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Abstract—Automated text classification is the task of 
grouping documents (text) automatically into categories from a 
predefined set. The conventional approach to classification 
involves mapping a single class label each to a data point 
(instance). In multi-label classification (MLC), the task is to 
develop models that could predict multiple class labels to a data 
instance. There exist several MLC methods such as classifier 
chain (CC) and binary relevance (BR). However, there are 
drawbacks with these methods such as random label sequence 
ordering issue. This study attempts to address this issue peculiar 
with the classifier chain method. In this paper, a hybrid heuristic 
evolutionary-based technique is proposed. The proposed 
PSOGCC is a combination of particle swarm optimization (PSO) 
and genetic algorithm (GA). Genetic operators of GA are 
integrated with the basic PSO algorithm for finding the global 
best solution representing an optimized label sequence order in 
the chain classifier. In the experiment, three MLC methods: BR, 
CC, and PSOGCC are implemented using five benchmark multi-
label datasets and five standard evaluation metrics. The 
proposed PSOGCC method improved the predictive 
performance of the chain classifier by obtaining the best results 
of 98.66%, 99.5%, 99.16%, 99.33%, 0.0011 accuracy, precision, 
recall, 𝒇𝟏 𝑺𝒄𝒐𝒓𝒆, and Hammingloss values, respectively. 

Keywords—Text classification; multi-label classification; 
classifier chain; particle swarm optimization; genetic algorithm 

I. INTRODUCTION 
Automated text classification (ATC) is the task of 

developing predictive models capable of categorizing text 
documents into distinct class labels from a predefined set. In 
other words, ATC is a technique that involves the process of 
managing and processing a vast number of documents in a 
continually increasing form. Conventionally, classification 
technique [1]–[3] focuses on the development of predictive 
model, a function that learnt to map an input 𝑥 to an output 𝑦, 
𝑖. 𝑒. , 𝑓: 𝑥 → 𝑦 . This traditional approach to classification is 
otherwise termed single-label classification (SLC). Unlike the 
classical SLC technique, where an instance of a data sample is 
associated with a single class label, multi-label classification 
(MLC) [4]–[6] involves the problem of assigning to a data 
point (instance) multiple class labels simultaneously. 

Given an input vector 𝑥 = ⌈𝑥1, 𝑥2,⋯ , 𝑥𝑛⌉𝑇 and a vector of 
labels 𝑦 = ⌈𝑦1 ,𝑦2,⋯ ,𝑦𝑘⌉𝑇 , the goal of MLC is to build a 
model applicable in predicting one or more class labels 

simultaneously provided the labels are not mutually exclusive. 
The multi-label classification concept primarily originated 
from text [5]. In a real-world scenario, a document (such as 
news article) could have multiple themes (topics) like 
entertainment, business, security, health, science, etc. To 
automate the categorization of such related textual data, MLC 
methods and techniques have been proposed. The existing 
MLC techniques could be broadly categorized into two 
approaches [6]: problem transformation and algorithm 
adaptation. 

In problem transformation (PT) approach, the strategy 
involves transforming a multi-label problem into multiple 
single-label problems and learn one of the SLC algorithms (or 
classifiers) such as decision trees, for modeling the 
membership class (label). Subsequently, a new observation 
(test instance) is then predicted by combining the output of the 
positive predictions from the baseline classifiers. The PT 
strategy [7] is a very straightforward, easy, and flexible multi-
label classification approach. Most of the conventional MLC 
algorithms such as binary relevance (BR), label powerset (LP), 
calibrated label ranking (CLR), and classifier chain (CC) adopt 
the PT strategy for MLC tasks. 

Algorithm adaptation (AA) approach is based on inducing a 
conventional machine learning classification algorithm (single-
label classifier) for multi-label problem. In other words, in AA 
strategy, a learning algorithm (classifier) such as support vector 
machine (SVM) is modeled and directly applied on MLC 
problems. This approach to MLC has been less applied by 
researchers due to its limitations such as lack of flexibility, 
complexity [8]. Notable algorithms that have adopted AA 
approach include ML-kNN, BP-MLL, and BR-kNN. 

Classifier chain (CC) [9] [10] is one of the conventional 
MLC methods based on the problem transformation approach. 
The method is a direct extension of binary relevance (BR), 
developed to address the issue of label correlations. In BR, 
labels are taken as independent classifiers; hence the algorithm 
ignores labels inter-correlations. However, CC models consider 
labels as a chain-like structure, allowing communication (i.e., 
sharing of predictions) among the underlaying classifiers. The 
multi-label classification method has shown to be very 
competitive, achieving better classification results compared to 
other classical MLC methods such as BR [9]. 
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Although, CC algorithm has been widely applied to several 
applications [11], [12]–[17], the method suffers from a major 
setback, which is the labels ordering issue [11], [12]. The 
conventional CC method adopts a random approach for labels 
sequence ordering, but studies have shown that the random 
labels sequence ordering may affect the performance of the 
classification method [11]. Attempts have been made to 
improve the original CC method, particularly to address the 
random labels sequence ordering issue, with several CC 
extensions proposed. This work attempts to further improve the 
standard CC method using a new alternative approach. In this 
paper, a hybrid heuristic evolutionary-based technique is 
proposed. The proposed PSOGCC optimization technique is a 
combination of particle swarm optimization (PSO) and genetic 
algorithm (GA). 

The contributions of this work are grouped into three folds. 
First, we proposed an improved multi-label classifier chain 
method based on hybrid heuristic evolutionary techniques. 
Second, the proposed PSOGCC method is successfully 
demonstrated with standard benchmark multi-label datasets. 
Third, several conventional metrics are exhaustively employed 
to validate the performance of the proposed method against 
standard BR and CC methods in terms of Accuracy, Precision, 
Recall, 𝑓-Measure, and Hammingloss. 

The rest of this paper is organized as follows. Section 2 
reviewed related works, with focus on multi-label classifier 
chain method. Section 3 documented the experiment and 
method, and Section 4 presented the classification results. 
Section 5 concluded with direction to future works. 

II. RELATED WORKS 
MLC is an emerging, growing field in the area of machine 

learning and data mining. MLC methods and techniques have 
been applied to various application domains including [4], [6], 
[18]–[20]. 

Specifically, there have been a growing number of works 
[11], [17], [21], [22] based on implementing and improving the 
multi-label classifier chain method. As aforementioned, CC is 
an extension of the classical BR method. The classifier chain 
method improved on BR by taking into consideration label 
correlations. The method works by modeling a set of binary 
classifiers (learning phase) based on the random label sequence 
ordering defined in the chain. The learning algorithm is then 
used to predict (a target label) taking into consideration the 
predictions of preceding labels in the chain. Given a new 
observation (prediction phase), the classifier makes prediction 
(following same procedure in the learning phase), by 
combining all positive predictions (outputs) of the classifiers. 
The performance of CC is sensitive to the label sequence order, 
which may be likely prone to “error propagation” in the chain. 
Several attempts have been made to overcome the limitations 
of CC. 

In [23] an efficient label ordering approach was proposed 
for improving multi-label classifier chain accuracy. The 
proposed approach is based on exploiting semantic 
relationships among labels. The method achieved better 

accuracy compared to the original CC method. Also, a decision 
function based on Bayesian network was proposed in [24] for 
multi-label classifier chain. Similarly, [22] employed the use of 
Bayesian network based on conditional entropy for discovering 
label correlation and order of labels in the chain classifier. The 
author in [25] proposed an improved classifier chain method 
based on conditional likelihood maximization. A k dependence 
classifier chains with label-specific function was developed. 
The method is shown to be effective. A cost-sensitive CC 
method was proposed in [12] for selecting low-cost features in 
multi-label classification. The method combined classifier 
chain with logistic regression dimensionality reduction 
technique. 

In this paper, a hybrid heuristic evolutionary-based 
technique is proposed for improving the performance of multi-
label classifier chain method. Heuristic techniques [26]–[30] 
are a set of intelligent self-learning algorithms developed to 
search for the optimum (best) solution to an optimization 
problem. Evolutionary-based heuristic methods are 
optimization algorithms that mimic the natural biological 
process (nature) in finding solutions to optimization problems. 
Most common and widely applied of the evolutionary-based 
optimization algorithms include: genetic algorithm, PSO, 
differential evolution, ant colony optimization algorithm, bee 
optimization algorithm, artificial immune system, cuckoo 
search, firefly algorithm, and tabu search algorithm. 

The proposed technique applied in this work combined 
PSO and GA for finding the global solution that best represents 
an optimized label sequence order in the chain. Genetic 
operators: selection, crossover, and mutation, were integrated 
into the basic PSO algorithm for improving the search process, 
updating and maintaining diversity of the population 
(solutions). Details of the research methodology are presented 
in the next section. 

A. PSO Algorithm 
Particle swarm optimization (PSO) is a population-based 

heuristic algorithm developed by Eberhart and Kennedy for 
solving optimization problems. The heuristic algorithm was 
influenced by the social behavior of species of animals such as 
birds flocking, fish schooling etc. In PSO algorithm (shown in 
Algorithm 1), a population entity called particle is assigned 
with position and velocity. A particle is a potential solution to a 
given problem. Each of the particles, represented as 
𝐷 −dimensional vector, moves around in the solution space, 
adjusting its position and velocity at every iteration using 𝐸𝑞𝑛 
(1) and (2) respectively. Each particle has memory and 
remembers its previous best position 𝑝𝑏𝑒𝑠𝑡  based on its 
experience. The global best represented as 𝑔𝑏𝑒𝑠𝑡  is the 
collective best position in the swarm. Each particle knows the 
global best and move towards it. The performance of each 
particle (at every successive iteration) is measured using a 
fitness function. 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)            (1) 

𝑣𝑖  (𝑡 + 1) = 𝑤𝑣𝑖  (𝑡) + 𝑐1𝑟1[𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑝𝑔(𝑡) −
𝑥𝑖(𝑡)]                (2) 
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where 𝑖 = 1,2, … ,𝑁 ; 𝑡 = 1,2, … ,𝑇 ; 𝑁  represents swarm 
size and 𝑇  is the maximum iteration limit; 𝑝𝑖  and 𝑝𝑔  are the 
local and global best solutions respectively; 𝑐1 and 𝑐2 are two 
acceleration constants in the value [0,1] ; 𝑟1  and 𝑟2  are two 
random numbers in the value [0,1] ; 𝑤  is the inertia weight 
(which balances between local and global search); 𝑥𝑖(𝑡) is the 
position of the particle and 𝑣𝑖  (𝑡) is the velocity of the particle 
at 𝑡-th iteration; particle (𝑖𝑡ℎ) position is denoted as 𝑥𝑖(𝑡) =
(𝑥𝑖1, 𝑥𝑖2,⋯ , 𝑥𝑖𝐷) , and velocity (𝑖𝑡ℎ)  is denoted as 𝑣𝑖(𝑡) =
(𝑣𝑖1, 𝑣𝑖2,⋯ , 𝑣𝑖𝐷). 

Algorithm 1: Standard PSO Pseudocode 

Step 1: Initialize population of particles with random  

 positions 𝒙 and velocities 𝒗, swarm size 𝒔  

Step 2: For each particle, let 𝑝𝑏𝑒𝑠𝑡 = 𝑥  

Step 3: calculate particles fitness 𝑓(𝑥); update g𝑏𝑒𝑠𝑡  

Step 4: while (termination criterion is not met)  

Step 5: For 𝑖 = 1 𝑡𝑜 𝑆  

Step 6: calculate the new velocity using 𝐸𝑞 (3.1) 

Step 7: calculate the new position using 𝐸𝑞 (3.2) 

Step 8: calculate 𝑓(𝑥) of each particle 

Step 9: 𝑖𝑓 �𝑓(𝑥) < 𝑓(𝑝𝑏𝑒𝑠𝑡)� 𝑝𝑏𝑒𝑠𝑡 = 𝑥 

Step 10: 𝑖𝑓 �𝑓(𝑝𝑏𝑒𝑠𝑡) < 𝑓(𝑔𝑏𝑒𝑠𝑡)� 𝑔𝑏𝑒𝑠𝑡 = 𝑝𝑏𝑒𝑠𝑡 

Step 11: end For  

Step 12: end For  

Step 13: show the best solution found (𝑔𝑏𝑒𝑠𝑡)  

B. GA Algorithm 
Genetic Algorithm (GA) is a global search optimization 

algorithm developed by Holland and based on the concept of 
natural selection adopted from the principle of Charles’ Darwin 
theory of evolution. GA is one of the most important and 
successful evolutionary-based heuristic method. The algorithm 
has been widely applied to several application problems [31]–
[33]. The algorithm uses genetic operators: selection (or 
reproduction), crossover (or recombination), and mutation, to 
find (or produce) the global best solution to a given problem. 

The evolutionary-based algorithm works (refer to Fig. 1) by 
first generate random initial population. At each generation, the 
quality of individuals (candidate solutions) is validated using a 
defined fitness function. Selection operator is applied to 
identify (select) individuals from the current generation based 
on the best fitness values. The process is improved through 
crossover and mutation operators until a new (better) 
population is created. The search ends with a termination 
criterion when the maximum iteration limit is reached or the 
best solution is found. 

 
Fig. 1. Standard Genetic Algorithm. 

III. METHODOLOGIES 
In this paper, the experimental work comprises of four 

phases. These include input (data), preprocessing, 
classification, and output (results). 

The experimental work is carried out using 5 benchmark 
multi-label datasets from Mulan (an open source library for 
multi-label classification problem). The standard datasets (in 
Table I) are from the most commonly experimented MLC 
datasets. The input data is preprocessed using 
StringToWordVector filtering tool and Term frequency 
inverse-document frequency (𝑇𝐹𝐼𝐷𝐹) . These are from the 
standard preprocessing techniques often applied in machine 
learning problems. The preprocessed data is stored in ARFF 
(Attribute-Relation File Format), the standard file format for 
machine learning using Mulan and Weka. 

TABLE I. BENCHMARK ML DATASETS (WITH 𝐷 = NO OF FEATURES; 𝑄 = 
NO OF CLASS LABELS; 𝑙𝑐 = LABEL CARDINALITY) 

Dataset Doman #Instances 𝑫 𝑸 𝒍𝒄 

enron Text 1702 1001 53 3.378 

birds Multimedia 645 260 19 1.014 

flags Image 194 19 7 3.392 

genbase Text 662 1186 27 1.252 

yeast Text 2417 103 14 4.237 
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A. Proposed PSOGCC Multi-label Classification Method 
The proposed MLC method is based on the concept of 

heuristic optimization technique, where the goal is finding the 
optimum solution to the search problem. The PSOGCC method 
(as shown in Fig. 2) is a hybrid of PSO and GA. The combined 
heuristic techniques are used to find the global best solution 
that best represents an optimized label sequence order in the 
chain classifier. PSO is an efficient, simple optimization 
algorithm and GA is a powerful, robust global search 
algorithm. Genetic operators: selection, crossover, and 
mutation, are applied for the population updates and 
reproduction of new generations (individuals). 

 
Fig. 2. Proposed PSOGCC Multi-label Classification Approach. 

In PSOGCC (as shown in Algorithm 2), the optimization 
algorithm takes as input a training set 𝑇 and produces as output 
an optimized label sequence 𝑜𝑝𝑡𝑚𝐿 , representing the global 
optimum solution found in the chain. The entire algorithmic 
process could be broadly categorized into two: PSO loop 
(1 − 7) and GA loop (9 − 20). 

In the first phase (PSO loop), population of particles (also 
called individuals) is initialized randomly with position 𝑥 , 
velocity 𝑣 , and swarm size 𝑠 . Individual particles are 
represented as 𝑘- dimensional vectors (where 𝑘 is equivalent to 
the number of predefined labels). The particles are encoded as 
integers representing label sequence indexes in the range value 
[1, 𝑞] . Individual particle’s previous best position 𝑝𝑏𝑒𝑠𝑡  is 
initialized with a copy of its current position 𝑥. The quality of 
particles is assessed using a defined fitness function 𝑓(𝑥) in 

𝐸𝑞 (3). Subsequently, the global best 𝑔𝑏𝑒𝑠𝑡 is initialized with 
the index of the best fitted particle. 

Algorithm 2: Pseudocode of the Proposed PSOGCC model 

Input: 𝑻 (training set) 

Output: 𝒐𝒑𝒕𝒎𝑳 (an optimized label sequence) 

Step 1: Initialize population of particles (potential candidate  

 solutions representing the label sequences) with random  

 positions 𝒙, velocities 𝒗, and swarm size 𝒔. Set the  

 particle’s previous best position to the current position  

 (𝑝𝑏𝑒𝑠𝑡 = 𝑥) 

Step 2: Given a training set 𝑻 

Step 3: 𝑭𝒐𝒓 all particles (label sequences) in the population 𝒅𝒐 

Step 4: Build the classifier chain (CC) model (using standard  

  𝟏𝟎 − 𝒇𝒐𝒍𝒅 cross validation) 

Step 5: Compute the particle’s fitness 𝒇(𝒙) using 𝑬𝒒 (𝟑) 

Step 6: Update the population 𝑝𝑏𝑒𝑠𝑡 and set the best particle  

  𝒈𝑏𝑒𝑠𝑡 to the current population 

Step 7: end 𝑭𝒐𝒓 

Step 8: repeat 

Step 9: Partition the training set 𝑻 into 𝒃𝒖𝒊𝒍𝒅𝑺𝒆𝒕 and  

 𝒗𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏𝑺𝒆𝒕  

Step 10: 𝑭𝒐𝒓 all particles (candidate label sequence 𝒊) in the  

  current population 𝒅𝒐 

Step 11: Construct the CC model using 𝒃𝒖𝒊𝒍𝒅𝑺𝒆𝒕 and label  

  sequence 𝒊 

Step 12: Evaluate the fitness (quality) of the CC model using the  

  𝒗𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏𝑺𝒆𝒕 and the fitness function 𝒈(𝒙)  

  defined in 𝑬𝒒 (𝟒) 

Step 13: Apply Genetic operators: 

Step 14: Using Tournament selection approach 𝑺𝑬𝑳𝑬𝑪𝑻  

  parents (particle with best fitness value) 

Step 15: Generate new particles (child) from the old ones  

  (parents) with 𝑪𝑹𝑶𝑺𝑺𝑶𝑽𝑬𝑹 operator 

Step 16: Apply 𝑴𝑼𝑻𝑨𝑻𝑰𝑶𝑵 procedure (to the offspring) 

Step 17: Update particles and population using 𝒆𝒍𝒊𝒕𝒊𝒔𝒎 𝒂𝒈𝒆 −

  𝒃𝒂𝒔𝒆𝒅 𝒓𝒆𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕 approach 

Step 18: end 𝑭𝒐𝒓 

Step 19: Until (𝑴𝒂𝒙 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 (𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔) 𝒓𝒆𝒂𝒄𝒉𝒆𝒅) 

Step 20: return 𝒐𝒑𝒕𝒎𝑳 (optimum solution rep labeled-ordered  

 sequence) 
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In the second phase (GA loop), standard genetic operators: 
selection, crossover, and mutation, are applied. Classifier chain 
(CC) models are built and further evaluated using the fitness 
function 𝑔(𝑥) defined in 𝐸𝑞 (4). Genetic tournament selection 
strategy [34] is applied to select the best individuals to be 
recombined for producing a new generation (offspring). Order 
crossover operation [35] is performed using the selected 
individuals, resulting in the generation of new individuals. 
Thereafter, mutation operator is applied on the new individuals 
in order to avoid being trapped in the local minima. Age-based 
elitism replacement approach [36] is employed to replace the 
old generation with new ones while preserving a small group 
(elite individuals) in the population. This helps to improve and 
maintain diversity in the population. The PSOGCC 
implementation ends with the termination criteria and the 
global best solution 𝑜𝑝𝑡𝑚𝐿  representing an optimized label 
sequence order in the chain classifier is returned. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓(𝑥) = (𝛼 ∗ 𝐴𝑐𝑐) + (𝛽 ∗ (𝑁−𝑇
𝑁

))           (3) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑔(𝑥) =
�1−( 𝐻𝐿

𝑔𝑀𝑒𝑎𝑛)�+𝐴𝑐𝑐+𝐸𝑀+𝐹1

𝑁
           (4) 

(𝛼 & 𝛽) are control parameters (for balancing the trade-offs 
of particle’s 𝑔𝑏𝑒𝑠𝑡 , 𝑔𝑤𝑜𝑟𝑠𝑡 , 𝑝𝑏𝑒𝑠𝑡 , and 𝑝𝑤𝑜𝑟𝑠𝑡 ); 𝐴𝑐𝑐 
represents the accuracy of the baseline classifier; (𝑁 & 𝑇) 
represent population size and neighborhood size, respectively. 
𝐻𝐿,𝑔𝑀𝑒𝑎𝑛,𝐴𝑐𝑐,𝐸𝑀, 𝑎𝑛𝑑 𝐹1 score are standard performance 
metrics. 

IV. EXPERIMENTS AND RESULTS 
This section details the experiments performed and the 

simulation results obtained. Five benchmark multi-label 
datasets with five conventional performance metrics were 
employed to validate the performance of the proposed 
PSOGCC method against the standard binary relevance (BR) 
and classifier chain (CC) multi-label classification algorithms. 
The classification results were compared in terms of: Accuracy 
(𝐴𝐶𝐶) , Hammingloss (𝐻𝐿) , Precision (𝑃) , Recall (𝑅) , and 
𝑓 −Measure (𝐹1 𝑠𝑐𝑜𝑟𝑒). 

Accuracy (𝐴𝐶𝐶) [𝐸𝑞 5] is a standard performance metric 
used to measure the correctly classified instances across data 
points. The higher the accuracy value, the better the 
classification algorithm. Precision [𝐸𝑞 6], Recall [𝐸𝑞 7], and 
𝑓 −Measure [𝐸𝑞 8] are performance metrics often applied in 
classification problems to measure the degree of correctness of 
the positively classified instances. An effective classifier 
should have high precision, recall, and 𝐹1 𝑠𝑐𝑜𝑟𝑒 . Lastly, 
Hammingloss [𝐸𝑞 9] evaluation metric helps to measure the 
degree of incorrectness (misclassification) wrongly predicted 
by the classification algorithm. In general, a good classifier is 
one with high accuracy, precision, recall, 𝐹1 𝑠𝑐𝑜𝑟𝑒, and low 
Hammingloss values. 

𝐴𝐶𝐶 = 1
𝑁
∑ |𝑌𝑖∩𝑍𝑖|

|𝑌𝑖∪𝑍𝑖|
𝑁
𝑖=1              (5) 

𝑃 = 1
𝑁
∑ |𝑌𝑖∩𝑍𝑖|

|𝑍𝑖|
𝑁
𝑖=1               (6) 

𝑅 = 1
𝑁
∑ |𝑌𝑖∩𝑍𝑖|

|𝑌𝑖|
𝑁
𝑖=1               (7) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 1
𝑁
∑ 2|𝑌𝑖∩𝑍𝑖|

(𝑌𝑖)+|𝑍𝑖|
𝑁
𝑖=1             (8) 

𝐻𝐿 =
1
𝑁
∑ |𝑌𝑖∆𝑍𝑖|

𝑘
𝑁
𝑖=1 , |𝑌𝑖∆𝑍𝑖| 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑓𝑓 𝑏𝑡𝑤 𝑌𝑖 & 𝑍𝑖    (9) 

The three multi-label classification methods: PSOGCC, 
BR, and CC, produced competitive results. In Table II, the 
proposed PSOGCC achieved the highest accuracy result of 
98.66% with the genbase multi-label dataset. Closely followed 
by the CC method with 98.15% accuracy while BR obtained 
98.06%. From the accuracy results, it could be observed why 
the classifier chain (CC) outperformed the traditional BR 
algorithm. This is due to the limitation (associated with BR) of 
ignoring label correlations. Also, the proposed PSOGCC 
heuristic method outperformed the other two methods due to its 
combined advantages of considering label correlations and 
finding an optimized label sequence order, thereby addressing 
the limitation of the original CC method (i.e., random label 
sequence order in the chain). 

Tables III to V presented the experimental results in terms 
of precision, recall, and 𝑓- Measure, respectively. Consistently, 
the proposed PSOGCC optimization algorithm outperformed 
both BR and CC multi-label methods. PSOGCC obtained the 
highest scores of 99.5%, 99.16%, and 99.33% precision, recall, 
and 𝑓1 𝑠𝑐𝑜𝑟𝑒  respectively. These results further proved the 
effectiveness and superiority of the proposed method compared 
to the other two classical methods: binary relevance and 
classifier chain. 

Finally, Table VI showed the Hammingloss values of the 
three classification methods obtained across the benchmark 
multi-label datasets. As aforementioned, Hammingloss metric 
helps to check the frequency of misclassification by the 
classifier. A good classifier should have less labels 
misclassified (i.e., low Hammingloss value). From the result, it 
could be seen that the proposed PSOGCC performed best 
compared to BR and CC. The method obtained the lowest 
Hammingloss value of 0.0011 with genbase dataset. The 
original CC method came second with 0.0102 Hammingloss 
value while BR performed the least (0.0121). 

To further show a clearer and easier understanding of the 
classification results, the performance of the three MLC 
methods are presented in graphical forms as plotted in Fig. 3 to 
7. The results comparisons showed the proposed PSOGCC had 
better performance across the multi-label datasets. This reflects 
the significance influence of finding an optimized label 
sequence order in the chain classifier. 

TABLE II. CLASSIFICATION (𝑨𝑪𝑪) RESULTS OF PSOGCC, BR, AND CC 

Datasets 
Accuracy (𝑨𝑪𝑪) ↑ 

PSOGCC BR CC 

enron 0.4046 0.3671 0.3671 

birds 0.5515 0.5723 0.5725 

flags 0.5586 0.5763 0.5700 

genbase 0.9866 0.9806 0.9815 

yeast 0.4537 0.4226 0.4219 
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TABLE III. CLASSIFICATION (𝑷) RESULTS OF PSOGCC, BR, AND CC 

Datasets 
Precision (𝑷) ↑ 

PSOGCC BR CC 

enron 0.5959 0.6574 0.6576 

birds 0.8153 0.8061 0.8064 

flags 0.6741 0.6956 0.6943 

genbase 0.9950 0.9947 0.9950 

yeast 0.5796 0.5929 0.5950 

TABLE IV. CLASSIFICATION (𝑹) RESULTS OF PSOGCC, BR, AND CC 

Datasets 
Recall (𝑹) ↑ 

PSOGCC BR CC 

enron 0.4858 0.4481 0.4483 

birds 0.6050 0.6403 0.6406 

flags 0.6856 0.7741 0.7577 

genbase 0.9916 0.9903 0.9908 

yeast 0.6008 0.5613 0.5616 

TABLE V. CLASSIFICATION (𝑓1 𝑆𝑐𝑜𝑟𝑒) RESULTS OF PSOGCC, BR, AND 
CC 

Datasets 
𝒇-Measure (𝒇𝟏 𝑺𝒄𝒐𝒓𝒆) ↑ 

PSOGCC BR CC 

enron 0.5352 0.5329 0.5331 

birds 0.6946 0.7137 0.7140 

flags 0.6798 0.7328 0.7246 

genbase 0.9933 0.9925 0.9928 

yeast 0.5900 0.5767 0.5778 

TABLE VI. CLASSIFICATION (𝐻𝐿) RESULTS OF PSOGCC, BR, AND CC 

Datasets 
Hammingloss (𝑯𝑳) ↓ 

PSOGCC BR CC 

enron 0.0535 0.0540 0.0542 

birds 0.0521 0.0515 0.0515 

flags 0.2857 0.2747 0.2654 

genbase 0.0011 0.0121 0.0102 

yeast 0.2642 0.2588 0.2579 

 
Fig. 3. Comparison of PSOGCC, BR, and CC in Terms of Accuracy. 

 
Fig. 4. Comparison of PSOGCC, BR, and CC in Terms of Precision. 

 
Fig. 5. Comparison of PSOGCC, BR, and CC in Terms of Recall. 

 
Fig. 6. Comparison of PSOGCC, BR, and CC in Terms of 𝑓1 𝑆𝑐𝑜𝑟𝑒. 

 
Fig. 7. Comparison of PSOGCC, BR, and CC in Terms of Hammingloss. 

V. CONCLUSION 
Single-label classification (SLC) involves predicting a 

single class (output) for a particular data instance (input) 
whereas in multi-label classification (MLC), the task is to 
develop predictive models capable of assigning multiple class 
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labels simultaneously (to a single instance). In MLC, there are 
standard methods such as binary relevance (BR), classifier 
chain (CC), and label powerset (LP). There exist limitations 
with these methods such as ignoring label correlations 
(associated with BR), complexity (associated with LP), and 
random label ordering (associated with CC). This study 
attempted to improve the predictive performance of the multi-
label CC method. In this work, the randomized label sequence 
order issue of CC is addressed. To achieve this, the study 
proposed a hybrid heuristic evolutionary-based technique. 

Heuristic techniques involve developing a set of intelligent 
self-learning algorithms designed for finding the optimal best 
solution to an optimization problem. In this paper, PSOGCC 
multi-label classification method is proposed to extend the 
original CC method. The evolutionary-based algorithm is a 
combination of particle swarm optimization (PSO) and genetic 
algorithm (GA). The proposed PSOGCC method is used to 
find the global best solution representing an optimized label 
sequence order in the chain classifier. Genetic operators: 
selection, crossover, and mutation were integrated with the 
basic PSO for optimizing the search problem. 

The experiment was conducted using five benchmark 
multi-label datasets. Furthermore, five evaluation metrics were 
applied to validate the performance (predictions) of the 
proposed PSOGCC against standard BR and CC methods. 
Results were presented in Tables II to VI in terms of accuracy, 
precision, recall, f-measure, and Hammingloss respectively. 
The proposed PSOGCC achieved the overall best classification 
results of 98.66%, 99.5%, 99.16%, 99.33%, 0.0011 accuracy, 
precision, recall, 𝑓 -measure, and hammingloss values 
respectively. 

In the future work, the proposed technique will be further 
validated using more multi-label datasets. Also, it is 
recommended to compare the performance of PSOGCC 
against other standard MLC algorithms. Finally, the research 
study will be further extended to employ other recent heuristic 
evolutionary-based techniques such as bat algorithm, whale 
optimization algorithm, and firefly algorithm etc. 
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