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Abstract—The efficiency of Internet services is determined by 
the Cloud computing process. Various challenges in computing 
are being faced, such as security, the efficient allocation of 
resources, which in turn results in the waste of resources. 
Researchers have explored a number of approaches over the past 
decade to overcome these challenges. The main objective of this 
research is to explore the task scheduling of cloud computing 
using multi-objective hybrid Ant Colony Optimization (ACO) 
with Bacterial Foraging (ACOBF) behavior. ACOBF technique 
maximized resource utilization (Service Provider Profit) and also 
reduced Makespan and user wait times Job request. ACOBF 
classifies the user job request in three classes based on the 
sensitivity of the protocol associated with each request, Schedule 
Job request in each class based on job request deadline and 
create a Virtual Machine (VM) cluster to minimize energy 
consumption. Based on comprehensive experimentation, the 
simulated results show that the performance of ACOBF 
outperforms the benchmarked techniques in terms of 
convergence, diversity of solutions and stability. 

Keywords—Ant colony; scheduling; hybrid; foraging; cloud 
computing 

I. INTRODUCTION 
Cloud computing proliferation has become a major issue 

with the omnipresent evolution of big data in its range, speed, 
and volume through the Internet. Autonomous computing, 
grid computing, distributed computing, and utility computing 
consist of cloud computing [1]. Cloud computing offers high 
performance storage facilities and highly flexible on-demand 
computing. With the massive increase in energy usage is the 
major issue faced in cloud data centers. 

In order to enhance the overall efficiency of cloud 
computing, task planning is an essential step. The 
conventional centralized framework for managing and 
tracking cloud resources has been widely used in enterprise 
environments. As such, due to the heterogeneous and large-
scale data, supervision and checking systems in multiple data 
centers have faced serious challenges [2]. The first paper to 
address the planning problem of the heterogeneous system for 
energy consumption by means of multi-objective hybrid ACO 
and bacteria foraging algorithm in the IaaS cloud is this study. 

Researchers have recently concentrated more on 
addressing the issue of task scheduling in a distributed 
environment. Task scheduling is considered a critical problem 

in the world of cloud computing by considering different 
variables such as power consumption, fault tolerance, the 
overall cost of performing the tasks of all users, completion 
time and use of resources. Task scheduling has been shown to 
be a full NP problem [3], which make it impossible to achieve 
solutions easily. The issue of finding the best balance between 
the tenacity time and the energy required by a precedence-
constrained corresponding application is a bi-objective 
optimization problem. This issue can be solved by a set of 
Pareto points [4]. Pareto strategies are those for which only 
one goal can be strengthened with the deterioration of at least 
one other goal. Thus, the solution to a bi-objective problem is 
a (possibly infinite) set of Pareto points instead of a particular 
solution to the problem. 

Internet forms a connection of large group of servers in 
cloud data centers. Thus, task schedulers are needed in the 
cloud data centers for the organization of task executions. A 
good task scheduler must efficiently utilize cloud data center 
resources for task execution. A scheduler should be able to use 
less resources and time to execute tasks. The scheduling 
algorithm's efficiency problems include makespan and energy 
consumption. In fact, using fewer resources ensures that it 
uses less energy. The minimization of makespan and energy 
consumption is one of the major problems for building large-
scale clouds. 

Different studies have been carried out in [5] to exploit the 
diversity of makespan and energy usage in cloud computing. 
These studies are that in [4] scheduling techniques and 
algorithms for particular tasks have been developed and 
implemented, fault-tolerant tasks with real-time deadlines and 
energy-efficient tasks with dependence. At the design time, 
the optimization goals set statically constructed monolithic 
virtual machines (VMs) cluster for task scheduling that lacks 
flexibility and adaptability in changing resource provisioning, 
classification of workloads and environmental cloud 
execution. As the study failed to address convergence, 
diversity and stability, resulting in too much wasting of 
resources, there is certainty about the inherent issue of 
resource availability and task scheduling. The majority of the 
techniques and algorithms for task planning and resource 
provisioning often apply to some widespread functional 
method that uses a comparable deterministic task execution 
system for various optimization goals. 
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However, incorporating new scheduling skills needs to be 
performed one at a time for the algorithm of scheduling, 
which is not only monotonous but also stochastic. As such, the 
aim of this study was to explore task scheduling using multi-
objective hybrid Ant Colony Optimization (ACO) with 
Bacteria Foraging (BF) behavior in cloud computing. The 
ACOBF technique maximized the usage of services (profit 
from service providers) and also reduced Makespan and Job 
Request user waiting time. Based on the sensitivity of the 
protocol associated with each application, ACOBF will 
categorize user job requests into three classes, schedule job 
requests in each class based on the deadline for job requests, 
and create a VM cluster to minimize the amount of energy 
consumption. 

The rest of this paper is structured as follows; Section 2 
addresses the relevant reviews of other authors' literature on 
resource management and task scheduling, while Section 3 
discusses the methodological processes. Then Section 4 
considers implementation, results and discussions while 
section exposes conclusion and future works for upcoming 
researchers. 

II. REVIEW OF RELATED LITERATURE 
The most fruitful ACO research in cloud computing 

nowadays is improving the quality of solution and 
convergence speed for energy efficiency. Researchers have 
attempted to explore these problems by metaheuristic 
hybridization or preprocessing of the input population, transfer 
operator adjustment, etc. [6]. In [2], combining two 
population-based meta-heuristics with identical characteristics 
will possibly strengthen the solution as one's strength would 
easily overpower the other's weakness. The authors have 
argued that by hybridizing ACO with another population-
based metaheuristic for efficient exploration and exploitation 
by the search strategy, there is a greater chance of obtaining 
better solution outcomes. This section addresses many similar 
work analyses performed on various ACO approaches to 
resource provisioning by other researchers. 

The ACO was adopted in [6] for resources allocation in 
cloud. The authors’ objective function is to minimize 
makespan. The research looked into the relative weakness and 
strength of the search process by experimentation where 
assignment of VM’s is based on a simple, short-term memory 
using constraint satisfaction rule for incoming batch jobs. VM 
migration from one PM to another was modeled using the 
Graph theorem such that PMs are represented with vertex 
(node) and edge defines the transition [7, 8] . The rule did not 
resolve the convergence problem arising from the existence of 
transition loops, plurality of solutions, and as such stability; 
too much energy was consumed in the datacenter. The authors 
in [9, 10] also researched Makespan minimization, where the 
authors attempted to balance cloud load for IaaS. The 
Heuristic Dependent Load Balancing Algorithm (HBLBA) 
proposed by the authors strategized tasks to configure servers 
for assigning VMs to process tasks in datacenters based on the 
incoming number of tasks and their sizes. Other minimization 
of makespan by ACO technique studied can be seen in [10-
12]. 

A updated ACO algorithm [13] was proposed to obtain a 
Pareto solution package. An approximate non-deterministic 
tree-search method based on the ACO was inculcated by the 
researchers. This leads to simplifying the calculation of 
probability and also updating the pheromone law, which 
allows the learning capacity of ants to increase. In [14], a 
multi-objective ACO (MO-ACO) algorithm was proposed 
with the objective function considered to be load balancing, 
cost and minimization of makepan. The law did not discuss 
the dependence between convergence tasks, but instead used a 
limited number of tasks in their experiment, resulting in 
resource and energy wastage. In the primary step, current 
setbacks in ACO that include poor convergence accuracy, 
easy falling into optimal local solution and slow solving speed 
were found. The authors resolved the initial pheromone 
deficiency through the rapid search capability of the ACO 
with a spanning tree to increase the ACO's convergence speed. 
Solution diversity and consistency in convergence have not 
been discussed as a result of the lack of energy. Other 
metaheuristic population focused on an attempt to fix energy 
waste was seen in [15] where the authors used the general 
concept of ACO and the Clonal Selection Algorithm for task 
scheduling. The technique used for pattern recognition was 
based on the independence of the populations of memory cells 
and antigens. Two population-based techniques that failed to 
address convergence in their exploration and exploitation may 
lead to a search phase that ended in a local optima solution. 
Too much electricity was also lost. 

[16] investigated the scheduling problem on the set of 
batch processing machines, which were arranged in a parallel 
with different processing capabilities. The jobs were aligned 
with different sizes, processing and releasing time. A bio-
objective ACO is used to reduced makespan and total energy 
consumption. Also, [17] designed to examine the effect of the 
association of ACO in solving the problems of job scheduling. 
This book focused to introduce hybrid ACO as a solution to 
that effect, which was evaluated based on parameters; 
makespan time, delay (tardiness) and workload. In the same 
vein, [18] proposed a multi-objective hybrid ACO for real 
world two stage blocking permutation, flow shop scheduling 
problem in order to tackle the total energy cost as well as 
makespan based on the current market situation. The author in 
[19] proposed Ant Mating Optimization (AMO) to reduce 
total energy consumption and makespan for Fog Computing 
platform. The algorithm determines trade-off between system 
makespan and the consumed energy required established by 
the end user. This techniques out performs Particle Swarm 
Optimization (PSO), Bee Life Algorithm (BLA) and Genetic 
Algorithm (GA) in term of the parameters under examination. 
In another development [20] preemptive scheduling in a single 
machine is proposed to minimize total completion time, 
energy cost under the electricity period. ACO – DR, dominant 
ranking procedure. 

III. METHODOLOGY 
By means of methods for searching, handling and 

ingesting food, natural selection aims to eradicate animals 
with poor foraging strategies. It favors the spread of the genes 
of those organisms with successful foraging strategies, 
because reproductive success is more likely to occur [16]. Bad 
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foraging techniques are either re-structured to succeed or 
eliminated after many years. Since the foraging activity of the 
animal/organism seeks to maximize energy intake per unit of 
time spent on foraging.  Constraints considered to be cognitive 
and sensing capacities combined with environmental 
parameters (e.g. predator threats, prey density, search area 
physical characteristics) are optimized due to natural 
evolution. This basic concept has been extended to complex 
optimization problems. The problem quest room for 
optimization could be based on the social foraging system in 
which parameter groups work to solve difficult engineering 
issues [21]. 

In order to achieve the optimum local and worldwide 
solutions, the ACO’s discovery and operating methods to 
forage algorithms for bacteria are used. The effectiveness of 
the proposed ACOBF multi-objective solution will be verified 
explicitly in terms of the function of multiplicity and 
excellence of solutions, convergence and constancy. The 
cloud service provider tracks the entry of customer demands 
for task processing and the use of PMs in the data center 
details (CSP). To have this user request scenario, the Direct 
Acyclic Graph (DAG) is followed. In this scenario, the 
relation between the task unit, the functionality and the work 
unit are captured. 

The CPU-limited job which spends most of its time in 
calculating multiple RAM size processing parts will be the 
basic characteristics of the tasks is considered. Although I/O-
bound tasks depend on only peripheral devices linked to 
computers. As such, it might be important to have a computer 
with a wide buffer capacity and enough network bandwidth. 
The adding of inputs and outputs to reserve the available 
resource in a pm is an essential feature of the task unit. 
Dependence can exist between the units of the mission. Fig. 1 
depicts DAG, where each node is a task unit with its task 
form, the addressed line demonstrates the relationship of 
dependency between the tasks and add weight that links the 
edges to the flow size of two tasks. By using the following 
five times, the diagram can be seen: 

G = (TD, TS, D, Mi, Mout)            (1) 

TD is the user request collection consisting of task units (1/n). 

TS are the assignment type for each only task unit (1/m); T1, 
T2, …Tm ; Tm is the determined amount of assignment in a 
task unit. 

D is task dependency that represents the dependencies 
between the task units in TD. 

Mi is the Input data representing the size of task unit. 

Mout   is the Output data representing the size of task unit.  

A. Assumptions 
A remote location server or PC or a physical machine that 

forms the data center can be a heterogeneous resource pool 

and services. There may be different configurations of the 
same tools with the similar mission but yet the results differ. 
The total heterogeneity features can be generalized by 
changing PM capacity and network bandwidth. By building a 
direct relationship between the available memory size and the 
Processor power, the capacity of the PM gives the minimum 
time taken to execute the data present in a task. The rate and 
price of data transmission between two physical devices are 
facilitated by network bandwidth. Instead of distinguishing 
between the types of activities, it deals only with data flow.  M 
represents the resource information, consisting of six-tuples. 

M = (PM, CP, R, CE, Nbw, Ecom)            (2) 

PM is the set of physical machines inside a data center. 

CP is the computing power of the PM. Here, (ESij)  denotes 
the implementation time of job of unit type i on a PM PMj. 
denotes the average power of PMj  as ESavg;j , 

Computing the nasty of essentials in column of matrix ESj 
produces ESavg;j value 

ESij = PM1...PMj TD1..TS11..TS1j TDiTSi1..TSij 

R is the available RAM (memory) size of each PM. 

CE is the processing energy that gives the rate of a task 
unit's execution consumption. Here it is possible to denote the 
energy consumed by a PMj to run I task unit form per unit 
time per unit data as CEij. 

Nbw denotes the bandwidth between PMs and is known as 
Nbw;ij, the data transmission rate between PMi and PMj. 

Ecom denotes the energy consumption rate for the 
communication. Therefore, Ecom;ij  is the energy consumed 
during transmission of data from PMi  to PMj  per unit time 
per unit data. 

B. Problem Formulation and Solution Domain 
By highlighting the different models for the solution 

domain, the formulated problem is presented in this section. 
For optimizing resource scheduling in cloud computing, the 
two most important objectives considered are the 
minimization of makepan and energy consumption. The 
contradictory essence of these two priorities is created by 
heterogeneity and parallelism. The former states that reducing 
makespan at the cost of robust inter-PM data transmission 
directly affects the energy use of the data center and later 
explains that the quickest resource in existence is not 
necessarily the cheapest. 

C. Modeling the Makespan 
Makespan is the length taken from the moment when a 

user submits his request to the last task unit's completion time. 
The processing time of both waiting periods is necessary. By 
decomposing user requests into task units, the processing time 
is measured based on user request and then apply topological 
sorting to ensure that each task unit can only rely on those 
with lower priority indexes. 
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Fig. 1. DAG of Tasks and Task. 

Task unit TDi's completion time is nearly the same as the 
overall processing time. For each TDi task unit, the CT(i) 
completion time is determined by adding the execution time of 
the current task unit and the time it takes to bring all the 
necessary data to the current PMP. Consider, for example, the 
DAG depicted in Fig. 1; The completion time of the TD8 task 
unit can be determined as the time when all input data for the 
TD8 task unit arrives (by adding the completion time of task 
unit TD8 and the processing time of TD5, TD6 , and TD7). 

CT(i)=Tc+Tex              (3) 

Where Tc is the time taken for all task arrival to current task 
given as 

T(𝑐) = 𝑀𝑎𝑥 + ∑𝑖=1
𝑗=1 �𝐷𝑖,𝑗 ∗ 𝐶𝑇(𝑗) + 𝐷𝑖𝑗∗𝑀𝐴𝑋𝑜𝑢𝑡

𝑁𝐵𝑤,𝑝,𝑞
 �           (4) 

P and q are execution start time and execution end time 
respectively. 

Tex is the current taks execution time; 

Tex=ES(g,h)Mi,j              (5) 

g and h are current task time and starting time respectively. 

The waiting period is the sum of all processing times, 
because the degree of multi-threading is not too high when 
more task units are allocated or some PMs are overloaded. 
The significant attribute for task scheduling after deep analysis 
of the operation is the balance of load among the PMs in the 
data center. As such, proper information about the load 
distribution between the data center PMs is very important to 
obtain. Even if this information were measurable, the resource 
provider or cloud broker would not make it publicly 
accessible. Therefore, finding a solution to this issue is very 
vital. To this end, it assumed that the ratio on the load 
distribution at each PM average computing power and load 
distribution as follows: 

𝐿𝑜𝑎𝑑 𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 

(𝐿𝐵) = ∑𝑖=𝑛
𝑖=1 (𝐴(𝑖) − 𝐵(𝑖)P

2)            (6) 

N here is the number of PMs in the data center 

𝐴(𝑖) =
∑𝑖=𝑚𝑖=1 𝑀𝑖,𝑗|𝑥(𝑗)=1 

∑𝑗=𝑚𝑗=1 𝑀𝑖,𝑗
             (7) 

𝐵(𝑖) =
𝑅𝑖/𝐸𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑖

∑𝑖=𝑛𝑖=1 𝑅𝑖/𝐸𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑖
             (8) 

Some PMs that remain busy for a long time are made to 
push other tasks into the waiting queue, which adversely 
increases the system's makeup as it poses a risk with a 
deviation from the ideal ratio. Therefore, it is assumed that the 

optimal ratio was taken into account for the initial load 
distribution. To this end, the prioritized load balancing for the 
task distribution, as the risk parameter has an indirect effect on 
the system's makespan. The new mathematical model for 
makespan will be given as: 

𝐶𝑇𝑓 = 𝐶𝑇(𝑛) ∗ 𝑒𝜃             (9) 

𝜃 is the load balancing aspect increases as data traffic 
increases. The influence of various load distributions is also 
increased by Makespan. It is doubtful that the load balancing 
effect on the makespan reflecting the idleness of data traffic. 

D. Modeling the Energy Consumption 
The overall energy consumed in the data center is the 

amount of energy consumed by the individual PMs 
participating in the customer's service requests. CPU uses 
more energy than other components involved in the task 
scheduling process (Singh and Chana, 2016). The usage of 
energy is measured by the CPU using resources (voltages and 
frequencies). This means that as long as the working state of 
the CPU remains stable, energy consumption remains 
unchanged. The total energy consumed during computing and 
communication is measured as follows: 

Tc=Ec+Ece            (10) 

𝐸𝑐 = ∑𝑖=𝑛
𝑖=1 𝐶𝐸𝑔,ℎ𝐸𝑐𝑜𝑚(𝑔,ℎ)𝑀𝑖,𝑗          (11) 

g=TDi and h=x(i)            (12) 

𝐸𝑐𝑒 = ∑𝑖=𝑛
𝑖=1 ∑𝑖−1

𝑗=1
𝐷𝑗,𝑖𝑀0,𝑗

𝑁𝑏𝑤(𝑝,𝑞)
∗ 𝐸𝑐𝑜𝑚(𝑝,𝑞)         (13) 

P=x(j), q=x(i)            (14) 

It has been observed from this analysis the trade-off in 
minimizing makespan and energy. So, the multi-objective 
optimization problem for minimizing these conflicting 
parameters at topological sorting can be given in eq. 15, 16 
and 17. 

Minimization of Makespan 

(CTf) = Min (CT(n)*𝑒𝜃∗𝐿𝐵)          (15) 

Minimization of Energy (Tc) = Min (Tc)         (16) 

Fitness function Ω = α(CT(n)*𝑒𝜃∗𝐿𝐵) + β(Tc)        (17) 

Where α and β are weights to prioritize components of the 
fitness function such that 0 ≤ α ≤1 and 0 ≤ β ≤ 1. 

IV. MULTI OBJECTIVE APPROACH 
The ACO algorithm has excellent global search capability 

and, as such, a mediocre local search capability suffers from 
the curse of dimensionality [4]. BF has very high local search 
capabilities and low global search capability (Lin et al, 2013). 
It is assumed that a combination of the two algorithms will 
result in an outstanding solution with the best local and global 
search capabilities through a selective combination of some 
desirable functions, resulting in faster convergence time. 
ACOBF would have all the combined ACO and BF algorithm 
properties. Theoretically, BF that was hybridized with other 
algorithms other than ACO was tested to be successful, based 
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on the extensive literature reviewed. In all these literatures, 
also observed that the combinations retained general validity 
and optimized characteristics that can be used in many other 
contexts. The hybridized BF inherits both BF exclusion and 
swarming characteristics. 

The aim here is to adjust BF features that do not help 
ACO's global search capabilities and implement BF's local 
search features. Swarming and elimination are the essential 
features of the method for searching for globalization that 
have to be substituted in the procedure while maintaining the 
functions of chemo taxis and reproduction in the local search. 
The parameter to be optimized is the bacteria’s position 
(coordinate). In conclusion, the solution to task planning 
dilemma is a bacterium. Several bacteria for the algorithm 
input are created. To obtain minimum makespan and energy, 
the bacteria are also assessed against the objective function. 

In a desirable range, the parameters are discretized, where 
and distinct set value represents a point in the space 
coordinates. Also, the separate values are defined by a point 
on the space coordinate. All bacteria are tested in the proposed 
ACOBF according to a solution consistency measure at the 
end of the iteration. 

The primary objective is to minimize the use of makespan 
and energy consumption: 

S: population number of bacteria, 

C(i): random path taken during tumble, 

Nc: steps of chemotaxis, 

Ns: swimming length, 

Nre: steps of reproduction, Ned: events of elimination and 
dispersal; 

Ped: likelihood of elimination and dispersal, 

p: search space dimension. 

Algorithm 1.  Algorithm positioning bacterium 

1. P = {}, Nc = {}, S = {} 
2. For I = 1 : N do 
3. P = Protocol of Req; 
4. For j = I : X do 
5. Scan Ped in Order; 
6. If Nre = = P 
7. Insert Nc Into Set Ns; 
8. Countj  = Countj + 1; 
9. Break; 
10. End if; 
11. End For; 
12. If Nre! = NULL; 
13. Continue; 
14. End if; 
15. For k = 1 : Y do 
16. Scan Nc in Order; 
17. If Nc(k) = = P 
18. Insert Ned Into Set Nre; 
19. Countk = Countk + 1; 

20. Break 
21. End if; 
22. End For; 
23. If C (e)! = NIULL; 
24. Continue; 
25. End if; 
26. Insert Ped into C; 
27. End For; 

Algorithm 2.  ACOBF Based Task Scheduling Algorithm 

Begin 
Reproduction 
Select: Sort the bacteria on the basis of Nc accumulated 
during the chemeostasis steps 
Crossover: perform crossover with leastfit bacteria in the 
colony 
Mutation: Perform mutation in the position of the bacteria 
based on the ACO fraging behavior  
Dispersal and Elimination 
With probability Ped disperse and eliminate each bacterium 
Termination  
End the program and output best performing bacterium 
position 
End 

V. IMPLEMENTATION 

A. Experimental Setup 
The simulation environment used for the experiment 

comprises of an Intel(R) Core i5 CPU (2.53 GHz Processor), 
Hard Drive of 500GB, Memory of 8.0GB Windows 8 OS, 
JDK8.1, Eclipse IDE and CloudSim version 3.0. The 
implementation process adopts and extends classes in 
CloudSim; DataCenterBroker, VM, Cloudlet (includes new 
parameters that defines the protocols associated with job 
request) and Host. 

B. Results and Discussion 
1000 User Work Requests have been split into five groups 

of 200 Simulation Process Request tasks. For processing, each 
class is submitted to the system. To obtain the Makespan and 
the energy consumed, the average values of the five 
experimental results are computed. BF and Genetic 
Algorithms [22] were used in benchmarking to demonstrate 
the performance of ACOBF. In the same parameter 
configuration as ACOBF, both BF [23] and GA were also 
simulated. To measure the makespan and energy consumption 
of the Cloud task units, the environment with non-uniform and 
uniform parameters as a low PM heterogeneity was set. The 
efficacy of the algorithms is determined by the responds of 
different heterogeneous tasks and resources utilized: 

Makespan time, as shown in Fig. 2 to 6, was recorded in 
seconds (due to cloudsim relative time unit) from the y-axis 
with the total number of tasks on the x-axis. This illustrates 
the difference with low system heterogeneity for non-uniform 
and uniform parameters. From the statistics, it is noted that 
ACOBF has the least makespan for non-uniform and uniform 
parameters as it is able to execute user job requests more 
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quickly. This has been done because of the ability of the 
algorithm to prioritize tasks that do not need to be postponed. 

A task range of 10-200 has been used for the simulation of 
low PM heterogeneity. Fig. 7 to 11 demonstrates the impact 
on the energy consumption of the four heuristics in the case of 
low PM heterogeneity with non-uniform and uniform 
parameters. Unlike GA and BF, the statistics show that 
ACOBF achieves minimum energy consumption, resulting in 
the highest energy consumption in all task range situations. 

 
Fig. 2. Makespan Time for 20-50 Tasks. 

 
Fig. 3. Makespan Time for 60-90 Tasks. 

 
Fig. 4. Makespan Time for 100-130 Tasks. 

 
Fig. 5. Makespan Time for 140-170 Tasks. 

 
Fig. 6. Makespan Time for 170-200 Tasks. 

 
Fig. 7. Energy Consumed by Processing 20-50 Tasks. 

 
Fig. 8. Energy Consumed by Processing 60-90 Tasks. 

 
Fig. 9. Energy Consumed by Processing 100-130. 

 

Fig. 10. Energy Consumed by Processing 140-170 Tasks. 
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Fig. 11. Energy Consumed by Processing 170-200 Tasks. 

This is a straightforward feasibility of the ACOBF 
exhibition in addressing the user's time prerequisites. Tasks 
that are sent to the Cloud are supposed to be independent of 
each other, as mentioned before. The findings explain the 
algorithms for GA and BF. When the Cloud receives a 
comparable number of task units/tasks, makespan and energy 
increases dramatically, whereas in the case of ACOBF, 
makespan and energy either decreases or fluctuates. This is 
due to the ability of the algorithm to preserve convergence that 
was done by having the starting point close to the minimum. 

VI. CONCLUSION AND FUTURE WORK 
In the cloud computing environment, this article proposes 

a generic task scheduling algorithm based on BF and ACO 
algorithms. Task scheduling is modeled as a multi objective 
optimization problem in order to deal with the trade-off 
between makespan and energy consumption cost functions. A 
simple and most effective optimization technique, referred to 
as a hybrid ACOBF-based approach, was applied to obtain 
Pareto optimal solutions for the task scheduling problem. On 
the basis of the comprehensive simulations conducted, the 
scalability and effectiveness of the proposed solution was seen 
as it was benchmarked on two current and state-of-the-art 
algorithms. Simulation results also show that the creation and 
energy usage have been significantly optimized with the 
proposed convergence strategy and task priority for the cost 
function. 

The weakness of ACOBF would be examined in future 
studies and areas such as; accelerating the convergence rate 
resulting in extra time for crossover and mutation, chemo-
taxis and reproduction would be addressed. The research also 
looked at the relationship of dependency between tasks and 
task sizes for input and output. 
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