
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Conceptual Model with Built-in Process Mining
Sabah Al-Fedaghi

Computer Engineering Department
Kuwait University

Kuwait

Abstract—Process mining involves discovering, monitoring,
and improving real processes by extracting knowledge from
event logs in information systems. Process mining has become an
important topic in recent years, as evidenced by a growing
number of case studies and commercial tools. Current studies in
this area assume that event records are created separately from a
conceptual model (CM). Techniques are then used to discover
missing processes and conformance with the CM, as well as for
checks and enhancements. By contrast, in this paper we focus on
modeling events as part of a tight multilevel CM that includes a
static description, dynamics, events-log scheme, and monitoring
and control system. If there is an out-of-model event log, it is
treated as a requirement needed to build or enrich the CM. The
motivation for such a unified system is our thesis that process
mining is an essential component of a CM with built-in mining
capabilities to perform self-process mining and attain
completeness. Accordingly, our proposed conceptual model
facilitates collecting data generated about itself. The resultant
framework emphasizes an integrated representation of systems
to include process-mining functionalities. Case studies that start
with event logs are recast to evolve around a model-first
approach that is not limited to the initial event log. The result
presents a framework that achieves the aims of process mining in
a more comprehensive way.

Keywords—Process-mining techniques; event log; conceptual
modeling; static model; events model; behavioral model

I. INTRODUCTION
Process mining [1] is a branch of data science concerned

with the handling of event records produced during the
execution of organization processes. It involves discovering,
monitoring, and improving real processes by extracting
knowledge from event logs in information systems [2].
Process mining has become an important topic in recent years,
as evidenced by a growing number of case studies and
commercial tools, such as the site maintained by the IEEE
Task Force on Process Mining [3][4].

Event logs that characterize behavior have been used in
such areas as program visualization and concurrent-system
analysis to infer an approximation model (see Fig. 1) that can
be relied upon for creating a more complete CM. In this paper,
events refer to “activities executed by resources at particular
times and for a particular case” [5] (italics added). A model is
a description that provides a reasonably rigorous specification
(in this paper, a diagrammatic one) of the static structure and
behavior of a system. The model is a depiction of what a
system should be doing and what it is actually doing. Here, an
explicit separation exists between description and execution.
However, we mix the models used to enforce the process

execution because they are necessarily synchronized. The
execution is the activation of the model, and the model is a
specification of the execution. We herein refer to processes
occurring on a computer under the watchful eye of the
system’s monitoring component. Fig. 1 shows our vision of
the place of the CM in a system.

Current process-mining studies assume that event records
appear separately from model events (Fig. 2). The process-
mining technique then tries to discover missing processes and
conformance with the model, as well as for checks and
enhancements. An independent log system (e.g., manual)
collects the events data. By contrast, in the approach presented
in this paper, we construct a thinging machine (TM) model by
analyzing requirements, including possible non-model logs.
The model automatically generates data about its events (see
Fig. 3) as part of a tightly integrated model (see Fig. 4).

Fig. 1. General View of the Conceptual Model Position between Reality and

Software System.

Fig. 2. Current Visualization of Process Mining.

Static
description Partitions Behavior

description

Software
system

Conceptual Model

Instances
of Events

Events
description

Execution

140 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 3. TM Visualization of Event-Log System.

Fig. 4. The Position of Events in the System-Development Stages.

The TM model involves a static model of the relationships
between things (to be defined later) through machines (to be
defined later), a dynamic model of decompositions that embed
behavior, event types, behavior in terms of chronology of
events, an event log elicited from currently executed events,
and a monitoring and control scheme that guides, enforces, or
measures the execution. The motivation for such an integrated
system is our thesis that if such an integrated model exists, it
limits the need for model-less techniques for facilitating
process-related problems (e.g., missing processes).

We claim that adopting an integral theoretical conceptual
model takes care of tracing the process execution in the form
of specifying all types of event streams (to be defined later).
The events are generated by the event-log component as a part
of the conceptual model function and not produced by an
outside-log system. Note that the captured events in the log
are already described in the behavioral model as some actions
executed through time. The TM-based system can discover
and treat issues such as a missing process.

The TM model includes only five generic actions that
affect things: create, process, release, transfer, and receive.
This specification contrasts with the ambiguous notion of
activity (hence, the notion of event) used in current process-
mining literature. If a process is missed in constructing such a
model, then reexamining the model and its event logs is
sufficient to make the model more complete. Such a procedure
is similar to improving the dynamics of the model itself, such
as changing the steps that are carried out in the model, and so

on. This approach is presented as an alternative to a “wild-
goose chase” effort to discover processes using an event-log
system. Suppose that one stream of behavior is A→B→C.
Trying to run B→C would be rejected because it is not an
acceptable behavior (event stream). This is reported in the log
component of the integrated model. Hence, the behavioral
model may be modified to accept starting with B in addition to
starting with A. Accordingly, the execution of the behavioral
model would accept B→C as an acceptable stream of events.
In this case, a missing process is discoverable through its
rejection as reported in the log component of the system.

In Section 2, we will briefly describe our main tool—that
is, the TM model. The TM model has been applied in several
diverse fields such as security [6] and privacy [7]. We provide
a TM modeling example in Section 2 to clarify our notion of a
conceptual model with built-in process mining. Section 3
applies our approach to a case study that is more complicated.
Section 4 reviews related works.

II. TM MODELING
The TM model articulates the ontology of the world in

terms of an entity that is simultaneously a thing and a
machine, called a thimac [8-11]. A thimac is like a double-
sided coin. One side of the coin exhibits the characterizations
assumed by the thimac, whereas, on the other side, operational
processes emerge that provide dynamics. A thing is subjected
to doing, and a machine does. The simplest type of machine
is shown in Fig. 5. The actions in the machine (also called
stages) can be described as follows:

Arrive: A thing moves to a machine.

Accept: A thing enters the machine. For
simplification, we assume that all arriving things are accepted;
hence, we can combine the arrival and accept stages into one
stage: the receive stage.

Release: A thing is ready for transfer outside the
machine.

Process: A thing is changed, but no new thing results.

Create: A new thing is born in the machine.

Transfer: A thing is input into or output from a
machine.

Additionally, the TM model includes storage and
triggering (denoted by a dashed arrow in this study’s figures),
which initiates a flow from one machine to another. Multiple
machines can interact with each other through movement of
things or triggering. Triggering is a transformation from one
series of movements to another.

Fig. 5. The Thinging Machine.

Receive

Transfer

Accept Arrive

Output Input
Create

Process

Release

Static model

Dynamic model

Behavioral model

Event log

Monitoring/Control

Data and process mining

Requirements (including process logs)

141 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Example: According to Weijters and Van der Aalst [12],
“The models mined by process mining tools can be used as an
objective starting point during the deployment of systems that
support the execution of processes and/or as a feedback
mechanism to check the prescribed process model against the
enacted one.” Weijters and Van der Aalst [12] illustrate how
process-mining techniques work using an example of the
event log shown in Fig. 6. This log shows the events involved
in applying for a license to ride motorbikes or drive cars as
follows:

X = Apply for license
A = Attend classes on how to ride motorbikes
B = Attend classes on how to drive cars
C = Do theoretical exam
D = Do practical exam to ride a motorbike
E = Do practical exam to drive a car
Y = Obtain result

Then, Weijters and Van der Aalst [12] construct a Petri net
model that corresponds to the table in Fig. 7.

Instead, in TM, we consider the table in Fig. 6 to be
collected data, along with other requirements gathered to
develop the model of a license system. Thus, we minimally
add new processes that make sense to achieve a reasonably
complete model. Fig. 8 shows the resultant TM static model.

Fig. 6. Event Log (Adopted from [12]).

Fig. 7. Petri Net Model (Partial Adapted from [12]).

First, a person (circle 1) creates and sends an application to
obtain a license (2). The application is received and is
processed (3), and acknowledgement is sent to the applicant (4
and 5). The applicant (6) then attends classes on how to ride a
motorbike (7) or how to drive a car (8).

Fig. 8. The Static TM Model of the Licensing System.

Process

Transfer

Create Release

Process
Person

Create

Create

Process

Receive

Release Process
Create

Receive

In person
(him/herself)

Application
Transfer Receive Create Release Transfer

Transfer Create Release Receive Transfer

Receive Process Transfer

Receive Process Transfer

Theory exam

Transfer

Transfer
Car Practical Examiner

Transfer

Car practical. Exam

Result

Notification

Car license

1

2
3

5
4

6

Motorbike class

Car class
7

8

10

9

 Release Process
Create

Receive Transfer
Motorbike Practical Examiner

Transfer

Motorbike Practical Exam

Release

Transfer

 Create Motorbike
license

11

12

13
14 Result

17

16

15

Result

18

19

142 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Next, the applicant takes the theoretical exam (9 and 10)
that generates a result (11). Assuming the applicant passes the
theoretical exam, he or she goes on to the practical driving
exam (12) performed by an examiner (13), which produces a
result (14). Alternatively, the applicant goes on to the practical
riding exam (15) performed by an examiner (16), which
produces a result (17). The results of the theoretical exam (11)
and the practical driving exam (14) lead to a driver’s license
(18). The results of the theoretical exam (11) and the practical
riding exam (17) lead to a motorcycle rider’s license (19).

Such an approach is different from the process mining of
Weijters and Van der Aalst [12] because it builds a complete

model of the licensing system, which may use other typical
requirement-collection methods. The next step in the TM
approach is building the event-log scheme by finding all
events in the static model of Fig. 8. This starts with identifying
a set of events that are meaningful to the modeler. A TM event
is defined based on (a) the region of an event, (b) the time of
an event, and other attributes of events. Fig. 9 shows the
representation of the event A person applies for a license.
Accordingly, the static model is partitioned as shown in Fig.
10, where we assume that each partition (region) represents an
event as follows.

Fig. 9. The Event A Person Applies for a License.

Fig. 10. The Static TM Model of the Licensing System.

Person

Process Transfer Receive Create Release Transfer

Transfer Receive Release Transfer Process

Application

Time

Create Process
Event Itself

Event

Region

Process

Transfer

Create Release

Process
Person

Create

Create

Process

Receive

Release Process
Create

Receive

In person

Application
Transfer Receive Create Release Transfer

Transfer Create Release Receive Transfer

Receive Process Transfer

Receive Process Transfer

Theory exam

Transfer

Transfer

Car Practical Examiner

Transfer

Car practical Exam

Result

Notification

Car license

E1

Motorbike class

Car class

 Release Process
Create

Receive Transfer

Motorbike Practical Examiner

Transfer

Motorbike Practical Exam

Release

Transfer

 Create Motorbike
license

Result

Result

E2

E3

E5

E4

E6

E10

E12

E7 E8

E9

E11

143 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Event 1 (E1): A person applies for a license.
Event 2 (E2): An acknowledgement is sent to the applicant.
Event 3 (E3): The applicant attends classes on how to ride

motorbikes.
Event 4 (E4): The applicant attends classes on how to drive a

car.
Event 5 (E5): The applicant takes the theoretical exam.
Event 6 (E6): The applicant takes the practical driving exam.
Event 7 (E7): The applicant takes the practical riding exam.
Event 8 (E8): The result of the practical riding exam appears.
Event 9 (E9): The result of the practical driving exam appears.
Event 10 (E10): The result of the theoretical exam appears.
Event 11 (E11): The applicant obtains a motorbike license.
Event 12 (E12): The applicant obtains a car license.

Fig. 11. The Behavioral TM Model of the Licensing System.

Fig. 12. The Execution of the System Generates Meta Events according to the

Behavioral Model.

Fig. 13. The Behavioral TM Model of the Licensing System Such that a

Person can take the Theoretical Exam without taking Classes.

Fig. 14. The Behavioral TM Model of the Licensing System where the
Theoretical Exam and Practical Exams are not in Any Particular Order.

Fig. 11 shows the behavioral model according to the
chronology of events. At this stage, an event-log scheme can
be developed to record each event. We call such a record a
meta event as shown in Fig. 12. The set of meta events can be
mined for various reasons, including process discovery. For
example, suppose we have the event stream (E1, E2, E5)—
that is, an applicant applies for a license but then takes the
theoretical exam without taking any classes. The monitoring
system can easily recognize such a new behavior and reports it
to the control system. Accordingly, a new process can be
added to the behavioral model either automatically or
manually (see Fig. 13). As another example, suppose that it is
discovered from the event log that the theoretical exam and
practical exam do not necessarily have to be in a particular
order (e.g., a person can take the practical exam before the
theoretical exam). Again, this can be discovered by mining the
event log, and the behavioral model can be modified as shown
in Fig. 14.

III. HEALTH SYSTEM
In this section, we apply the TM approach introduced in

the previous section to a large and real problem that involves
health systems in four hospitals. According to Suriadi et al.
[13] (see also Partington et al. [14]), variations in the
treatment of patients across various hospitals substantially
affect the quality and costs. The main research question is to
identify the extent to which cross-hospital variations exist and
why they exist. Suriadi et al. [13] used health care datasets to
discover the pathways that patients traversed within hospitals.
They compared process models and logs between various
hospitals to identify subgroups (i.e., cluster of cases) that can
explain the variations in patient flows.

In Suriadi et al.’s [13] case study, each hospital maintains
an information system for managing operating theaters and
tracking patient transfers between physical wards. The data
extracted from these systems capture activities related to
emergency department (ED) care. Suriadi et al. [13] excluded
several cases (e.g., patient transfers and insufficiently
documented cases).

A conceptual model is presented in terms of the UML
class diagram (see partial view in Fig. 15). Despite the
impressive work of Suriadi et al. [13] as a whole integration
effort, we can see the typical assumption in many UML
modeling projects in Fig. 15. Simply, the elementary
conceptual notions are not in the right order. Events, an upper
level notion, are mixed with static notions such as patient and

E1 E2

E3

E4

E5

E9

E10

E8

E11

E12

E6

E7

E1 … … … … …
E2 … … … … …
E1 … … … … …
E2 … … … … …
E3 … … … … …
E3 … … … … …
E1 … … … … …

Event log

Execution

E1 E2

E3

E4

E5

E6

E10

E7

E9

E8

E11

E12

E1 E2

E3

E4

E5

E7

E10

E6

E9

E8

E11

E12

144 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

doctor. As demonstrated in the previous section on the
licensing system, time is a global feature that lifts the whole
model from staticity to dynamicity. In the class diagram of
Fig. 15, events are treated as a mere class.

In our recasting of this health system, the TM model
includes all processes in every hospital as a holistic virtual
description of the union of all ED processes. Each hospital
schema reflects a partial view of this encompassing model.
Thus, there are partial event logs in various hospitals. If there
is a difference among various EDs, it is a subsystem variation
(e.g., some hospitals do not provide some services in the ED).
If an emergency process (say, p1) exists in Hospital A but not
in Hospital B, then p1 can be discovered from comparing the
(static) processes in the global conceptual model.

A. Static Model
As shown partially in Fig. 16, Partington et al. [14] used

BPMN. Fig. 17 shows the holistic TM static model of the EDs
as described in Partington et al. [14]. This model is supposed
to be built upon inspection of each hospital’s ED. Some
details have been added to make the example more
meaningful. In Fig. 17, a patient comes to the emergency unit
by either an ambulance or other means (circle 1). In the
reception, he or she is processed (2) to register the patient (3),
and then he or she moves (4) to the triage unit where he or she
is processed (5) to determine the degree of urgency (6).
Accordingly, the patient then moves (7) to be processed (8) by
a doctor (9) who writes a diagnosis (10). If some hospitals
have additional processes (e.g., nurse processing), it is
possible to add them to create a union for emergency
operations that are not performed by Hospital 1.

Depending on the doctor’s diagnosis, the patient moves to

• a waiting area (11) before leaving the hospital (12) or

• the cardiac, medical, A&E or other unit (13–16).

The patient either goes to the waiting area (17) before
leaving the hospital or goes to a ward, and then he or she goes
to the waiting area to leave (18–19).

Fig. 15. Conceptual Model of the Event Log used in Suriadi et al. [13] case

Study.

Fig. 16. Partial BPMN Model of Hospital 1 (partial, from [14]).

B. Dynamic Model
At this stage, the modeling reaches a critical point that

leads to defining what an event is. As mentioned in the
licensing system in Section 2, an event in TM is a region in
the static model that involves time and possibly other
properties (not discussed in this ED description). Fig. 18
shows the event The patient moves from the triage unit to be
processed by a doctor. Accordingly, the static model of
Fig. 17 is divided into the decompositions shown in Fig. 19,
where we represent each event by its region as follows:

Event 1 (E1): A patient arrives at the ED by ambulance.
Event 2 (E2): A patient arrives at the ED by other means.
Event 3 (E3): The patient is received and is registered.
Event 4 (E4): The patient moves to the triage unit.
Event 5 (E5): The patient is processed in the triage unit.
Event 6 (E6): The patient moves from the triage unit to a

doctor.
Event 7 (E7): A doctor examines the patient.
Event 8 (E8): The patient leaves the doctor after being

processed (i.e., diagnosed).
Event 9 (E9): The patient goes to the waiting area and then

leaves the ED.
Event 10 (E10): The patient goes to the cardiac unit.
Event 11 (E11): The patient leaves the cardiac unit.
Event 12 (E12): The patient goes to the medical unit.
Event 13 (E13): The patient leaves the medical unit.
Event 14 (E14): The patient goes to the A&E unit.
Event 15 (E15): The patient leaves the A&E unit.
Event 16 (E16): The patient goes to another unit.
Event 17 (E17): The patient leaves the other unit.
Event 18 (E18): The patient goes to the ward.
Event 19 (E19): The patient dies in the ward.
Event 20 (E20): The patient leaves the ward.

C. Behavioral Model
Fig. 20 shows the behavioral model in terms of the

chronology of events. Each stream of events (the sequence of
events for a single type of patient; e.g., E1, E3, E4, E5, E6,
E7, E8, and E9) can be examined to see the process that a
patient goes through. There are 40 types of event streams in
Fig. 20. There are many instances of these types of streams.
Any deviation from these streams results in alerts from the
monitoring system. Note that each hospital has a sub-behavior
of the global behavior. From such representation of events, we
can discover a different or new ED behavior in one hospital,

145 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

as shown in Fig. 21 (red arrows). In this case, the indicated
hospital does not have an ambulance service. Additionally, a
physician immediately examines the received patient; thus, an
arrow that bypasses triaging is added. The point here is that
with such a TM representation of the behavioral model, it is
easier to discover missing processes. This development of a

model is an alternative approach to chasing missing processes
through the non-model-based event log. Thus, we expect that
if all systems in the hospitals were remodeled using the TM
model, the resultant behavioral representations would contrast
with an overall model in the holistic system.

Fig. 17. The Static Model of the Emergency Department in a Hospital.

Create

Patient

Transfer

Release Tr
an

sf
er

Reception

Pr
oc

es
s

Process

Triage 1
Triage 2

Triage 3

Triage 4

Triage 5

 Doctor

Process

 Registration

Triage result

 Diagnosis

Out

Transfer

Release

R
el

ea
se

Tr
an

sf
er

R
ec

ei
ve

Tr
an

sf
er

Cardiac unit
Process Transfer Receive Transfer Release

 Medical unit
Transfer

 A&E unit

 Other unit

Create

Transfer
Receive

Transfer Release

Process Transfer Receive Transfer Release

Transfer Process Transfer Receive Release

Process Transfer Receive Release

Ward

Receive

Transfer

Release

Transfer

Process

R
el

ea
se

Tr
an

sf
er

Create

Transfer

Receive

Process

Transfer

Release

Ambulance

Other means

2

R
ec

ei
ve

3

1

4
5

6

9

8

Triaging unit

7

10
Waiting area

11

12

13

14

15

16

18

17 19

146 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 18. The event the Patient Moves from the Triage Unit to be processed by a Doctor.

Fig. 19. The Dynamic Model of the Emergency Department in a Hospital.

 Doctor

Time
Release

Triaging unit

Region

Release

Transfer
Receive

Transfer

Transfer

Transfer

Receive

Process:
takes its
course

Event

Create

Release Tr
an

sf
er

Pr
oc

es
s

Process

Triage 3

Triage 4

 Doctor

Process

 Registration

Triaging result

 Diagnosis

Out

Transfer

Release

R
el

ea
se

Tr
an

sf
er

R
ec

ei
ve

Tr
an

sf
er

Cardiac unit
Process Transfer Receive Transfer Release

 Medical unit
Transfer

 A&E unit

 Other unit

Create

Transfer

Receive

Transfer Release

Process Transfer Receive Transfer Release

Transfer Process Transfer Receive Release

Process Transfer Receive Release

Ward

Receive

Transfer

Release

Transfer

Process

Tr
an

sf
er

Create

Transfer

Receive

Process

Transfer

Release

Ambulance

Other means

R
ec

ei
ve

E1
Triaging unit Waiting area

 State

E2

E3 E6

E7
R

el
ea

se

E8

E9

E17 E16

E15 E14

E13
E12

E11
E10 E18

E19

E20

147 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 20. The Behavioral Model of the Emergency Department in a Hospital.

Fig. 21. Different Behavioral Model of the Emergency Department in a Hospital.

E1

E2

E20

E19 E18

E15 E11 E17 E13

E16

E4 E5

E9

E6 E7 E8

E10 E14 E12

 E3

Leave
hospital

Death

E1

E2

E20

E19 E18

E15 E11 E17 E13

E16

E4 E5

E9

E6 E7 E8

E10 E14 E12

E3

148 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

IV. RELATED MATERIALS
Most of the information systems used by organizations do

not record the execution data in a process-centric way so that
the data are not ready for process mining. Techniques for
event-log preparation can be categorized into methods for
event data extraction, correlation, and abstraction. Techniques
in this area assign semantics to data elements by defining how
they can jointly be interpreted as the execution of a business
process activity [15][16].

Process mining provides a set of techniques and algorithms
for process discovery, conformance checking, and
enhancement [1][17].

• Process discovery aims at the creation of a process
model automatically from the data recorded during
process execution [4].

• Conformance checking processes the recorded data
based on a process model and provides diagnostic
results [18].

• Process enhancement enriches a given process model
based on the recorded data [19][20], thereby providing
a more complete process representation.

According to van der Aalst [1], despite the maturity of the
individual process-mining techniques, considerable resources
have to be allocated in process-mining projects for the
extraction and preparation of event data before the actual
analysis can even start. Process-mining techniques use
different representations and make different assumptions, and
users often need to resort to trying different methods in an ad
hoc manner [5]. Finding, merging, and cleaning event data
remain a challenge for the application of process-mining
techniques [2].

V. CONCLUSION
In this paper, we have examined the notion of process

mining. We proposed the conceptual TM model as a unifying
description at the static, dynamic, and behavioral levels of the
system with its own events-log component. Process mining
takes place based on this event log of the system. A pre-model
or out-of-model event log can be utilized in building the TM
model. Once the model with its multilevel stages is built, then
the model through its event-log component can mine its
processes to discover new or missing processes that can be
added, manually or automatically, to the specification of
accepted behavior.

In this paper, we presented TM as a new model to be
applied to process mining. Future research will elaborate on
using TM in the process mining area with more complex
examples. Specifically, TM needs to be related to such notions
as process enhancement and conformance.

REFERENCES
[1] W. M. Van der Aalst, “Data science in action,” in Process Mining, 2nd

ed., Berlin: Springer, 2016, pp. 3–23. . DOI 10.1007/978-3-662-49851-
4_1

[2] W. Van der Aalst, A. Adriansyah, A. K. A. de Medeiros, and F. Arcieri,
T. Baier, T. Blickle, et al. (78 co-authors). “Process mining manifesto,”

in Business Process Management Workshops, F. Daniel, K. Barkaoui,
and S. Dustdar, Eds. Berlin: Springer, 2012, pp. 169–194.

[3] M. Dumas and L. García-Bañuelos, “Process mining reloaded: Event
structures as a unified representation of process models and event logs,”
in Application and Theory of Petri Nets and Concurrency, vol. 9115, R.
Devillers and A. Valmari, Eds. Springer, 2015, pp. 33–48. . DOI
10.1007/978-3-319-19488-2_2

[4] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M Maggi, A.
Marrella, et al. (8 co-authors), “Automated discovery of process models
from event logs: Review and benchmark,” IEEE Trans. Knowl. Data
Eng., vol. 31, pp. 686–705, 2019. . DOI
org/10.1109/TKDE.2018.2841877

[5] W. M. P. van der Aalst, “Process discovery from event data: Relating
models and logs through abstractions,” Data Min. Knowl. Discov., vol.
8, no. 3, February 2018. . DOI 10.1002/widm.1244

[6] S. Al-Fedaghi, and A. Alrashed, "Threat risk modeling," 2010 Second
International Conference on Communication Software and Networks,
26-28 Feb. 2010, Singapore, 405-411. DOI 10.1109/ICCSN.2010.29

[7] S. Al-Fedaghi, G Fiedler, B Thalheim, “Privacy enhanced information
systems,” The 15th European-Japanese Conference on Information
Modeling and Knowledge, In Frontiers in Artificial Intelligence and
Applications, Volume 136: Information Modeling and Knowledge Bases
XVII, 94-111. Y. Kiyoki, et al. (Eds), 94-111, IOS Press, 2006.

[8] S. Al-Fedaghi, “Conceptual temporal modeling applied to databases,”
Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 1, pp. 524–534, 2021. DOI
10.14569/IJACSA.2021.0120161

[9] S. Al-Fedaghi, “UML modeling to TM Modeling and back,” IJCSNS
International Journal of Computer Science and Network Security, vol.
21, no. 1, pp. 84–96, January 2021. DOI
10.22937/IJCSNS.2021.21.1.13

[10] S. Al-Fedaghi and M. AlSaraf, “High-level description of robot
architecture,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 10, pp. 258–
267, 2020. DOI 10.14569/IJACSA.2020.0111035

[11] S. Al-Fedaghi, “Conceptual software engineering applied to movie
scripts and stories,” J. Comput. Sci. Technol., vol. 16, no. 12, pp. 1718–
1730, 2020. . DOI 10.3844/jcssp.2020.1718.1730

[12] A. J. M. M. Weijters and Wil Van der Aalst, “Genetic process mining: A
basic approach and its challenges,” in BPM 2005 Workshops, LNCS
3812, C. Bussler et al., Eds. Berlin: Springer-Verlag, 2006, 203–215.

[13] S. Suriadi, R. S. Mans, M. T. Wynn, A. Partington, and J. Karnon,
“Measuring patient flow variations: A cross-organisational process
mining approach,” in Asia Pacific Bus. Rev., C. Ouyang and J. Y. Jung,
Eds. Lect. Notes Bus. Inf. Process, vol. 181. Cham: Springer, 2014, pp.
43–58. . DOI 10.1007/978-3-319-08222-6_4

[14] A. Partington, M. Wynn, S. Suriadi, C. Ouyang, and J. Karnon, “Process
mining for clinical processes: A comparative analysis of four Australian
hospitals,” ACM Trans. Inf. Syst., vol. 5, no. 4, 1–18, 2015.

[15] D. Kiarash, K. Batoulis, M Weidlich, and M. Weske, “Extraction,
correlation, and abstraction of event data for process mining,” WIREs
Data Min. Knowl. Discov., vol. 10, no. 3, ay/June 2020. . DOI
doi.org/10.1002/widm.1346

[16] S. Mandal, “Events in BPMN: The racing events dilemma,” in 9th
Central European Workshop on Services and their Composition (ZEUS),
O. Kopp, J. Lenhard, and C. Pautasso, Eds. Lugano, Switzerland, 13–14
February, 2017, 23–30.

[17] O. Etzion and P. Niblett, Event Processing in Action. Stamford, CT:
Manning Publications, 2011.

[18] J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich, Conformance
Checking: Relating Processes and Models. Switzerland: Springer
Nature, 2018. . DOI 10.1007/978-3-319-99414-7

[19] M. Leoni and F. Mannhardt, “Decision discovery in business processes,”
in Encyclopedia of Big Data Technologies, S. Sakr and A. Zomaya, Eds.
Cham: Springer, 2018, . DOI 10.1007/978-3-319-63962-8_96-1

[20] B. Depaire and N. Martin, “Data-driven process simulation,” in
Encyclopedia of Big Data Technologies, S. Sakr and A. Zomaya, Eds.
Cham: Springer, 2018, . DOI 10.1007/978-3-319-63962-8_102-1

149 | P a g e
www.ijacsa.thesai.org

http://doi.org/10.1007/978-3-662-49851-4_1
http://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1109/TKDE.2018.2841877

	I. Introduction
	II. TM Modeling
	III. Health System
	A. Static Model
	B. Dynamic Model
	C. Behavioral Model

	IV. Related Materials
	V. Conclusion
	References

