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Abstract—At present face detectors use a large Convolutional
Neural Network (CNN) to achieve high detection performance,
which is a widely used sub-area of artificial intelligence. These
face detectors have a large number of parameters which reduces
their detection speed dreadfully on a system with low computa-
tional resources. This is a challenging problem to achieve good
performance and high detection speed with finite computational
power. In this paper, we propose a single-stage end-to-end
trained face detector to address this challenging problem. The
computational cost is reduced by using depthwise convolution
and swiftly reducing the size of an input image. The early
layers of the model use CReLU (Concatenated Rectified Linear
Unit) activations to preserve the information and generate better
representative features of the input. Respective Field (RF) blocks
used in the model improve the detection performance. The
proposed model is of 1.7 Megabytes size, able to achieve 42
FPS (Frame Per Second) on CPU (i5-8330H) and 179 FPS on
GPU (GTX1060). The model is evaluated on various benchmark
datasets like WIDER FACE, PASCAL faces and AFW and archive
good performance compared to other state of art methods.

Keywords—Artificial intelligence; computer-vision; Convolu-
tional Neural Network (CNN); face detector

I. INTRODUCTION

Face detection is defined as the problem of detecting
and localizing faces in a given image. It is a basic and
long-standing problem of active research in computer vision.
Applications such as face recognition, face tracking and face
hallucination, use face detection as a primary and essential pre-
processing step. Many practical systems for facial analysis,
surveillance and bio-metric, requires fast and accurate face
detection.

There are two challenging problems encountered in face
detection. The first problem is of classifying faces with a large
variety of facial appearances from a complex background. Sec-
ond of detecting faces of different sizes at different positions in
given images. The two problems are related to computational
cost and speed of face detection. It is a challenging task to
develop a face detector that creates a balance between two
problems. Another problem is that is the boundary of an object
is blurred by imaging systems also [1], [2].

Face detection methods can be broadly divided into two
categories, traditional methods and CNN based methods. The
traditional methods, are very fast but does not have good
accuracy. These methods use hand-crafted features to train
the classifiers. Viola-Jones [3] and Deformable Part Models

(DPM) [4] are good examples of traditional methods which
have good speed with decent accuracy. The performance of
these detectors decreases in an unconstrained environment.
This is mainly due to non-robust handcrafted features.

The CNN based methods can achieve high performances
at cost of speed. This significant improvement in the accu-
racy of face detection diverted researchers attention towards
CNN based face detectors. CNN models can achieve high
performance by using a large number of convolutional layers,
which are also responsible for the slow speed of the detector.
For example, some recent high performing face detectors like
DSFD [5], Pyramidbox [6] and Retinaface [7], use large CNN
models like VGG-16 [8] and Resnet-152 [9]. These CNN
models consist of a large number of parameters, for example,
VGG-16 has 100 million parameters and Resnet-152 has 65
million parameters. CNN methods [5], [6], [7] are slow, hence
not suited for many practical systems. Cascade CNN [10], [11]
can be used to improve the detection speed. But these detectors
suffer two limitations. First, each stage of the cascade is trained
and optimized separately which make training difficult and
also affect its performance. Second, the speed of the detector
directly proportional to the number of faces in an image.

In this paper, a lightweight single-stage end-to-end trained
face detector with fast speed and good accuracy is proposed.
The proposed method can be divided into two networks,
backbone network which extracts feature from input images
and detection network which localize the faces. The back-
bone network uses depthwise separable convolution with large
strides to swiftly reduces the dimension of input. Instead
of using the max-pooling layer model as given in [12], the
proposed model use depthwise separable convolution to reduce
the size because it adds extra feature layers and hence provides
better feature representation. CReLU [13] activation are used
to preserve the information while reducing the size of the input
using large strides in the proposed network. The detection
network consists a Receptive Field (RF) blocks followed by
depthwise convolution layers. A feature map from RF blocks
is used for detection.

The main contribution of this paper can be summarized
as follows: (1) Propose a new lightweight backbone design to
overcome the drawbacks of previous methods. (2) The new
lightweight face detection method is proposed by integrating
the backbone network with an RF-based detection network
for fast and accurate face detection. (3) The experiments
performed on multiple benchmark datasets show proposed
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Fig. 1. General Frame Work of the Proposed Model. The Proposed Network can be divided into two parts i.e. Backbone Network and Detection Network.

method performs better than other methods. (4) Experiments
performed on CPU and GPU hardware shows that the proposed
method is suitable for practical systems. Hereafter the paper
is organized as follows, Section 2 contain a brief review of
available CNN based face detectors and techniques used in
proposed methods. Section 3 is about the proposed method, it
explains the framework of the method and its implementation
details. Results obtained from experiments are discussed in
Section 4, followed by the conclusion in Section 5.

II. RELATED WORKS

A. CNN based Face Detectors

Almost all modern days face detectors uses CNN archi-
tectures. The CNN based face detectors can be classified into
three categories, i.e., cascade face detectors, region-based face
detectors and single-stage face detectors.

The cascade face detectors divide the detection task into
more than one CNN networks. CNN cascade structure in-
troduced in [10], it consists of six CNN networks, three
networks for each classification and calibration respectively.
Architecture consisted classification network followed by a
calibration network. MTCNN [11] reduced the number of
networks to three by integrating classification and calibration
task into one network. The first network is called P-Net, which
proposes a facial region. Later two networks, O-Net and R-
net, refines the proposals. The author in [14] divided P-Net
into six sub-networks to detect faces at multiple scales. This
improves detection performance for tiny faces. The detection
performance of cascade face detectors are is improved by
adding extra information about facial parts [15], [14]. In cas-
cade framework, the first Network proposes the facial regions
and subsequent networks process these regions. This makes
the speed of detectors dependent on the number of faces in
the images and it is a major limitation of these detectors.

The region-based and single-stage detectors are also known
as two-stage and single-stage detectors, respectively. Both the

detectors were developed for generic object detection. Later
these detectors were modified to be used for face detection.
The region-based detectors have two stages, first stage gen-
erates object proposal regions from proposal generators. The
precise location and class of the object are estimated in the
second stages. R-CNN based face detectors [16], [17] use
RPN (Region Proposal Networks [18]). The performance of
the method is further improved by CMS-RCNN [19] by adding
contextual in formations. The region-based detectors use large
CNN networks for the second stage. This lead to high detection
accuracy but framework processing speed becomes slow.

Single-stage eliminates the region proposal stage and use a
single stage to make predictions. These detectors are computa-
tionally efficient compared to region-based detectors but suffer
detection accuracy. Single-stage face detectors are inspired
by generic object detectors like YOLO [20] and SSD [21].
These detectors have attracted more researchers because of
there high-speed detection. Different architectures [5], [6], [7]
have been proposed recently. Lightweight CNN architecture
[12], [22] uses inception module, CReLU activation and also
propose densification strategy for anchors to improve recall.
LFFD [23] paper proposes an anchor-free lightweight model
by using Receptive Fields (RF) as natural anchors for detec-
tion. The model parameters were significantly reduced to 0.1
million in [24] by integrating the image pyramid with the CNN
network and using weight sharing. But still, there is a large
room for improving the processing speed without sacrificing
detection accuracy.

B. Receptive Field (RF) and Dilation

Receptive Fields (RF) in CNN are inspired by the human
visual system. RF in the visual system is neurons respond to a
particular area of the retina. Similarly, in CNN each neuron has
an RF field that responds to a particular area of an input [25]. In
other words, RF defines the local region of an image to which
the neuron will respond. The area RF is determined by the
kernel size used in the convolution layer. RF has two important
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Fig. 2. Detailed Architectural Description of Blocks used in Proposed Methods. (a) Showing the Conv-Blocks with CReLU activation, (b) show Depthwise
Separable Convolution used DW Conv block in Backbone Network and RF-Block, (c) Standard Convolution Layer for Conv-blocks used in Backbone Network

and RF-Block and (d) detailed Architectural view of RF-Blocks used in Detection Network of Proposed Method.

properties, first, each neuron in CNN has unique activation for
a given image region and second, pixels surrounding RF have a
large impact on activation. The impact of neighbouring pixels
can be represented as Gaussian-Distribution [23], and known
as ERF (Effective RF), This RF also helps in detection by
adding contextual information to the network.

The RF of CNN can be increased by adding convolution
layers, depthwise convolution or by using dilated convolutions
[26]. Adding convolution layers (increasing depth of networks)
increases computational cost. So using dilation convolution
and depthwise more effective way to increase RF. The dilation
convolution introduced in [27] as astrous convolution. Dilation
convolution is very similar to conventional convolution layer
except there is a gap in kernel values which is decided by
dilation rate. The author in [12], [23] used RF and dilation
convolution for face detection.

C. Depthwise Separable CNN

Many states of art CNN architectures [28], [29] uses
depthwise separable convolution layer. The depthwise convo-

lution layer is computationally more efficient than a standard
convolutional layer. The standard convolution layer performs
convolution operation on input volume and combines generated
features in one step. The computational cost of standard convo-
lution is Dk.Dk.M.N.DF .DF [28]. Where DFandDk is the
spatial dimension of input feature and kernel size respectively.
While M, N are the number of channels in input features
and number of convolution filters respectively. To reduce the
computational cost, the one-step process is divided into two
steps by using factorized convolution also known as depthwise
separable convolution.

The first step is depthwise convolution operation performed
on each channel of the input feature map separately. two
assumptions are made in this step, (1) that the number con-
volution filter is equal to the number channels of the input
feature map and (2) the spatial size of input and output feature
maps are the same. If depthwise convolution is performed on
input feature map of spatial size Dk × Dk ×M using filter
of DF × DF spatial size. Then Dk × Dk ×M × DF × DF

multiplication operations are performed in this stage.
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Second step is point wise convolution, 1 × 1 convolution
is performed across M channels output of depthwise con-
volution. This help to gain cross channel information and
linearly combine the output. If N filters of 1× 1 dimension is
used on Dk ×Dk ×M depth wise convolution output. Then
Dk ×Dk ×M ×N multiplication operations are performed.
Therefore the computational cost of depthwise convolution is
Dk×Dk×M × (DF ×DF +N). For qualitative comparison
consider an image of 100×100×3 is passed through depthwise
convolution layer and standard convolution layer. If N = 10,
then standard convolution performs 2.7×107 operations while
dethwise convolution perform 5.7 × 106 operations which is
approximately 4.7 times less than of standard convolution
operations.

III. PROPOSED METHOD

In this section, the overall framework of the proposed
model is introduced. Followed by a detailed description of
model training.

A. Overall Framework of Proposed Model

Proposed face detectors can be divided into two networks,
i.e. backbone network and detection network as shown in
Fig. 1. The backbone network designed to swiftly reduce the
dimensions of the input images without losing information
during the process. The backbone network consists of a total of
five convolution blocks, the first and third blocks are standard
convolution layers with CReLU activation and having large
strides. The remaining second, fourth and fifth blocks are
depthwise separable convolution block. CReLU is used for
its reconstruction property which is of information preserving
nature, which leads to features reconstruction power of CNN
[13]. CReLU activation is applied by concatenating the linear
response of the CNN layer and its negation and passing it
through ReLU activation as shown in Fig. 2(a). Mathematically
it is defined as:

∀x ∈ IR, ρc
∆
= ([x]+, [−x]+) (1)

Where ρc : IR → IR2, CeRLU activation and x is
linear response of CNN network. From the above equation
1, it can be easily deduced that CReLU activation perverse
both negative and positive response. Hence CReLU scheme
produces representative features of input data [13]. To reduce
the computational complexity depthwise separable convolution
block are used. These blocks consist of depthwise convolution
followed by batch normalization and ReLU activation as shown
in Fig. 2(b). The feature obtained from a backbone network
is feed into the detection network for further processing.
The detection network is based on the cascade structure of
SSD [21]. The model uses features from RF Blocks, which
are spatially decreasing but have increasing respective field.
Feature maps from different layer form multi-scale feature map
to handle faces of variable sizes. RF-block-1, RF-block-2 and
RF-block-3 are associated with anchor boxes to detect faces of
small, medium and large sizes respectively. Multi-layer, multi-
branch RF-blocks uses different kernels and dilation rates.
This design has the advantage of classifying faces (with facial
variation) from a complex background.

RF-blocks consist a bottleneck structure and residual con-
nection as [30], [31]. The first layer of multi-branch design
is 1 × 1 convolution, used to reduces the channel in feature
maps. Then to reduce the computational cost 3× 1 and 1× 3
convolution is used. To increase the non-linearity and effective
receptive field, depth-wise separable convolution with different
dilation rate are used. Increased non-linearity, generates a more
robust feature representation of the input. The increased effec-
tive receptive field helps to capture more contextual informa-
tion for accurate classification. The branches are concatenated
and a shortcut path is added to it. Fig. 2(d) shows the detailed
architecture of the RF-block. Figure 2b and 2c show the
architectural view of convolutional and depth wise separable
convolution used in RF-blocks. In the model, each convolution
layer is followed by batch normalization and ReLU activation
respectively. This is done to reduce overfitting, induce sparsity
and to handle the vanishing gradient problem.

B. Implementation Details

The model uses the anchor of 1:1 aspect ratio and densifi-
cation strategy of [12]. The scale of anchors for RF block-1 are
32,64 and 128, for RF block-2 is 256 and RF block-3 is 512
pixels. The model is trained on WIDER FACE [32] training
data set. This dataset consists of 12880 training images with
different sizes, occlusion and blurriness levels. The training
data is prepared by removing extremely small faces (height or
width less than 15 pixels), heavily blur and occlude faces. For
data augmentation, different strategies like random cropping,
horizontal flipping, scale transformation and colour distortion
are used during training. During training, the ground truth
anchor boxes are matched to the predicted bounding box if the
jaccrad index is more than 0.40. The multi-box loss objective
function [21] is used in a training. It is a weighted sum of
cross-entropy loss for bounding box confidence and smooth
L-1 loss for bounding box coordinate regression. It is defined
as:

L(ci, di) =
1

Ncls

∑
i

Lcls(ci, c
∗
i )+

λ

Nreg

∑
i

Lreg(di, d
∗
i ) (2)

where, L(ci, di) is multi-box loss for given ci confidence
score of ith bounding box with di coordinates. Lcls(ci, c

∗
i )

is cross entropy loss between predicted confidence score
c∗i bounding box and ground truth confidence score ci.
Lreg(di, d

∗
i is smooth L1 loss for predicted and ground bound-

ing box coordinates. λ is hyper parameter used to balance the
sum of losses (λ = 2 is used for training the network). Model
is trained using batch size 32 for 280 thousand iterations. SGD
optimizer used in training have 0.9 momentum, 5 × 10−4

weight decay. Model is trained using variable learning rates
of 10−3, 10−4 and 10−5 for 160K iterations 10−3, 80K and
40K iterations respectively. The model is implemented using
PyTorch framework1.

IV. RESULTS AND DISCUSSION

In this section proposed face detection algorithm is evalu-
ated on the benchmark datasets, followed by speed comparison
with available lightweight models.

1https://pytorch.org/

www.ijacsa.thesai.org 741 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 2, 2021

Fig. 3. PR Curve Comparing results of Proposed Methods and other
Methods on (a) easy (b) medium and (c) hard validation subsets.

A. Experimental Setup

The proposed method is implemented using Pytorch ver-
sion 1.6.0 on i5-8330H@2.30GHz processor system with 16
Gigabytes RAM and NVIDIA GTX 1060 GPU (Graphical
Processing Unit).

B. Evalution on Benchmark Dataset

The proposed algorithm is evaluated on three benchmark
face detection dataset, WIDER FACE [32], Pascal Face [33]
and AFW [34] [33]. The proposed method is compared with
other state of art lightweight detector using Average Precision
(AP) percentage metric and PR (Precision-Recall) curves.

1) WIDER FACE Dataset: The dataset contains total 32203
images of faces different pose, scale, facial expressions and
illumination. The dataset contain training and validation set.
Validation set have three subsets validation data based on

difficulties level of face detection, these are easy, medium
and hard. The proposed method is trained on training set
and validated results on all three validation subsets. Proposed
method is validated against baseline methods [3], [4], [35],
[36] and other methods [11], [12], [22], [37], [38], [39], [24].
Table I shows the results of performance comparison proposed
methods with other methods. The proposed method shows the
better result on easy and medium validation set, comparable
result on hard dataset. This could be due to the fact that
the network was trained on face which have height or width
greater than 15 pixels and heavily occlude and blur faces were
removed from the training set. Fig. 3 shows the PR curve of
the proposed method compared against base line methods.

2) AFW and PASCAL Face Dataset: AFW dataset is Flickr
images collection of 205 images with 473 face annotation.
Table 2 shows the performance comparison of proposed
method with standard methods using mAP% metrics. The

Fig. 4. PR Curve Comparing results of Proposed Methods and other
Methods on (a) AFW and (b) Pascal dataset.
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TABLE I. PERFORMANCE RESULT OF PROPOSED METHOD ON THE
VALIDATION UBSETS OF WIDER FACE. THE REPORTED VALUES ARE

MAP%

Methods Easy Medium Hard
VJ∗[3] 41.2 33.3 13.7
DPM∗ [4] 69.0 44.8 20.1
ACF∗ [35] 64.2 52.6 25.2
Faceness∗ [36] 70.4 57.3 27.3
MTCNN [11] 85.1 82.0 60.7
Faceboxes [12] 79.1 79.4 71.5
Faceboxes-2 [22] 87.9 85.7 77.1
ICC-CNN [37] 85.1 82.9 77.2
FDCNN [38] 73.3 67.8 51.0
Fastfaces [38] 83.3 79.6 60.3
Luo et. al. [40] 87.1 87.3 78.0
Proposed method 88.30 87.2 77.7

proposed method shows the better performance then other
methods. [4], [12], [33], [41], [42]. Fig. 4(a) shows PR curve
for proposed method,standard methods and commercial face
detectors(Face.com, Face++ and Picasa).

Pascal Face dataset is formed from pascal person layout
dataset. It contain 851 images with 1335 face annotations.
The comparison of proposed method with standard dataset
[3], [4], [12], [33], [42], [34] is given in Table II. Fig. 4(b)
shows the PR curve of proposed method, standard method and
commercial methods. Proposed method showed better results
on dataset.

TABLE II. PERFORMANCE COMPARISON PROPOSED METHOD WITH
OTHER METHODS ON AFW AND PASCAL DATASET. THE REPORTED

VALUES ARE MAP%

Methods AFW PASCAL face
VJ [3] - 61.29
DPM [4] 97.42 90.30
Headhunter [4] 97.35 90.0
SquareChnFtrs [4] 95.44 -
StrusctredModel [33] 95.39 83.71
TSM [42] 88.18 76.08
Shen et al. [41] 89.22 -
WSBoosting [34] - 58.30
Faceboxes[12] 97.29 98.82
Proposed method 99.30 98.33

C. Running Efficiency

To check the practicality of a proposed method, it is
tested on CPU and GPU hardware. Results obtained are then
compared against the state of art methods reported running
efficiencies in original paper.

TABLE III. RUNNING EFFICIENCY COMPARISON OF THE PROPOSED
METHOD WITH STATE OF ART METHODS. THE SPEED OF THE METHOD ON

CPU AND GPU ARE REPORTED IN FPS (FRAME PER SECOND)

Method CPU GPU
Faceness [36] – 20 (Titan Black)
MTCNN [11] 16 (i7-4770K) 99(TitanX)
Faceboxes [12] 20 (E5-2660v3) 120(TitanX)
Faceboxes-2 [22] 28 (E5-2660v3) 245(TitanX)
ICC-CNN [37] 12 (i7-4770K) 40 (Titan)
FDCNN [38] – 31 (GTX 1080)
ACF [35] 20 (i7-3770) –
Luo et. al. [40] 50 (i7-6850 K) 180 (RTX 2080Ti)
Proposed method 42 (i5-8330H) 179 (GTX 1060)

The qualitative results are summarized in Table III. The

results compared on image size 640X480. The detailed de-
scription of system on which test was performed is mentioned
in section above. The proposed methods performance is very
satisfactory, but it has comparatively slow then [40] because
hardware (both CPU and GPU) on which the experiments
performed are computationally inferior to other hardware on
which the state of arts methods are tested.

V. CONCLUSION

This paper introduces a fast and high performing face
detector. The high processing speed is achieved by using a
lightweight backbone network. The feature extractor rapidly
reduces the size of input without losing information during this
process. The information is retained by the CReLU activation
function. The performance of the face detector is achieved by
efficiently utilizing the feature maps obtained from the feature
extractor. The detector having RF blocks imitating the human
visual system. As the results suggest the proposed method
works well on the images with images having faces of the
height of more than 15 pixels. The model limitation to detect
tiny faces and heavily occluded faces. The proposed model
can further be compressed using CNN optimization techniques
such as pruning. The experiments performed using proposed
face detectors on benchmark datasets has shown good results
and have high processing speeds on both CPU and GPU
devices.
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