order to leading towards the
objective, we develop a hybrid MPI-OpenACC tool able to
translate sequence C++ codes to parallel codes, implemented
by combining the MPI library with OpenACC directives. Fig. 2
demonstrates how the hybrid model works [10]. The hybridiza-
tion increases performance [11], parallelism, and adapts to
different environments.

Fig. 2. Processing Mechanism of Hybrid MPI and OpenACC.

The study provides the following contributions: The study
proposes a new automatic translation tool that converts serial
C++ programming code into hybrid MPI+OpenACC parallel
code. Besides, we propose an algorithm and theoretical archi-
tecture to enhance performance and decrease implementation
run-time. We implement many applications using the proposed
solution and compute the results on the different Graphics
Processing Units (GPU) devices. Furthermore, the performance
and features of the proposed model are compared with existing
automatic tools. Based on experimental results, our proposed
technique outperforms other models.

The rest of the paper is organized as follows. In Section
2, we discuss the detailed background of parallel computing
models used in our proposed solution and then, Section 3
describes the related works of parallel programming models
based on different hierarchical machines. Section 4, the system
model has been described in detail with the architecture, and
algorithm of the proposed parallelization technique. Section 5,
discusses the experimental platform and the measuring factors

for evaluating the proposed technique. Section 6, provides
results and discussion. Finally, the conclusion in Section 7
followed by future work in Section 8.

II. BACKGROUND

The rapid development of hardware and processors led
to the emergence of parallel computing, which can address
complex scientific and engineering programs quickly and ef-
ficiently. In parallel computing, the program is broken into
several parts to solve computation problems concurrently. Each
part is further broken into a set of instructions to be executed
simultaneously on different processors. The primary benefit of
parallel computing is suitability for modeling and simulation.
Besides, parallel computing saves time and produces useful
results for researchers. Single-core processors are unsuitable to
solve many scientific problems. However, multi-core proces-
sors can solve these problems as they contain GPU. As shown
in Fig. 3, the MPI parallel programming model standard was
launched in 1994 for the application of distributed-memory
communication.

Fig. 3. MPI Distributed Memory.

MPI [12] is an efficient standard programming model ap-
plicable on distributed computing systems for many years, MPI
is implemented on parallel machines and provides good perfor-
mance and portability. MPI implementations are designed to
work on different parallel environments and support classical
communications [13]. MPI provides an explicit method for
the message passing a programming technique on distributed
memory clusters. Besides, distributed resources are spread
over several computing nodes, and in MPI, synchronization
is handled explicitly due to the distributed memory [14].
Many attributes in MPI such as portability, where it is has
a ability to integrate with other programming models. Also,
it is available for many implementations, such as open-source
implementations like MPICH [15], and OpenMPI [16], and
commercial implementations such as Intel MPI library [17],
and IBM Spectrum MPI [18]. Further, functionality [11],
where the MPI library has more than 400 routines. MPI pro-
grams have special structures and listings. First, demonstrating
the basic commands, starting from the MPI header file. Then,
initialize the MPI environment using MPI Init() instruction.
The next stage is by defining the rank and the size of processes
using MPI Comm rank and MPI Comm size consecutively.
In another stage, inserting MPI calling routine code and run
parallelly. Finally using MPI Finalize() to terminate the MPI
execution [19]. With the advancement in GPU technologies,
accelerators have been developed for GPU programming. Each
accelerator follows a unique programming technique. For
example, Compute Unified Device Architecture (CUDA) for

www.ijacsa.thesai.org 683 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

NVIDIA GPUs, Brook+ for AMD GPUs, and LEO for MICs,
etc. [20]. NVIDIA released CUDA in 2007. In November
2011, OpenACC introduced as directive-based programming
model designed for targeting heterogeneous CPU/GPU sys-
tems. OpenACC [11] has features to overcome the limitation
of the CUDA model. CUDA works on NVIDIA GPU only
whereas OpenACC works with many compilers. Besides, Ope-
nACC offers excellent performance and accelerates scientific
applications with little programming efforts [21]. The program-
mer only should insert directives in a suitable place to run the
code on the GPU compiler [7]. Fig. 4 shows the OpenACC
accelerator model, revealing how intensive computations are
offloading from a host device to the GPU device to accelerate
the execution [22].

Fig. 4. OpenACC Accelerator.

Accelerating the program through OpenACC requires an-
alyzing the source code to determine the part that requires
more execution time. As illustrated in Listing 1, inserting the
directives in a suitable place facilitates the code execution on
the GPU compiler.

Listing 1: OpenACC directives
main ()
{

< s e r i a l code>
pragma acc k e r n e l s
/ / a u t o m a t i c l y runs on GPU
{

<p a r a l l e l code>
}

}

III. RELATED WORKS

In this section, we have discussed the detailed hybrid
programming models and auto parallelization tools to convert
serial code to parallel. The programming model combined
with one or more models can increase the performance of
parallelism and the capability to work with the heterogeneous
systems. This combination [23] facilitates the application of
large-scale powerful programming models. Fig. 5 depicts the
hierarchy navigation programming model and is categorized
as follows:

• Single model: MPI

• Dual model: MPI+X

• Tri model: MPI+X+Y

Fig. 5. Hierarchy Navigation in the Programming Model.

1) Single model: MPI
MPI is a standard message passing library for
exchanging data between different nodes. MPI
facilitates program execution among distributed
memory and is an effective mechanism to parallelize
the application [12]. Besides, it is a coarse-grained
technique to execute and manage data on the level
of the node [24]. The MPI version 3.1 introduces
new features and capabilities to facilitate the
parallelization process like creating group quires
and processes [13], [12]. The HPC environments
help to share data across different distributed nodes
using the MPI library. Therefore, MPI programmers
must understand future hardware development for
effective compatibility as MPI provides an excellent
model for future disparate systems.

2) Dual model: MPI+OpenMP
Previous studies [25], [26] introduced a common
hybrid model MPI + OpenMP, using MPI for com-
munication between nodes. Besides, OpenMP is used
for the parallelization process inside the node. Fig. 6
shows the processing mechanism of hybrid MPI
and OpenMP. Data are shared over several nodes
that communicate with each other through the MPI
message passing technique. The OpenMP region is
designed for distributed data, assisting in deciding the
available number of threads. This hybrid approach
is one of the promising models for future HPC
applications [27].

Fig. 6. Hybrid MPI and OpenMP Processing Mechanism.

3) Dual model: MPI+OpenACC

www.ijacsa.thesai.org 684 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

To use parallel programming, Hybrid MPI and Ope-
nACC are an alternative model for hybrid MPI and
CUDA mentioned in [28]. Similar to OpenMP, data
parallelization in OpenACC is based on directives.
The programmers must write their code, interchange-
able to traditional serial code written in C/C++, and
include the #pragma acc loop directive line before
the loop statements. The program written in these
directives is computed with accelerated GPU devices.
In theory, the mixed mode architecture code should
be more efficient more than a pure MPI model due to
combination between shared and distributed memory.
Listing 2 describes a briefing algorithm as a hybrid of
MPI + OpenACC is the simplest way of parallelism
[27].

Listing 2: MPI+OpenACC Processing
1 M P I I n i t () / / I n i t i a l i z e MPI
2 / / P r o c e s s e s s i z e
3 S i z e <−− Get MPI Comm size ()
4 / / P r o c e s s e s r a n k s
5 Rank <−− Get MPI Comm rank ()
6 i f (Rank ==0) / / Master P r o c e s s
7 / * Make p r o c e s s i n g
8 b e f o r e E n t e r i n g MPI comm world * /
9 / / Send da ta when rank > 0

10 MPI Isend ()
11 / / Check p r o c e s s i n g p e r i o d i c a l l y
12 MPI Wait ()
13 i f (Rank>0)
14 / * r e c e i v e da ta from
15 a l l p r o c e s s e s rank > 0 * /
16 MPI Irecv ()
17 # pragma acc d a t a copy (a) co py i n (b)
18 # pragma acc k e r n e l s
19 {
20 While (l o o p s t a t e m e n t s 1 t o N)
21 # pragma acc loop
22 loop s t a t e m e n t 1
23 }
24 MPI Isend () / / send da ta aga in
25 i f (Rank ==0) / / c o l l e c t da ta
26 MPI Irecv () / / r e c e i v e f i n a l da ta
27 M P I f i n a l i z e () / / f i n a l i z e MPI

4) Tri model: MPI + OpenMP + CUDA (MOC)
In 2018, a group of developers introduced the Tri-
Hierarchy hybrid MOC model [23], comprising of
MPI + OpenMP + CUDA to achieve enormous par-
allelism objectives. MPI helps to broadcast data on
the distributed node. OpenMP executes data on CPU
threads; whereas, CUDA executes data on accelerated
GPU cores [29]. Besides, the MOC model facilitates
performance via inflexible parallelism. We develop a
similar HPC application using a huge cluster system
with multiple nodes and GPU. MOC model offers a
coarse and efficient massive parallelism.

As discussed previously, writing parallel code manually
is tedious and time-consuming. The auto parallelization tools
help to overcome these problems. Many tools can convert
sequential codes to parallel codes and add the parallelization
constructs or directives in a suitable place [9].

One study [30] provides a concise survey of existing par-
allel tools and classifies these tools based on different criteria
like a history of tools, tools contributions, and support assisting
for parallelization. A new tool called EasyPar proposed in
the study and this tool capable to assisting and facilitating the
program’s development phase. The authors in [31] analyze the
performance of two tool(Cetus and Par4All). The Cetus is a
source-to-source transformation tool using OpenMP directives
to convert ‘C’ sequential code to parallel codes. However, the
Par4All is an open-source tool to convert sequential code to
new OpenMP, CUDA, and OpenCL source codes. The study
performed on two complex program [31] to find which the
best performance between tools. The results showed the tools
are effective for single loop programs but not for the nested
loops. A study [32] proposes a new parallelization model called
PyParallelize, which automates the parallel process by reading
source code without modifications from the programmer. After
implementing the model on different benchmark programs, the
results showed a relatively high rate of accuracy. However,
this model fails to work efficiently when nested loops are
more than two in source code. Another study [4] presents
a new converting tool called S2P (c serial to Parallel) to
perform parallelization on different programs. Furthermore,
they [4] compare the tool performance with other existing
tools. The S2P tool offers better results in some cases and it
assists in minimizing the overhead thread management during
the execution of parallel code. Authors in [9] proposed an
automatic code parallelization tool, which converted C serial
code to the equivalent version of parallel using OpenMP
parallel programming. However, this tool focuses only on
parallelism tasks without considering loops parallelism.

A new model architecture suggested in the study [33], and
that model can translate any serial application into parallel
code, using individual parallel programming likes OpenMP,
MPI, OpenCL, and OpenACC or hybrid OpenMP-MPI. This
model is under development with a promise to solve automatic
parallelization issues. Besides, a study [7] proposed a tool to
speed up multicore processors. The proposed tool achieves
4.27 speedup after using 4 cores and 8 threads when increasing
the length of the matrix.

We conclude from the previous literature, there is no tool
provides full optimal translation. Thus, research is required
to address the limitations of these tools. Tools such as SUIF,
CAPO, and Polaris fail to support all operating systems.
Also, these tools only used C and FORTRAN languages [30].
Besides, it is difficult to run the generated code on distributed
memory because the tools such as Par4All and S2P use the
OpenMP programming model, which works exclusively on
shared memory. The parallelization in nested loops are an
advantage of the tool. Therefore it is a limitation in the tools
like SUIF and Intel compilers [32]. In the next section, we
will discuss in detail the methodology, revealing the proposed
S2PMOACC tool.

www.ijacsa.thesai.org 685 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

IV. METHODOLOGY

This study introduces a new automatic translation tool to
reduce the software code’s execution time sequentially by
massively improving the performance of huge and complex
programs. We use all the available resources to convert serial
code to parallel code to enhance the program performances
and reduce the execution time. We proposed a new automatic
translation tool to convert serial C++ code into parallel code.
Fig. 7 illustrates the proposed translation tool S2PMOACC
(Serial To Parallel MPI and OpenACC) architecture, taking
serial code as input and generating its parallel code automat-
ically. The proposed solution enhances program performance
and decreases implementation time.

Fig. 7. Architecture of Proposed Automated Translation Tool S2PMOACC.

The steps of the translation tool are elaborated as follows:

1) Input C++ file
This is the first phase where the source file

enters the command line using the CLC library.
The C++ source file must be written without any
syntax error. Then, the file name is moved to the
next steps for further processing.

2) Read (tag.Destination)
This step reads input from the user and enters

the information related to the MPI Send call.
Using tag in the MPI to distinguish between
different processes and the destination is an INT
number for process rank where every process
has a unique rank in the MPI environment. This
information should be provided by the user to
write statements when generating the parallel
code.

3) Read (tag.Source)
As the previous step, the user enters informa-

tion of tag and source related to MPI Recv call.
Source is an INT number to determines the rank
of the source process. To write a suitable receive
statement, the information must be entered cor-
rectly.

4) Generate AST by ANTLR

ANTLR tool will read the file contents and gen-
erate the AST to be used in the following steps.
As shown in Fig. 8, many procedures in ANTLR
are revealed. First, reading a file’s contents by
passing the name to a specific routine to handle
the process. Then, the contents streaming fed to
lexer that contains lexer grammars to identify
and produce different token streams. Finally,
the token streams are entered into the parser to
generate AST based on pre-defined parser rules.

Fig. 8. ANTLR Tool Phases.

5) Identify parallel regions
In this step, the generated AST is used to

identify the parallel regions of the code using
inherited class to access and identify different
loops and variables.

6) Determine the dependency
In this step, the dependency test occur to de-

termine the possibility of parallelization. Special
java class used to find out parallel regions like
loops. The dependency test used to: accessing
loop, fetch statements in the loop body, and
decide if dependency inside the body block
existing or not. For example if S1 and S2 are
statements inside the loop, if S2 depend on S1
result, then the dependency is detected. There-
fore, the target file is generated without parallel
directives. Otherwise, the dependency not found
and parallel file generated.

7) Add MPI header file
Here, include MPI header file library ‘mpi.h’

in order to use MPI routines when generating
parallel code.

8) Define MPI instructions
Initialize MPI environment through using

MPI Init() instruction. Then define Ranks for
MPI to check cluster system specification for
defining the ranks via MPI Comm rank that
provide a logical way of numbering the MPI pro-
cess. Further, define MPI communication world
statements via MPI Comm world in order to
run all MPI jobs across several processes. Ranks
in this step used to find out master and slave
processes in MPI environment.

9) Insert suitable MPI Send statement
In order to write a suitable MPI send statement

in the parallel file the information get it from
a user in the previous steps will be used. The
statement will be insert based on a pre-defined
indicator from the user. Also, the information
should be correct to avoid mistakes in writing
process.

www.ijacsa.thesai.org 686 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

10) Insert suitable MPI recv statement
The information entered from the user is used

in this step. Besides, the pre-defined indicator is
used to identify the place to insert receive MPI
operation.

11) Insert suitable OpenACC directive
Insert OpenACC directives based on the paral-

lelization annotations. This step involves insert-
ing an OpenACC directive to the source code
to notify the OpenACC-compiler to parallelize
the objects of the classes, run in parallel during
run-time.

12) Writing Parallel code
Write parallel code to generate the code, which

includes the MPI routines and OpenACC parallel
computing pragmas via #pragma acc atomic and
#pragma acc parallel loop.

Regarding the proposed automated translation, we discuss a
comprehensive overview of how C++, MPI, and OpenACC are
translated from serial code to dual auto parallelization using a
hybrid programming model. Algorithm 1 presents serial code
to dual auto parallelization.

Algorithm 1 : Serial Code to Dual Auto Parallelization
1: Input C++ file.
2: Read (Tag, Destination) information.
3: Read (Tag, Source) information.
4: Generate AST by ANTLR.
5: Identify parallel regions(for-while-do while)
6: Perform dependency analysis for each region.
7: Determine the possibility of parallelization.
8: Add MPI header file ‘mpi.h’.
9: Initialize MPI environments ’MPI Init()’

10: Define MPI communication world statements
11: Define MPI communications ranks
12: Insert suitable MPI Send().
13: Insert suitable MPI Recv().
14: Insert OpenACC directives based on the parallelization annota-

tions.
15: Writing parallel code.
16: Save the output file in the directory.

The next sections will shows the experimental platform
and measuring factors followed by results and discussion for
testing the proposed tool and illustrates the capabilities and
limitations of our tool compared with other existing tools.

V. EXPERIMENTAL PLATFORM AND MEASURING
FACTORS

This section demonstrates the experimental platform to an-
alyze the performance of the proposed solution. We quantified
different measures, taking HPC benchmarks as performance
metrics of the execution time (Secs) and system speedup
(Serial/Parallel) to compare the proposed tool and other tools.
We perform all the experiments on Intel i7 with four cores and
eight threads. Table I shows the testing environment specifica-
tions. The HPC system and applications are evaluated based
on fundamental performance metrics. We measured different
performance attributes including execution time (Secs) and
speedup (Serial/Parallel) of the system.

TABLE I. ENVIRONMENT SPECIFICATIONS

Feature value
Processor Type Intel(R) Core(TM) i7-1065G7

Number of cores 4
Number of threads 8
Operating Systems Windows 10

Clock speed 1.30 GHz
Graphic card NVIDIA GeForce MX250

RAM 16 GB

To evaluate the performance attributes, we select a dense
matrix multiplication (DMM) with different sizes and com-
puted on the different numbers of MPI processes and GPUs
devices. We evaluate the speed up performance metric where
matrix multiplication is computed without using a single num-
ber of GPU core to determine the speed trend. Without matrix
multiplication, we run speed on the experimental setup and
calculate the time taken in sequential processing. Ideally, the
speedup is calculated by following the fundamental Amdahl’s
law [34] and Gustafson [35].

SpeedUp(SP) =
Tserial

Tparallel
(1)

Where T serial is the optimal time in sequential processing
and T parallel for parallel computing algorithms. According to (1),
we can calculated speedup based on execution time by imple-
menting proposed solution on DMM benchmarking application
against varying dataset. The possible curve of speedup [36] in
an algorithm could be super-linear, perfect linear, linear and
sub-linear as demonstrate in Fig. 9.

Fig. 9. Speedup Possible Curves.

VI. RESULTS AND DISCUSSION

We evaluate the proposed parallelization technique using a
dual hierarchical hybrid parallel programming model via the
implementation of linear algebraic dense matrix multiplication.
All results have been executed using the quad-core processor.
Besides, we quantified various matrix sizes. We also examine
linear DMM application performance in different datasets,
assisting in determining the execution times in secs. Besides,
four well-known automatic parallelization tools S2PMOACC,
Cetus, Par4all, and S2P were included in the study. The
speedup of studied tools was calculated to determine the
efficiency of each tool.

www.ijacsa.thesai.org 687 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

In the 1st experiment, we run a serial matrix multiplication
by different sizes. Then, we run same matrix using hybrid
parallel code executing in different number of MPI processes to
evaluate the execution time between serial and hybrid version.
We observed the increasing in execution time in serial version
unlike parallel codes. Fig. 10, Fig. 11, and Fig. 12 shows the
obtained results.

Fig. 10. Execution Time of Matrix 1000x1000.

Fig. 11. Execution Time of Matrix 2000x2000.

Fig. 12. Execution Time of Matrix 4000x4000.

In the 2nd experiment with a minute amount of matrix
multiplication by 1000 x 1000 matrix size, we experiment
this dataset with single GPU by running the existing tools
along with our proposed solution. S2PMOACC take 8 secs
to complete the execution while Cetus computes in 13 secs,
Par4All end its execution in 22 secs, and S2P calculated
executed time is 24 secs. From Fig. 13, the results show that

our proposed model execution time is negligible in minimum
resources. Besides, we increase the GPU cores and analyze the
same translation tools with an equal number of given devices.

Fig. 13. Performance (Execution Time) in DMM.

According to Fig. 13, we measure second performance
matric as speedup in experiment 2 that involves the optimal
time taken in serial to parallel processing for all the
implementation run with an equal number of resources.
Fig. 14 shows the speedup of our tool along with other tools
when Using 1000 x 1000 matrix multiplication with different
number of GPU.

Fig. 14. Performance (Speedup) in DMM.

www.ijacsa.thesai.org 688 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

Finally, we study the capabilities and features of the in-
cluded tools. We observed that our tool has more features than
other tools. Table II provide the summary of the comparison.

TABLE II. TOOLS SPECIFICATIONS COMPARISONS.

Feature Tools
S2PMOACC Cetus Par4all S2P

Operating Systems Windows Linux Linux Linux
Linux

Input Language C,C++ C Fortran,C C

Technique used MPI OpenMP OpenMP OpenMP
OpenACC CUDA Pthread

Hybrid Output Yes NO NO NO

Support For loop Yes Yes Yes Yes

Support While Yes NO NO NO

Support Do while Yes NO NO NO

VII. CONCLUSION

The application of HPC has increased significantly in all
scientific fields and HPC systems has been used to solve
complex computational programs. Despite running software
programs sequentially, researchers and programmers face dif-
ficulties in dealing with huge and complex programs, which
increase the execution time. The serial code must be converted
to parallel code to improve the program performance and
reduce the execution time. Therefore, parallelization tools must
assist programmers in the converting process. In this work,
we proposed a novel automatic translation tool that converts
serial C++ code into parallel code using a hybrid parallel
programming model. This auto-translation tool supports a dual
hierarchical MPI and OpenACC parallel computing model for
heterogeneous systems that use GPU devices for providing
parallelism. We implement the proposed solution in the DMM
application by using different number of MPI processes in
the first experiment. The second experiment compare the pro-
posed tool execution time and speedup with well-known auto-
translation tools such as Cetus, Par4all, and S2P tools. The
Third experiment compare the features and limitations between
tools. Based on the experimental results, the S2PMOACC
outperformed the existing tools and provides complete auto
parallelism in all performance metrics.

VIII. FUTURE WORK

In the near future ,the auto-parallel computing systems
are in high demand as they support ECS applications. There-
fore, we must have an adaptive auto-translation technique for
parallelizing sequential code to support the future Exascale-
computing system, large-scale cluster system, multi-core dis-
tributed system, and heterogeneous cluster system. For that, we
aim to implement more enhancement to our proposed tool to
keep pace with the continuous development of future systems.

REFERENCES

[1] J. Diaz, C. Muñoz-Caro, and A. Niño, “A survey of parallel pro-
gramming models and tools in the multi and many-core era,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 8, pp.
1369–1386, 2012.

[2] A. Roy, J. Xu, and M. H. Chowdhury, “Multi-core processors: A new
way forward and challenges,” in 2008 International Conference on
Microelectronics, 2008, pp. 454–457.

[3] A. Barve, S. Khomane, B. Kulkarni, S. Ghadage, and S. Katare,
“Parallelism in c++ programs targeting objects,” in 2017 International
Conference on Advances in Computing, Communication and Control
(ICAC3), 2017, pp. 1–6.

[4] A. Athavale, P. Ranadive, M. Babu, P. Pawar, S. Sah, V. Vaidya, and
C. Rajguru, “Automatic sequential to parallel code conversion,” GSTF
Journal on Computing (JoC), vol. 1, no. 4, 2014.

[5] D. Akhmetova, R. Iakymchuk, O. Ekeberg, and E. Laure, “Performance
study of multithreaded mpi and openmp tasking in a large scientific
code,” in 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2017, pp. 756–765.

[6] K. R. Varsha, “Automatic parallelization tools : A review,” International
Journal of Engineering Science and Computing IJESC, vol. 7, no. 3,
pp. 5780–5784, 2017.

[7] A. Barve, S. Khandelwal, N. Khan, S. Keshatiwar, and S. Botre, “Serial
to parallel code converter tools: A review,” in International Journal
of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference” NCPCI-2016, vol. 19, 2016.

[8] A. M. Alghamdi, F. E. Eassa, M. A. Khamakhem, A. S. A. AL-Ghamdi,
A. S. Alfakeeh, A. S. Alshahrani, and A. A. Alarood, “Parallel hybrid
testing techniques for the dual-programming models-based programs,”
Symmetry, vol. 12, no. 9, p. 1555, 2020.

[9] M. Mathews and J. P. Abraham, “Automatic code parallelization with
openmp task constructs,” in 2016 International Conference on Informa-
tion Science (ICIS), 2016, pp. 233–238.

[10] J. Etancelin and J. Kraus, “Multi-GPU programming with OpenACC
and MPI,” in GPU Technology Conference, 2016. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01471165

[11] A. M. Alghamdi and F. E. Eassa, “Parallel hybrid testing tool for appli-
cations developed by using mpi+ openacc dual-programming model,”
Adv. Sci., Technol. Eng. Syst. J., vol. 4, no. 2, pp. 203–210, 2019.

[12] “Message passing interface forum.” [Online]. Available: https:
//www.mpi-forum.org/

[13] P. Balaji and W. Gropp, “Advanced mpi programming,” 2016. [Online].
Available: https://www.mcs.anl.gov/∼thakur/sc16-mpi-tutorial/slides.
pdf

[14] C.-T. Yang, C.-L. Huang, and C.-F. Lin, “Hybrid cuda, openmp, and
mpi parallel programming on multicore gpu clusters,” Computer Physics
Communications, vol. 182, no. 1, pp. 266–269, 2011.

[15] “Mpich implementation.” [Online]. Available: https://www.mpich.org/
[16] “Open mpi: Open source high performance computing.” [Online].

Available: https://www.open-mpi.org/
[17] “Intel mpi library.” [Online]. Available: https://software.intel.com/
[18] “Ibm spectrum mpi - overview — ibm.” [Online]. Available:

https://www.ibm.com/products/spectrum-mpi
[19] A. S. A. Alghamdi, A. M. Alghamdi, F. E. Eassa, and M. A. Khe-

makhem, “Acc test: Hybrid testing techniques for mpi-based programs,”
IEEE Access, vol. 8, pp. 91 488–91 500, 2020.

[20] J. Kim, S. Lee, and J. S. Vetter, “Impacc: a tightly integrated mpi+
openacc framework exploiting shared memory parallelism,” in Proceed-
ings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing, 2016, pp. 189–201.

[21] R. Farber, Parallel programming with OpenACC. Newnes, 2016.
[22] S. Chandrasekaran and G. Juckeland, OpenACC for Programmers:

Concepts and Strategies. Addison-Wesley Professional, 2017.
[23] M. U. Ashraf, F. A. Eassa, and A. A. Albeshri, “Efficient execution of

smart city’s assets through a massive parallel computational model,” in
International Conference on Smart Cities, Infrastructure, Technologies
and Applications. Springer, 2017, pp. 44–51.

[24] J. Dinan, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur,
“An implementation and evaluation of the mpi 3.0 one-sided com-
munication interface,” Concurrency and Computation: Practice and
Experience, vol. 28, no. 17, pp. 4385–4404, 2016.

[25] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chap-
man, “High performance computing using mpi and openmp on multi-

www.ijacsa.thesai.org 689 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

core parallel systems,” Parallel Computing, vol. 37, no. 9, pp. 562–575,
2011.

[26] D. Akhmetova, R. Iakymchuk, O. Ekeberg, and E. Laure, “Performance
study of multithreaded mpi and openmp tasking in a large scientific
code,” in 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2017, pp. 756–765.

[27] T. Katagiri, “Basics of mpi programming,” in The Art of High Perfor-
mance Computing for Computational Science, Vol. 1. Springer, 2019,
pp. 27–44.

[28] D. Jacobsen, J. Thibault, and I. Senocak, “An mpi-cuda implementation
for massively parallel incompressible flow computations on multi-gpu
clusters,” in 48th AIAA Aerospace Sciences Meeting Including the New
Horizons Forum and Aerospace Exposition, 2010, p. 522.

[29] F. Bonelli, M. Tuttafesta, G. Colonna, L. Cutrone, and G. Pascazio, “An
mpi-cuda approach for hypersonic flows with detailed state-to-state air
kinetics using a gpu cluster,” Computer Physics Communications, vol.
219, pp. 178–195, 2017.

[30] S. Sah and V. G. Vaidya, “A review of parallelization tools and intro-
duction to easypar,” International Journal of Computer Applications,
vol. 56, no. 12, 2012.

[31] S. Prema and R. Jehadeesan, “Analysis of parallelization techniques
and tools,” International Journal of Information and Computation
Technology, vol. 3, no. 5, pp. 471–478, 2013.

[32] A. J. Almghawish, A. M. Abdalla, and A. B. Marzouq, “An automatic
parallelizing model for sequential code using python,” International
Journal, vol. 7, no. 3, 2017.

[33] K. Alsubhi, F. Alsolami, A. Algarni, K. Jambi, F. Eassa, and M. Khe-
makhem, “An architecture for translating sequential code to parallel,” in
Proceedings of the 2nd International Conference on Information System
and Data Mining, 2018, pp. 88–92.

[34] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, 2008.

[35] S. Ristov, R. Prodan, M. Gusev, and K. Skala, “Superlinear speedup
in hpc systems: Why and when?” in 2016 Federated Conference on
Computer Science and Information Systems (FedCSIS), 2016, pp. 889–
898.

[36] C. A. Navarro, N. Hitschfeld-Kahler, and L. Mateu, “A survey on
parallel computing and its applications in data-parallel problems using
gpu architectures,” Communications in Computational Physics, vol. 15,
no. 2, pp. 285–329, 2014.

www.ijacsa.thesai.org 690 | P a g e

