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Abstract—Process mining involves discovering, monitoring, 
and improving real processes by extracting knowledge from 
event logs in information systems. Process mining has become an 
important topic in recent years, as evidenced by a growing 
number of case studies and commercial tools. Current studies in 
this area assume that event records are created separately from a 
conceptual model (CM). Techniques are then used to discover 
missing processes and conformance with the CM, as well as for 
checks and enhancements. By contrast, in this paper we focus on 
modeling events as part of a tight multilevel CM that includes a 
static description, dynamics, events-log scheme, and monitoring 
and control system. If there is an out-of-model event log, it is 
treated as a requirement needed to build or enrich the CM. The 
motivation for such a unified system is our thesis that process 
mining is an essential component of a CM with built-in mining 
capabilities to perform self-process mining and attain 
completeness. Accordingly, our proposed conceptual model 
facilitates collecting data generated about itself. The resultant 
framework emphasizes an integrated representation of systems 
to include process-mining functionalities. Case studies that start 
with event logs are recast to evolve around a model-first 
approach that is not limited to the initial event log. The result 
presents a framework that achieves the aims of process mining in 
a more comprehensive way. 

Keywords—Process-mining techniques; event log; conceptual 
modeling; static model; events model; behavioral model 

I. INTRODUCTION 
Process mining [1] is a branch of data science concerned 

with the handling of event records produced during the 
execution of organization processes. It involves discovering, 
monitoring, and improving real processes by extracting 
knowledge from event logs in information systems [2]. 
Process mining has become an important topic in recent years, 
as evidenced by a growing number of case studies and 
commercial tools, such as the site maintained by the IEEE 
Task Force on Process Mining [3][4]. 

Event logs that characterize behavior have been used in 
such areas as program visualization and concurrent-system 
analysis to infer an approximation model (see Fig. 1) that can 
be relied upon for creating a more complete CM. In this paper, 
events refer to “activities executed by resources at particular 
times and for a particular case” [5] (italics added). A model is 
a description that provides a reasonably rigorous specification 
(in this paper, a diagrammatic one) of the static structure and 
behavior of a system. The model is a depiction of what a 
system should be doing and what it is actually doing. Here, an 
explicit separation exists between description and execution. 
However, we mix the models used to enforce the process 

execution because they are necessarily synchronized. The 
execution is the activation of the model, and the model is a 
specification of the execution. We herein refer to processes 
occurring on a computer under the watchful eye of the 
system’s monitoring component. Fig. 1 shows our vision of 
the place of the CM in a system. 

Current process-mining studies assume that event records 
appear separately from model events (Fig. 2). The process-
mining technique then tries to discover missing processes and 
conformance with the model, as well as for checks and 
enhancements. An independent log system (e.g., manual) 
collects the events data. By contrast, in the approach presented 
in this paper, we construct a thinging machine (TM) model by 
analyzing requirements, including possible non-model logs. 
The model automatically generates data about its events (see 
Fig. 3) as part of a tightly integrated model (see Fig. 4). 

 
Fig. 1. General View of the Conceptual Model Position between Reality and 

Software System. 

 
Fig. 2. Current Visualization of Process Mining. 
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Fig. 3. TM Visualization of Event-Log System. 

 
Fig. 4. The Position of Events in the System-Development Stages. 

The TM model involves a static model of the relationships 
between things (to be defined later) through machines (to be 
defined later), a dynamic model of decompositions that embed 
behavior, event types, behavior in terms of chronology of 
events, an event log elicited from currently executed events, 
and a monitoring and control scheme that guides, enforces, or 
measures the execution. The motivation for such an integrated 
system is our thesis that if such an integrated model exists, it 
limits the need for model-less techniques for facilitating 
process-related problems (e.g., missing processes). 

We claim that adopting an integral theoretical conceptual 
model takes care of tracing the process execution in the form 
of specifying all types of event streams (to be defined later). 
The events are generated by the event-log component as a part 
of the conceptual model function and not produced by an 
outside-log system. Note that the captured events in the log 
are already described in the behavioral model as some actions 
executed through time. The TM-based system can discover 
and treat issues such as a missing process. 

The TM model includes only five generic actions that 
affect things: create, process, release, transfer, and receive. 
This specification contrasts with the ambiguous notion of 
activity (hence, the notion of event) used in current process-
mining literature. If a process is missed in constructing such a 
model, then reexamining the model and its event logs is 
sufficient to make the model more complete. Such a procedure 
is similar to improving the dynamics of the model itself, such 
as changing the steps that are carried out in the model, and so 

on. This approach is presented as an alternative to a “wild-
goose chase” effort to discover processes using an event-log 
system. Suppose that one stream of behavior is A→B→C. 
Trying to run B→C would be rejected because it is not an 
acceptable behavior (event stream). This is reported in the log 
component of the integrated model. Hence, the behavioral 
model may be modified to accept starting with B in addition to 
starting with A. Accordingly, the execution of the behavioral 
model would accept B→C as an acceptable stream of events. 
In this case, a missing process is discoverable through its 
rejection as reported in the log component of the system. 

In Section 2, we will briefly describe our main tool—that 
is, the TM model. The TM model has been applied in several 
diverse fields such as security [6] and privacy [7]. We provide 
a TM modeling example in Section 2 to clarify our notion of a 
conceptual model with built-in process mining. Section 3 
applies our approach to a case study that is more complicated. 
Section 4 reviews related works. 

II. TM MODELING 
The TM model articulates the ontology of the world in 

terms of an entity that is simultaneously a thing and a 
machine, called a thimac [8-11]. A thimac is like a double-
sided coin. One side of the coin exhibits the characterizations 
assumed by the thimac, whereas, on the other side, operational 
processes emerge that provide dynamics. A thing is subjected 
to doing, and a machine does. The simplest type of machine 
is shown in Fig. 5. The actions in the machine (also called 
stages) can be described as follows: 

Arrive: A thing moves to a machine. 

Accept: A thing enters the machine. For 
simplification, we assume that all arriving things are accepted; 
hence, we can combine the arrival and accept stages into one 
stage: the receive stage. 

Release: A thing is ready for transfer outside the 
machine. 

Process: A thing is changed, but no new thing results. 

Create: A new thing is born in the machine. 

Transfer: A thing is input into or output from a 
machine. 

Additionally, the TM model includes storage and 
triggering (denoted by a dashed arrow in this study’s figures), 
which initiates a flow from one machine to another. Multiple 
machines can interact with each other through movement of 
things or triggering. Triggering is a transformation from one 
series of movements to another. 

 
Fig. 5. The Thinging Machine. 
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Example: According to Weijters and Van der Aalst [12], 
“The models mined by process mining tools can be used as an 
objective starting point during the deployment of systems that 
support the execution of processes and/or as a feedback 
mechanism to check the prescribed process model against the 
enacted one.” Weijters and Van der Aalst [12] illustrate how 
process-mining techniques work using an example of the 
event log shown in Fig. 6. This log shows the events involved 
in applying for a license to ride motorbikes or drive cars as 
follows: 

X = Apply for license  
A = Attend classes on how to ride motorbikes  
B = Attend classes on how to drive cars  
C = Do theoretical exam  
D = Do practical exam to ride a motorbike  
E = Do practical exam to drive a car  
Y = Obtain result 

Then, Weijters and Van der Aalst [12] construct a Petri net 
model that corresponds to the table in Fig. 7. 

Instead, in TM, we consider the table in Fig. 6 to be 
collected data, along with other requirements gathered to 
develop the model of a license system. Thus, we minimally 
add new processes that make sense to achieve a reasonably 
complete model. Fig. 8 shows the resultant TM static model. 

 
Fig. 6. Event Log (Adopted from [12]). 

 
Fig. 7. Petri Net Model (Partial Adapted from [12]). 

First, a person (circle 1) creates and sends an application to 
obtain a license (2). The application is received and is 
processed (3), and acknowledgement is sent to the applicant (4 
and 5). The applicant (6) then attends classes on how to ride a 
motorbike (7) or how to drive a car (8). 

 
Fig. 8. The Static TM Model of the Licensing System. 
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Next, the applicant takes the theoretical exam (9 and 10) 
that generates a result (11). Assuming the applicant passes the 
theoretical exam, he or she goes on to the practical driving 
exam (12) performed by an examiner (13), which produces a 
result (14). Alternatively, the applicant goes on to the practical 
riding exam (15) performed by an examiner (16), which 
produces a result (17). The results of the theoretical exam (11) 
and the practical driving exam (14) lead to a driver’s license 
(18). The results of the theoretical exam (11) and the practical 
riding exam (17) lead to a motorcycle rider’s license (19). 

Such an approach is different from the process mining of 
Weijters and Van der Aalst [12] because it builds a complete 

model of the licensing system, which may use other typical 
requirement-collection methods. The next step in the TM 
approach is building the event-log scheme by finding all 
events in the static model of Fig. 8. This starts with identifying 
a set of events that are meaningful to the modeler. A TM event 
is defined based on (a) the region of an event, (b) the time of 
an event, and other attributes of events. Fig. 9 shows the 
representation of the event A person applies for a license. 
Accordingly, the static model is partitioned as shown in Fig. 
10, where we assume that each partition (region) represents an 
event as follows. 

 
Fig. 9. The Event A Person Applies for a License. 

 
Fig. 10. The Static TM Model of the Licensing System. 
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Event 1 (E1): A person applies for a license. 
Event 2 (E2): An acknowledgement is sent to the applicant. 
Event 3 (E3): The applicant attends classes on how to ride 

motorbikes. 
Event 4 (E4): The applicant attends classes on how to drive a 

car. 
Event 5 (E5): The applicant takes the theoretical exam. 
Event 6 (E6): The applicant takes the practical driving exam. 
Event 7 (E7): The applicant takes the practical riding exam.  
Event 8 (E8): The result of the practical riding exam appears. 
Event 9 (E9): The result of the practical driving exam appears. 
Event 10 (E10): The result of the theoretical exam appears. 
Event 11 (E11): The applicant obtains a motorbike license. 
Event 12 (E12): The applicant obtains a car license. 

 
Fig. 11. The Behavioral TM Model of the Licensing System. 

 
Fig. 12. The Execution of the System Generates Meta Events according to the 

Behavioral Model. 

 
Fig. 13. The Behavioral TM Model of the Licensing System Such that a 

Person can take the Theoretical Exam without taking Classes. 

 
Fig. 14. The Behavioral TM Model of the Licensing System where the 
Theoretical Exam and Practical Exams are not in Any Particular Order. 

Fig. 11 shows the behavioral model according to the 
chronology of events. At this stage, an event-log scheme can 
be developed to record each event. We call such a record a 
meta event as shown in Fig. 12. The set of meta events can be 
mined for various reasons, including process discovery. For 
example, suppose we have the event stream (E1, E2, E5)—
that is, an applicant applies for a license but then takes the 
theoretical exam without taking any classes. The monitoring 
system can easily recognize such a new behavior and reports it 
to the control system. Accordingly, a new process can be 
added to the behavioral model either automatically or 
manually (see Fig. 13). As another example, suppose that it is 
discovered from the event log that the theoretical exam and 
practical exam do not necessarily have to be in a particular 
order (e.g., a person can take the practical exam before the 
theoretical exam). Again, this can be discovered by mining the 
event log, and the behavioral model can be modified as shown 
in Fig. 14. 

III. HEALTH SYSTEM 
In this section, we apply the TM approach introduced in 

the previous section to a large and real problem that involves 
health systems in four hospitals. According to Suriadi et al. 
[13] (see also Partington et al. [14]), variations in the 
treatment of patients across various hospitals substantially 
affect the quality and costs. The main research question is to 
identify the extent to which cross-hospital variations exist and 
why they exist. Suriadi et al. [13] used health care datasets to 
discover the pathways that patients traversed within hospitals. 
They compared process models and logs between various 
hospitals to identify subgroups (i.e., cluster of cases) that can 
explain the variations in patient flows. 

In Suriadi et al.’s [13] case study, each hospital maintains 
an information system for managing operating theaters and 
tracking patient transfers between physical wards. The data 
extracted from these systems capture activities related to 
emergency department (ED) care. Suriadi et al. [13] excluded 
several cases (e.g., patient transfers and insufficiently 
documented cases). 

A conceptual model is presented in terms of the UML 
class diagram (see partial view in Fig. 15). Despite the 
impressive work of Suriadi et al. [13] as a whole integration 
effort, we can see the typical assumption in many UML 
modeling projects in Fig. 15. Simply, the elementary 
conceptual notions are not in the right order. Events, an upper 
level notion, are mixed with static notions such as patient and 
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doctor. As demonstrated in the previous section on the 
licensing system, time is a global feature that lifts the whole 
model from staticity to dynamicity. In the class diagram of 
Fig. 15, events are treated as a mere class. 

In our recasting of this health system, the TM model 
includes all processes in every hospital as a holistic virtual 
description of the union of all ED processes. Each hospital 
schema reflects a partial view of this encompassing model. 
Thus, there are partial event logs in various hospitals. If there 
is a difference among various EDs, it is a subsystem variation 
(e.g., some hospitals do not provide some services in the ED). 
If an emergency process (say, p1) exists in Hospital A but not 
in Hospital B, then p1 can be discovered from comparing the 
(static) processes in the global conceptual model. 

A. Static Model 
As shown partially in Fig. 16, Partington et al. [14] used 

BPMN. Fig. 17 shows the holistic TM static model of the EDs 
as described in Partington et al. [14]. This model is supposed 
to be built upon inspection of each hospital’s ED. Some 
details have been added to make the example more 
meaningful. In Fig. 17, a patient comes to the emergency unit 
by either an ambulance or other means (circle 1). In the 
reception, he or she is processed (2) to register the patient (3), 
and then he or she moves (4) to the triage unit where he or she 
is processed (5) to determine the degree of urgency (6).  
Accordingly, the patient then moves (7) to be processed (8) by 
a doctor (9) who writes a diagnosis (10).  If some hospitals 
have additional processes (e.g., nurse processing), it is 
possible to add them to create a union for emergency 
operations that are not performed by Hospital 1. 

Depending on the doctor’s diagnosis, the patient moves to 

• a waiting area (11) before leaving the hospital (12) or 

• the cardiac, medical, A&E or other unit (13–16). 

The patient either goes to the waiting area (17) before 
leaving the hospital or goes to a ward, and then he or she goes 
to the waiting area to leave (18–19). 

 
Fig. 15. Conceptual Model of the Event Log used in Suriadi et al. [13] case 

Study. 

 
Fig. 16. Partial BPMN Model of Hospital 1 (partial, from [14]). 

B. Dynamic Model 
At this stage, the modeling reaches a critical point that 

leads to defining what an event is. As mentioned in the 
licensing system in Section 2, an event in TM is a region in 
the static model that involves time and possibly other 
properties (not discussed in this ED description). Fig. 18 
shows the event The patient moves from the triage unit to be 
processed by a doctor. Accordingly, the static model of 
Fig. 17 is divided into the decompositions shown in Fig. 19, 
where we represent each event by its region as follows: 

Event 1 (E1): A patient arrives at the ED by ambulance. 
Event 2 (E2): A patient arrives at the ED by other means. 
Event 3 (E3): The patient is received and is registered. 
Event 4 (E4): The patient moves to the triage unit. 
Event 5 (E5): The patient is processed in the triage unit. 
Event 6 (E6): The patient moves from the triage unit to a 

doctor. 
Event 7 (E7): A doctor examines the patient. 
Event 8 (E8): The patient leaves the doctor after being 

processed (i.e., diagnosed). 
Event 9 (E9): The patient goes to the waiting area and then 

leaves the ED. 
Event 10 (E10): The patient goes to the cardiac unit. 
Event 11 (E11): The patient leaves the cardiac unit. 
Event 12 (E12): The patient goes to the medical unit. 
Event 13 (E13): The patient leaves the medical unit. 
Event 14 (E14): The patient goes to the A&E unit. 
Event 15 (E15): The patient leaves the A&E unit. 
Event 16 (E16): The patient goes to another unit. 
Event 17 (E17): The patient leaves the other unit. 
Event 18 (E18): The patient goes to the ward. 
Event 19 (E19): The patient dies in the ward. 
Event 20 (E20): The patient leaves the ward.  

C. Behavioral Model 
Fig. 20 shows the behavioral model in terms of the 

chronology of events. Each stream of events (the sequence of 
events for a single type of patient; e.g., E1, E3, E4, E5, E6, 
E7, E8, and E9) can be examined to see the process that a 
patient goes through. There are 40 types of event streams in 
Fig. 20. There are many instances of these types of streams. 
Any deviation from these streams results in alerts from the 
monitoring system. Note that each hospital has a sub-behavior 
of the global behavior. From such representation of events, we 
can discover a different or new ED behavior in one hospital, 
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as shown in Fig. 21 (red arrows). In this case, the indicated 
hospital does not have an ambulance service. Additionally, a 
physician immediately examines the received patient; thus, an 
arrow that bypasses triaging is added. The point here is that 
with such a TM representation of the behavioral model, it is 
easier to discover missing processes. This development of a 

model is an alternative approach to chasing missing processes 
through the non-model-based event log. Thus, we expect that 
if all systems in the hospitals were remodeled using the TM 
model, the resultant behavioral representations would contrast 
with an overall model in the holistic system. 

 
Fig. 17. The Static Model of the Emergency Department in a Hospital. 
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Fig. 18. The event the Patient Moves from the Triage Unit to be processed by a Doctor. 

 
Fig. 19. The Dynamic Model of the Emergency Department in a Hospital. 
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Fig. 20. The Behavioral Model of the Emergency Department in a Hospital. 

 
Fig. 21. Different Behavioral Model of the Emergency Department in a Hospital. 
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IV. RELATED MATERIALS 
Most of the information systems used by organizations do 

not record the execution data in a process-centric way so that 
the data are not ready for process mining. Techniques for 
event-log preparation can be categorized into methods for 
event data extraction, correlation, and abstraction. Techniques 
in this area assign semantics to data elements by defining how 
they can jointly be interpreted as the execution of a business 
process activity [15][16]. 

Process mining provides a set of techniques and algorithms 
for process discovery, conformance checking, and 
enhancement [1][17]. 

• Process discovery aims at the creation of a process 
model automatically from the data recorded during 
process execution [4]. 

• Conformance checking processes the recorded data 
based on a process model and provides diagnostic 
results [18]. 

• Process enhancement enriches a given process model 
based on the recorded data [19][20], thereby providing 
a more complete process representation. 

According to van der Aalst [1], despite the maturity of the 
individual process-mining techniques, considerable resources 
have to be allocated in process-mining projects for the 
extraction and preparation of event data before the actual 
analysis can even start. Process-mining techniques use 
different representations and make different assumptions, and 
users often need to resort to trying different methods in an ad 
hoc manner [5]. Finding, merging, and cleaning event data 
remain a challenge for the application of process-mining 
techniques [2]. 

V. CONCLUSION 
In this paper, we have examined the notion of process 

mining. We proposed the conceptual TM model as a unifying 
description at the static, dynamic, and behavioral levels of the 
system with its own events-log component. Process mining 
takes place based on this event log of the system. A pre-model 
or out-of-model event log can be utilized in building the TM 
model. Once the model with its multilevel stages is built, then 
the model through its event-log component can mine its 
processes to discover new or missing processes that can be 
added, manually or automatically, to the specification of 
accepted behavior. 

In this paper, we presented TM as a new model to be 
applied to process mining. Future research will elaborate on 
using TM in the process mining area with more complex 
examples. Specifically, TM needs to be related to such notions 
as process enhancement and conformance. 
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