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Abstract—Real-time prediction model of indoor thermal 

comfort depending on Momentum Back Propagation (MBP) 

function is established by using Arduino hardware and mobile 

application. The air temperature indoor, air velocity, and relative 

humidity are gathered via temperature sensor and transferred 

via Bluetooth to the mobile application to predicate thermal 

comfort. A significant challenge in designing MBP is to decide 

the best architecture and parameters as the number of layers and 

nodes, and number of epochs for the network given the data for 

the AI issues. These parameters are usually selected on heuristic 

and fine-tuned manually, which could be as boring as the 

performance assessment may take hours to test the output of a 

single MBP parameterization. This paper tends to the issue of 

determining appropriate parameters for the MBP by applying 

chicken swarm optimization (CSO) algorithm. The CSO 

algorithm simulates the chicken swarm searching for the best 

parameter employs the Fitness function of these parameters 

which yielding minimum error and high accuracy. The proposed 

accuracy approximately equals 98.3% when using the best 

parameters obtained from Chicken Swarm Optimization (CSO). 

The proposed methodology performance is assessed on the 

collected dataset from weather archive and in the context of 

thermal comfort prediction, that mapping relations between the 

indoor features and thermal index. 
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momentum back propagation; neural network; bio-inspired 
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I. INTRODUCTION 

In the production of building architecture, thermal comfort 
proves to be one of the most critical factors. People always 
wanted to create a thermal climate. Thermal comfort means a 
"condition of mind" in compliance with ISO 7730(1993) and 
ASHARE Standard 55(2010) [1, 2], which reflects pleasure 
with the thermal environment in which the thermal 
environment is situated'. Thus, in work, people must be 
pleased with the thermal atmosphere surrounding them or they 
will suffer from and won't work like they used to be. The 
principal necessity is preserving thermal comfort and it need 
to be achieved with the appropriate thermal equilibrium of the 
human nature. The basic thermal comfort factors can influence 
the safety or the health of the employees [3], e.g., the 
possibility of a rise in heat, decline or much worse could be if 
temperatures are too high. Also, the possibility of employee 
headaches, loss of focus or nausea, may also occur when the 
temperature drops too much. Being sleepy or not feel at all 
well when they function, all these could be happened due to 

the temperature in their offices or spaces. There are four 
fundamental thermal comfort factors [4]; first, moisture that 
ensures a significant amount of water is present in the air 
which keeps the sweat evaporation from the skin. Second, the 
ambient air temperature surrounding the body. Third, the air 
speed or the rapid flow of air in the employee's atmosphere 
that is the primary thermal comfort component. Thus, the air 
in a warmed indoor atmosphere will relax workers. There is a 
certain range of thermal comfort for each of the fundamental 
factors. 

II. RELATED WORK 

Thermal comfort is largely attributed to environmental and 
human influences. The fundamental adaptive thermal comfort 
theory stated that, people living in one place already seemed 
to be adapted to the thermal local environment [5] and their 
thermal history could contribute to different conditions of 
thermal comfort [6][7]. Thermal conditions in thermal systems 
can be more effectively modeled locally and internationally, 
helps to design and improve building thermal systems [8][9]. 
Thermal conditions in humans are best viewed in terms of 
their thermal comfort needs. 

Two distinct models, named the adaptive model and the 
PMV/PPD model [10], can be calibrated according to 
literature for the thermal comfortability measurement. The 
predict mean vote (PMV) should be the conventional 
dominant thermal comfort model [11], based on the thermal 
equilibrium between the human body and the environment. 
The model based on the heat balance concepts and the data 
was obtained from the chamber experiment where detailed 
monitoring of indoor conditions could be accomplished. In 
terms of the four environmental and the two personal factors 
mentioned before, the PMV model presents a statistical model 
to forecast the thermal sensation of a wide group of subjects. 

These six major thermal comfort factors are grouped into 
environmental factors are; air temperature, mean radiant 
temperature, relative humidity and air speed and personal 
factors are; metabolic rate and clothing insulation, that directly 
affect the thermal comfort [12]. The PMV/PPD model is 
appropriate with air conditioning buildings and ventilation 
systems, while the adaptive model is most suited with 
naturally conditioned buildings without mechanical condition 
systems [13]. 

ASHRAE uses the PMV index to estimate the average 
reaction of a broad seven-points thermal scale of a large 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 3, 2021 

254 | P a g e  

www.ijacsa.thesai.org 

number of people from cold (3) to hot (3) [14] this is known 
as the 'ASHRAE scale'. Zero stands for the desired value of 
thermal neutrality. A consumer will define a value similar to 0 
for the PMV in a setting he/she finds convenient. The 
expected unmet percentage (PPD) is an indicator used to 
measure the proportion of people unfulfilled with a certain 
thermal condition feeling that is whether too cold or too hot as 
recommended from their PMV values [15]. 

The PPD index is thus closely connected to PMV. This 
dependency is seen in the Fanger equation [12]. 

The ThermCont model, that learns a regressor which takes 
the six vector parameters of PMV as an input and provides a 
corresponding PMV value as an output, is designed to avoid 
and monitor the thermal comfort of the occupant by using 
machine learning tools. ThermCont utilizes Multiple Linear 
Regression [16] (MLR) algorithm, which is focused on 
subjective thermal comfort findings performed in a building of 
an office [17]. In addition, a genetic algorithm [18] has been 
developed to detect thermal comfort (PMV) in real time to 
enhance thermal comfort for indoor people. 

Data-driven approach [19] is developed to forecast thermal 
comfort of individual in real-time using a range of human 
factors and environmental factors including the six Fanger 
elements and the three new factors which are; gender, age and 
outdoor weather. The outdoor weather and three new features 
were added. Eventually, data of the outdoor weather was used 
by effective temperature because effective temperature is 
reflective of the weather, unlike air temperature. 

The ANN is practically utilized to estimate non-linear 
relationships between input features and output [20]. The 
artificial neural networks are applied to predict PMV index 
values of thermal comfort in a room. In order to select the 
right conditions, the ANN modeling can be performed many 
times. But the globally optimal solution in this case is not 
guaranteed. We propose in this paper a better way to address 
this issue by using CSO to ensure an optimum modeling 
parameter for a neural network is the Global Minimum Square 
Error (MSE). The use of the CSO means that the minimum 
number of time slots generated also matches the real-time 
limit. 

This paper is organized as follows: in Section 3, the 
overall architecture of the proposed real-time intelligent 
thermal comfort prediction model is introduced. In Section 4, 
the proposed methodology that solves the predication problem 
is explained. Section 5 introduces and discusses the 
experimental and finally the conclusion in Section 6. 

III. REAL-TIME INTELLIGENT THERMAL COMFORT 

PREDICTION MODEL 

Fig. 1 shows the indoor air speed, air temperature and 
relative humidity are gathered by hardware interface. The 
Hardware interfaces includes the components; LM35 
temperature sensor, Ardunio-uno and Bluetooth HC-05. The 
data are collected using the temperature sensor (LM5) which 
transferred using Ardunio-uno hardware. Then the data are 
transmitted via hardware to connected Bluetooth. The 
Bluetooth send the collected data to the mobile application for 
thermal comfort prediction. To receive the last temperature, 

form the indoor atmosphere, the user just presses a button in 
the application. Since the data was received in Fahrenheit, it 
has to be converted into Celsius. The gathered data are sent 
via cellular network or WiFi to trained model to predict 
thermal comfort which is then sent back to the mobile 
application according to Table I. 

A. Data Collection from Arduino 

The current air speed, relative humidity and air 
temperature are collected from the Arduino-Uno while the rest 
of the input features are entered from the dataset [25] used in 
the experiment. 

B. Hardware Interface 

There are three components of the hardware interface: 
(1) LM35 temperature sensor are included in the Hardware 
Interface: LM35 is developed for indoor climate 
measurement; if the sensor and the Arduino is connected as in 
Fig. 2(a). The Arduino will begin receiving data from this 
sensor immediately; the Arduino-Uno board as shown in 
Fig. 2(b) by Arduino [21]. (2) The Arduino-Uno is a 
microcontroller board. The digital and analog input/output 
pins are given. This is coded in C language for every second 
from the temperature attached to the Arduino-Uno, for 
sending and receiving the temperature. The result shows that 
the present temperature affects the consumer at home. (3) HC-
05 Bluetooth: In order to start receiving android data through 
Bluetooth for this part as shown in Fig. 2(c). HC-05 only 
connects to android operating systems. 

 

Fig. 1. Real-time Thermal Comfort Prediction Model. 

TABLE I. INDEX LEVEL SCALES WITH THERMAL COMFORT 

Index Level Thermal Comfort  

-2 Cold 

-1 Cool 

0 Comfort 

1 Slightly hot 

2 Hot 
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Fig. 2. Hardware Interface (a) LM35 Temperature Sensor, (b) Arduino-Uno 

and (c) Bluetooth HC-05. 

C. Mobile Application 

The smartphone framework is designed to obtain real-time 
temperatures from the hardware. Measured data will be 
transmitted privately via Bluetooth to the inhabitants' 
smartphones. Officers can still send input and aggregate 
information through a mobile network or WiFi to our backend 
server. Fig. 3(a) displays a range of standard mobile app user 
interfaces (UIs). The current temperature, air velocity, relative 
humidity and current thermal comfort/discomfort are provided 
to the operators. 

The thermal navigation button bar leads the user to another 
big operation, where it consists of two predictions "Predicted 
temperature" and "Predicted thermal comfort/discomfort" as 
seen in Fig. 3(b). The user will be given an opportunity to alert 
the application to submit a default sound on the lock-screen 
for the expected temperature and thermal comfort/discomfort. 

 

Fig. 3. (a) Home Page, (b) Thermal Page Interface. 

IV.  PROPOSED METHODOLOGY 

In this section, the approach proposed is clarified to 
efficiently solve problem of prediction of indoor thermal 
comfort using artificial neural network (ANN) with 
momentum function. The novel swarm algorithm (CSO) is 
utilized that automatically generate the most effective 
architecture model of NN to maximize classification 
performance and minimize the mean square error (MSE). 

A. Chicken Swarm Optimization (CSO) 

Chicken Swarm Optimization focused on computational 
optimization algorithms with bio-inspired behavior as 
discussed in [22]. There are a variety of communities in the 
chicken swarm. A dominant rooster, multiple hens and chicks 
are included each. The classification of these classes depends 
on the fitness values of the pigs. The best of the chickens 
would be roosters, each of whom would be the head rooster in 
a party. The most fitness-intensive chickens will be called 
chicks. The remainder is the hens. The hens chose the 
community in which they reside. The relationship of mother 
and child between hens and chicks is often formed randomly. 
In a collective there will be no shift in leadership, superiority 
and mother-and-child relationships. The hen selects classes 
arbitrarily in which to live and can only be changed for many 
generations. Chickens are hunting their group mate’s rooster 
for food while avoiding consuming their own food, each group 
coordinates as a team and explore food according to a certain 
hierarchical order [23]. The chicken of the best fitness values 
of the next generation are picked of flocks. 

Xi,j
t+1 = Xi,j

t ∗ (1 + Randn(0, σ2))             (1) 

𝜎2 = {
1, 𝑖𝑓 𝑓𝑖 ≤ 𝑓𝑘

exp (
𝑓𝑘−𝑓𝑖

|𝑓𝑖|+𝜀
), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑘 𝜖 [1, 𝑁], 𝑘 ≠ 𝑖           (2) 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + 𝑆1 ∗ 𝑅𝑎𝑛𝑑 ∗ (𝑋𝑟1,𝑗
𝑡 − 𝑋𝑖,𝑗

𝑡 ) + 𝑆2 ∗ 𝑅𝑎𝑛𝑑 ∗

(Xr2,j
t − Xi,j

t )                (3) 

𝑆1 = exp ((𝑓𝑖 − 𝑓𝑟1) 𝑎𝑏𝑠(𝑓𝑖) + 𝜀)⁄ )            (4) 

𝑆2 = exp((𝑓𝑟2 − 𝑓𝑖))              (5) 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + 𝐹𝐿 ∗ (𝑋𝑚,𝑗
𝑡 − 𝑋𝑖,𝑗

𝑡 )             (6) 

At time t, The N number of chickens, are referred as Xi,j
t+1 , 

where i 𝜖 [ 1, 2, …, N], j 𝜖 [ 1, 2, …, D] in D-dimensional 
space. The optimization problem is actually the problem of 
finding the minimum value of nonlinear equations. Therefore, 
the best Par corresponds to the minimum fitness value. Fit, is 
the corresponding fitness value. Algorithm 1 defines the 
original CSO algorithm [23]. 
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Original Chicken Swarm Optimization (CSO) Algorithm 
[21] 

Step 1: Initialize a Maximal generations (M), Population 
size(pop), Dimension(d), How the chicken swarm can often 
be updated(G). The roosters population size (rPercent), hens 
accounts (hPercent), mother hens accounts for (mPercent).  

Step 2: Initialize randomly using Gaussian random generator 
the size of (rooster rNum, hens hNum, chicks cNum, mother 
hens mNum). 

 Step 3: Evaluate the N chickens’ fitness values,t=0; 

 Step 4: Check If(t%G==0) then ort the chickens’ fitness 
values and establish a swarm hierarchal order; 

 Divide different swarm groups, and identify the relationship 
between chicks’ hens in a group 

 Step 5: For i=1:N : Update roosters solutions, hen and 
chicken solutions (locations) 

Check if i==rooster thus, modify its rooster’s location using 
Equation 1 

Check if i==hen thus, modify its hen’s location using 
Equation 3 

Check if i==chick thus, update its chick’s location using 
Equation 6 

New solution evaluation; 

Cheek if the new solution is better than the previous solution, 
then update it; 

Check if (t<M) go to step 4 else output results 

B. Learning Model: Momentum Back Propagation (MBP) 

Algorithm 

The dynamic back propagation (BP) approach was also 
used to adapt artificial neural networks to different problem 
typing patterns. One significant drawback of this system, 
however, is that it is highly dependent on these choices of 
momentum and size values [24]. Supervised learning will be 
needed for this study. In the classification, the momentum 
algorithm was used to find common properties from different 
classes. Also, it helps in enhancing the training speed and 
accuracy of finding values for weights so that given input and 
the computed output values are closely correctly match the 
known. Momentum also, consists of 3 phases. The first phase 
is the forward phase in which we begin the net and s(net) 
computation. The backward phase is the second phase that 
measures the error. The final and third phase is the weight 
update in which weights are updated from the output to the 
hidden layer and then to the input layers, if the error square is 
greater than the mean square error to get the final weights. 

𝑠(𝑛𝑒𝑡) =
1

1
+ 𝑒−𝑛𝑒𝑡               (7) 

The backward phase calculates errors at all nodes using 
equations 1, 2. 

For output error: 

𝑦1(1 − 𝑦1) ∗ (𝑑 − 𝑦1)              (8) 

For hidden error: 

𝑧1 ∗ (1 − 𝑧1) ∗ ∑ 𝑠1𝑘 𝑤1𝑘𝑚
𝑘=1              (9) 

The last step, if the Error square is greater than the MSE, 
thus it is going to apply weights update to get the final weights 
resulted using Equation 4. 

𝑊𝑛𝑒𝑤 =  𝜇 ∗ 𝑆 ∗ 𝑍 + [𝛼 ∗ 𝑊𝑜𝑙𝑑]           (10) 

After doing all of this, the final weights are used for 
thermal comfort prediction in android application. 

V. EXPERIMENTS AND RESULTS 

A. Dataset 

From July 2005 to July 2019 data are collected for one 
year, from weather archive in Cairo, Egypt [25]. Totally, there 
are 30,354 records in the dataset, and ten input features which 
are; time, air velocity, air temperature, global temperature, 
weight, height, sex, solar radiation, temperature gradient, 
relative humidity, and the eleven attribute is the index value 
that corresponds to the comfort value associated with the input 
features. 

B. Experiments Evaluation and Results 

The experiment results are shown based on the iterative 
nature of chicken swarm optimization algorithm. Table II 
shows some examples of predicted results of CSO. 

Table II and Fig. 4 illustrate that optimal solution has been 
found by chicken swarm optimization algorithm where the 
objective value is to minimize the error. The performance 
comparison between the fine-tuned neural network 
experiments and optimization of neural network is using the 
chicken swarm optimization experiment (CSO-NN). We will 
note that CSO algorithm produces a little time. Therefore, a 
low overall complexity is for modelling and forecasting. The 
runtime can be reduced by 1.281. It then enhances the 
credibility of the forecast and minimizes all MSE. The MBP 
architecture in Fig. 5 achieved a classification performance of 
98, 25% by training the classifier using 7-folds. 

Table III shows the overall confusion matrix that evaluated 
the performance of the developed model using the best 
architecture of MBA. The confusion matrix represents the five 
thermal comfort classes {Cold, Cool, Comfort, Slightly hot, 
Hot}. The results proved that the model developed is able to 
predict thermal comfort. 

TABLE II. EXPERIMENTS RESULTS 

k-fold 
Learning 

Rate 

Max 

epochs 
No. of nodes Accuracy (% ) 

27 0.2 2 (10,8,9,5) 69.246 

17 0.4 44 (10,8,10,5) 88.231 

21 0.4 62 (10,4,9,5) 89.300 

9 0.6 66 (10,8,1,5) 93.710 

9 0.2 22 (10,2,4,5) 92.130 

7 0.5 46 (10,7,7,5) 98.252 
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Fig. 4. Experiments Results of MBP. 

 

Fig. 5. Best Architecture of MBP using CSO. 

TABLE III. CONFUSION MATRIX OF THERMAL CLASSES 

Class Label Class 1 Class 2 Class 3 Class 4 Class 5 

Class 1 (Cold) 347 4 1 0 0 

Class 2 (Cool) 55 7536 57 4 0 

Class 3 (Comfort) 35 40 8120 69 0 

Class 4 (Slightly hot) 0 26 80 10820 82 

Class 5 (Hot) 0 0 18 60 3000 

C. Evaluation Metrics 

As shown in Table IV, we calculate the evaluation metrics 
to the best structure of the trained neural network from CSO 
optimization that consists of 10 input features and 7 nodes in 
the first hidden layer, 7 nodes in the second hidden layer and 5 
nodes in the output layer; with 46 epochs and 0.5 learning 
rate; we can see that the proposed method gave us a better 
result in all metrics. 

TABLE IV. EVALUATION METRICS 

Metrics 
Results  

10,7,7,5  
Formula Evaluation Focus 

Accuracy 

(acc) 

0.9825 𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛
 (11) 

Typically calculates the 

percentage of accurate 

forecasts over the total 
number of measured 

instances 

Error Rate 
(err) 

0.0175 
𝑓𝑝+𝑓𝑛

𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛
 (12) 

The error of misclassification 

tests the ratio of false 
predictions to the actual 

number of cases assessed 

Sensitivity 

(sn) 
0.9595 

𝑡𝑝

𝑡𝑝+𝑓𝑛
 (13) 

Calculate accurately 

classified fractions of positive 
patterns 

Specificity 
(sp) 

0.9914 
𝑡𝑛

𝑡𝑛+𝑓𝑝
 (14) 

Calculate the proportion of 

the negatively patterns 

classified correctly 

Precision 

(p) 
0.9774 

𝑡𝑝

𝑡𝑝+𝑓𝑝
 (15) 

Determine the positive 

patterns that are adequately 

predicted in a positive class 
by the total predicted patterns 

F-Measure 
(FM) 

0.9683 
2×𝑝×𝑟

𝑝+𝑟
 (16) 

Describes the harmony 

among recall and precision 

values 

Negative 
Predictive 

Value 
0.9844 

𝑡𝑛

𝑡𝑛+𝑓𝑛
 (17)  

The percentage of negative 
test outcomes reported 

correctly 

False 
Positive 

Rate 

0.0086 
 

𝑓𝑝

𝑓𝑝+𝑡𝑛
 (18) 

The risk that the null 
hypothesis for the given test 

will be denied falsely. 

False 

Discovery 
Rate 

0.0226 
𝑓𝑝

𝑓𝑝+𝑡𝑝
 (19) 

The significant features rate is 

truly null  

False 
Negative 

Rate 
0.0405 

𝑓𝑛

𝑓𝑛+𝑡𝑝
 (20) 

Used to conceptualize Type I 

error rates when evaluating 

null hypotheses with many 
comparisons. Intended to 

monitor the estimated 

percentage of false 
discoveries. 

VI. CONCLUSIONS 

Thermal comfort impacts working efficiency at work sites, 
and it is very important for consumers to be conscious of the 
performance of such thermal environments. This paper 
demonstrates the practicability of the intelligent thermal 
comfort application for individual’s thermal comfort 
prediction in the android application by automatic collect the 
relative humidity, air temperature and air velocity. The 
predication model proposed is based on momentum algorithm 
which achieved an accuracy result of 98.25% for thermal 
comfort, taking the final weights of the classification model, 
which is optimized using bio-inspired optimization algorithm 
(CSO). Furthermore, the analysis of the results showed that 
our proposed optimization model provides the optimal 
solution that achieved the minimum MSE of 1.7477. 
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