
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fog Network Area Management Model for Managing
Fog-cloud Resources in IoT Environment

Anwar Alghamdi1, Ahmed Alzahrani2, Vijey Thayananthan3
Department of Computer Science

King Abdulaziz University
Jeddah, Saudi Arabia

Abstract—The Internet of Things (IoT) paradigm is at the
forefront of the present and future research activities. The
enormous amount of sensing data needing to be processed
increases dramatically in volume, variety, and velocity. In
response, cloud computing was involved in handling the
challenges of collecting, storing, and processing the data. The fog
computing technology is a model used to support cloud
computing by implementing pre-processing tasks close to the
end-user for achieving low latency, less power consumption, and
high scalability. However, some resources in fog computing
network are not suitable for some tasks, or the number of
requests increases outside capacity. So, it is more efficient to
reduce sending tasks to the cloud. Perhaps some other fog
resources are idle, and it is better to be federated rather than
forwarding them to the cloud. This issue affects the fog
environment's performance when dealing with large applications
or applications sensitive to time processing. This research aims to
propose a holistic fog-based resource management model to
efficiently discover all the available services placed in resources
considering their capabilities, deploy jobs into appropriate
resources in the network effectively, and improve the IoT
environment's performance. Our proposed model consists of
three main components: job scheduling, job placement, and
mobile agent software, explained in detail in this paper.

Keywords—Resource management; job scheduling; load
balancing; mobile agent software; fog computing; Internet of
Things (IoT)

I. INTRODUCTION
Digital devices have been distributed rapidly in our virtual

world. These devices continuously produce a massive amount
of structured, semi-structured, or unstructured data such as
temperature sensors, health care devices, and transport. The
output of these devices and applications results in a
considerable amount of process [1]. Most digital devices and
applications are connected to the Internet to make our
environment smart and provide services anytime and
anywhere. Anything that can be connected to the Internet and
provide or produce data can be considered as the Internet of
Things (IoT), which may reach 75.4 billion things in 2025
[2][3]. The IoT devices have limited processing power and
memory availability; therefore, the massive amount of data
generated from the sensors is collected in clouds for providing
many application accesses and services to the users. However,
IoT devices have been rapidly increasing, and the clouds
cannot serve all these devices efficiently. Also, some IoT
applications need to have processes’ results as soon as
possible such as controlling the moving vehicles, congestion

through a mobile pilot, and medical applications. So, fog
computing firstly has been proposed by Cisco in 2012 to
address the challenges between IoT devices/sensors and
clouds [28]. Fog computing is a modern model which
considered an extension of clouds to provide services to
network parties [4]. It consists of smaller processing power,
smaller memory size, and closer to the end devices. Also, it
does some processors before it sends them to a cloud. It can be
a significant factor in the success of some applications that are
sensitive to time processing when there is a high probability of
speeding up emergency detection and warning to support
appropriate intelligent decision making [6]. For instance, the
author in [5] presents a framework of an early-warning system
based on IoT. This kind of system is critical to saving human
life by providing a high response warning if there is a flood.
Another instance is illustrated in [7]. The face recognition
method has been increasing in many fields. It is a significant
factor in making security more effective by processing the job
accurately and quickly. So, the authors try to conduct the task
on fog computing rather than on the cloud side to achieve low
bandwidth.

In this paper, we try to solve the problem of when one fog
resource is not suitable for a specific task or the number of
requests increases outside capacity; it is not efficient to send
all tasks to the cloud. Perhaps some other fog resources are
idle, and it is better to be federated rather than forwarding
them to the cloud, as mentioned in [8]. This issue affects the
fog environment's performance when dealing with huge
applications or applications that are sensitive to time
processing.

This paper aims to provide a new solution that can
efficiently utilize the fog computing network's capability and
increase the performance of IoT applications. We build a
holistic fog-based resource management model which
efficiently discovers all the available resources with their
capabilities, deploys jobs into appropriate resources in the
network effectively, and improve IoT applications'
performance by implementing the job locally close to the end-
users.

The objectives of this paper are listed as follows:

• Prioritize the jobs according to applications
requirement.

• Balance and load the jobs among the fog nodes
resources.

482 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

• Blend Mobile-Agent in the fog computing environment.

• Track and update the status of the cloud/fog resources.

The following is how the rest of this article is presented. In
Section II demonstrates the related work for the relevant
methods in the proposed solution. Section III presents the
proposed (FNAMM) model. Section IV discuss the proposed
model and reveals the benefits and compared to other models.
Section V concludes the work and investigates the possibilities
for the future work.

II. RELATED WORK
This research's literature review can be classified based on

the essential aspects that fulfil the proposed architecture.
Initially, the massive amount of data generated from the smart
devices would be underlined by considering their IoT
environment challenges. Secondly, various studies will be
presented covering resource allocation and discovering their
specifications. Thirdly, some studies will illustrate the load
balancing and selector techniques in the fog environment to
achieve high performance.

The IoT devices have been increasing rapidly globally,
leading to generating a massive amount of data through
different sensors. IoT big data analytics’ primary purpose is to
enhance business performance by applying processes such as
searching a database, analysing, and mining [9]. However, the
statistics reveal that there will be around 1 trillion sensors in
2030 [10]. This challenge would be mitigated by providing
enormous resources with efficient management.

Cloud computing is a powerful paradigm in providing
computation and storage resources for IoT devices. However,
the increasing amount of IoT devices leads to high power
consumption and high latency; thus, there should be done
some process in the edge of the network rather than in cloud
computing [11]. Resource allocation and resource scheduling
technologies manage the data centres in cloud computing.
These technologies enhanced resource utilization and
established load balancing for the data centres. As a result,
bottlenecks and overloaded have been addressed [12].
Resource allocation is not an easy job in fog computing since
the computing nodes are distributed in the network edge. In
cloud computing, the computing nodes are distributed in a
centralized data centre.

It is not an easy job of discovering edge resources to
deploy workloads from IoT devices or clouds [13]. Many
techniques are implemented for discovering edge resources
using handshaking protocols, programming infrastructure, and
message passing. A new handshaking protocols technique for
discovering edge resources has been presented in [14]. This
technique is based on the Edge-as-a-Service (EaaS) platform,
which can discover a set of homogeneous edge resources. This
kind of platform needs a master node that can execute a
manager process and communicate with edge resources. After
identifying the appropriate node, the Docker containers would
be deployed on that node. The authors in [15] proposed a new
programming infrastructure mechanism called Foglest that
allows edge resources to join a cloud system. This
mechanism's protocol can match the application’s edge

resources requirements against the available and appropriate
resources on edge.

Moreover, the protocol can select a node from a set of
edge resources closer to the user. The last technique for
discovering edge resources is message passing. In [16], the
user can submit a query to an edge node in the network by
relying on simulation-based validation. Nonetheless, the edge
nodes are not necessary to be connected to the Internet.

Thus, there is a need for developing resource management
for IoT applications to achieve efficient load balancing in the
fog environment [17]. Moreover, a system model for
managing mobile cloud network's network resources has been
presented effectively in [18]. One of the challenges in fog
computing is to select appropriate edge resources to place
computation tasks from cloud and IoT devices. There is
needed for efficient selector algorithms that can address this
issue by considering the availability of edge resources with
their capabilities [16]. In [19], the authors proposed a new
method for managing mobile and edge devices. The fog
resources are distributed in decentralized mode, and IoT
devices connection is peer-to-peer in a decentralized mode as
well. The problem of distributing tasks in fog computing has
gained attention from researchers recently. The authors in [20]
have analysed the offloading policy between multiple fog
nodes in a ring topology. In [21], a distributed policy for tasks
assignment that can be executed efficiently in the network
edge cloud has been proposed. The author has not considered
the communication between fog-to-cloud and IoT-to-cloud.
This model's scalability is limited since the cloud servers send
their status continuously to the mobile subscribers. It will not
be comfortable with an immense amount of edge devices.

The authors in [22] proposed a new load balancing
technique for fog nodes by combing graph partitioning theory
and fog computing characterizing. To achieve a dynamic load
balancing in fog computing, the authors considered graph
repartitioning.

For managing a massive amount of data in a cloud
environment with low cost, the authors in [23] replaced
physical network balancers with virtualized network
balancers. The virtualized network balancer consists of two
parts; the first load is a master, and the other acts as a
secondary, which includes network load balancers and load
balancer selector.

This kind of balancer is better than a hardware balancer
since the cost is reduced and the user can efficiently add or
remove an algorithm to the system. The authors in [24]
proposed a cooperative load-balancing model for fog/edge
data centres to mitigate the delay services. The idea is to
assign a specific buffer for each data centre to receive requests
from other nodes. Once the number of requests exceeds a
certain threshold, the coming request is moved or balanced to
an adjacent node. This kind of work anticipates the nodes are
connected by the high-speed connection for achieving
effective load balancing.

Based on the literature review and to the best of our
knowledge, there is no work yet that employs mobile agents,
resource capabilities, and considering idle fog nodes to build a

483 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

fog-based resource management model for enhancing the
performance of big data application in IoT environment and
improving fog computing resource utilization.

A new formulation is introduced for combined Cloud-Fog
architectures [25]. The formulation reduced the service latency
with the fulfilment of the Quality of Service (QoS)
requirements. Moreover, the author used Gurobi Optimizer for
addressing the Integer Linear Programming (ILP) model. In
[26], the authors focus on the application models that increase
the application deployment region. Also, they considered the
placement strategy on edge and cloud platforms. The author
presented a framework that increases the utilization of fog
resources [27]. When a service is requested, the provisioning
plan is implemented. Considering the workload is mentioned
in [28], a new policy is proposed to determine the workload
allocation on Fog-Cloud computing services considering the
trade-off between the delay and power consumption. The
authors split the original problem into three sub-problems in
order to address each sub-problem separately. Three methods
have been used in this framework; Generalized Benders
Decomposition, convex optimization, and Hungarian. The
authors in [29] provided a new model that is based on the
mathematical service placement for the fog computing
environment. This research aims to reduce the blocking
probability, the percentage between the rejected workloads
and the total workloads. The purpose of the research in [30] is
to reduce network usage by presenting an optimization policy
for data placement in the fog environment. This can be
achieved by finding out the closest path between the fog
device and the data source (IoT device). Minimizing the
response time and maximizing the throughput are achieved in
[31]. The algorithm distributes the workload on the fog
resources environment. A job scheduling technique is also
applied for Virtual Machines (VM) based on the service level
agreement. In [32], the authors proposed a system to allocate
and offload the service between the cloud server and fog
computing. The decision rule relies on three conditions:
completion time, services sizes, and the capacity of fog
resources. Anther algorithm is proposed to satisfy the Service
Level Agreement (SLA) and Quality of Service (QoS) and
enhance the major data distribution in fog and cloud
environments. Finally, the services mapping based on their
priority level, the highest one would be mapped first, and so
on. A new service placement framework is proposed in [33].
The authors attempt to reduce the latency considering the cost
budget constraints. The Lyapunov optimization function is
used in this framework to split the main problem into a set of
problems with not considering user mobility. The author in
[34] used machine learning to minimize the service costs and
maintain the QoE. The Q-learning has been applied for
defining the optimal migration for each service request. The
authors in [35] demonstrate some of the service placement
strategies in Edge-Cloud computing environments. This
research aims to minimize the failed requests by formulating
the problem as Mixed Integer Linear Programming (MILP).
Two scheduling policies are used in this research: Earliest
Deadline First (EDF), and First-In-First-Out (FIFO). The
problem of dynamically deploying applications on fog
resources, which should satisfy the Quality of Service (QoS)
constraints, has been discussed in [36]. The authors expressed

the previous problem as Integer Non-Linear Programming
(INLP). Two heuristics are used to address the problem: a)
Min-Cost: it is used to reduce the overall cost. b) Min-Vol: it
is used for reducing deadline violations. The authors in [37]
proposed a methodology to illustrate when and where the
services should be placed. The placement strategy is based on
the request ratio and user mobility in the edge network. The
issue is modelled as a sequential decision-making Markov
Decision Problem (MDP). Then the authors apply Lyapunov
optimization on the two divided MDPs. As a result, the cost is
reduced for each of the location constraints, delay, and
execution. In [38], the research reflects the data locality. The
author's design architecture consists of three tiers. The aims
are to dynamically route the data to an optimal server and
optimize the computing capacity. The prototype was
implemented on the OpenStack virtualization environment by
integrating the Software-Defined Network and Network
Functions Virtualization (NFV). The architecture implemented
on IoT surveillance system application, also a specific scheme
is proposed in case of an urgent situation. Considering the
load balancing to reduce the fog nodes' power consumption
only is proposed in [39]. The author proposed an algorithm to
allocate the fog resource efficiently. This algorithm is based
on ordering the fog resources increasingly according to two
factors: the availability and capacity to serve more tasks. Then
assigning a threshold for each resource to keep them in a stack
this mechanism helps utilize all available resources in the
network. The result shows that the power consumption is
reduced slightly compared to load balancing algorithms such
as Round Robin and Throttled.

The load balancing and task distribution policy play a
significant factor in optimizing the fog system's application
performance. The centralized load balancing controller must
gather information about all network devices to generate
global optimization decisions. However, this kind of controller
may not be efficient on some applications since all the devices
should send the applications to a manager. The centralized
core will generate the decision. Besides, one of the centralized
controller dilemmas is a single point of failure that makes the
system weak. On the other side, the decentralized load
balancing should not gather all the information of all devices
in the network, so many managers are connected in this kind
of controller. Also, make a decision is not on a single core as
in the centralized controller, which makes the scalability in the
decentralized controller is higher than a centralized one.

Moreover, a decentralized controller's performance
exceeds a centralized one since network overhead is high in
the centralized controller. Overall, it is better to adopt the
centralized and decentralized approaches in a new approach
that can overcome both approaches' limitations.

The task distribution or job scheduling approaches can be
divided into static and dynamic. The necessary information
about the demands and available resources has been
accomplished in the static approach before receiving the tasks.
Also, the tasks would be sent at one time, and the scheduling
decision has already been made. This approach is not suitable
for the fog system because it is not easy to have all the
necessary information about all devices in fog networks before
the execution time.

484 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

However, in the dynamic approach, the scheduling process
is made once the task is received in the system. It is also
efficient to build a hybrid approach that makes the fog system
works more effectively with different demands and
applications. A summary of some previous works, based on
the load balancing controller and task distribution policy, is
provided in Table I.

TABLE I. COMPARISON OF SOME WORKS BASED ON THE CONTROLLER
AND POLICY

Ref. No.
Load Balancing Controller Task Distribution Policy

Centralized Distributed Static Dynamic

[34]  

[33]  

[25]  

[26]  

[32]  

[28]  

[29]  

[30]  

[35]  

[36]  

[37]  

[38]  

[31]  

[32]  

III. PROPOSED MODEL
The proposed model aims to mitigate the drawbacks

mentioned in the previous section. Initially, there is a need for
a new method to handle the increase of incoming tasks from
IoT devices. This can be handled by building an efficient job
scheduling technique and effective job placement mechanism.
Secondly, since IoT devices have been increasing recently,
numerous data need to be proceed and analysed. The mobile
agent software is involved in this model to reduce network
cost by transferring the necessary data from the cloud server.

In our proposed model donates to the tasks that are sent
from the IoT devices. The task priority plays a significant
factor in reducing the responding time. On the other hand, an
efficient resource management system will mitigate the cost of
determining the suitable fog node from enormous resources,
executing the tasks, reducing the delay, and saving power
consumption by utilizing all available resources. This model
consists of three main components: job scheduling, job
placement, and mobile agent software. The job scheduling has
a primary duty to determine the task type: mobile agent or not.
Also sorts the tasks depending on the priority that is assigned
from the application requirement. The mobile agent is
responsible for dealing with tasks requiring service on the
cloud server, such as inquiries in the cloud data center. The
job placement sorts and ranks the available resources
increasingly by free space for jobs and tracking each
resource's status.

In Fig. 2, the IoT devices send a set of tasks T = {t1,…,tm}
continuously to the fog layer. The FNAMM model receives
the sent tasks to be executed in the fog nodes or cloud side.
Initially, the model scans the network for discovering a set of
resources N = {n1,…,nm} sort the incoming tasks by their
accompanied priorities. Each fog area includes one master fog
node (MFN) and many fog nodes (FNs) attached to the master
fog node. The master node receives a series of tasks <M,P,R>,
where M is the task type mobile agent or not. The mobile
agent will be forwarded to the cloud server, and not the mobile
agent will be executed in local fog resource. The P defines the
task priority, and R indicates the fog resources' availability in
that area. If the task cannot be executed in this area, the master
node will migrate the task to execute in the neighbour fog area
instead of sending it to the cloud server and so on. This will
reduce the delay by implementing the task as locally as
possible.

A. Optimized fog Topology Job Scheduling (OFTJS)
This section proposes an optimized fog topology job

scheduling (OFTJS) algorithm proposed in our solution in
[40]. Most fog computing systems use the FCFS algorithm,
which executes one job at a time. This strategy is not efficient
when the system is dealing with a massive number of jobs.
Moreover, the job priority is not considered in this strategy as
well.

Suppose the system topology consists of 6 main areas, and
each area has 10 fog resource nodes. So, we have 60 fog
resources that can execute the job in a fog computing network.
When any nodes in the system cannot accept any more jobs,
they would be migrated to the cloud side. In the proposed
approach, we add a job pool between the incoming jobs and
the system. The model's size is L, which is the number of jobs
to be executed in the system, as shown in Fig. 1.

Fig. 1. Job Scheduling Process.

Fig. 2. High-Level Architecture for the Proposed Model.

485 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Once the scheduling process starts, all the jobs would be
placed into the job pool and allocated to the fog system's
appropriate nodes. Also, the devices in the system would be
scanned in each periodical scheduling cycle. The purpose of
the scanning technique is to detect all available resources and
their capabilities in the system. After determining the free and
suitable resources in the system, we acquire a set of waiting
jobs in the job pool ordered by the priority, as shown in Fig. 3.

The applications in IoT/fog computing environment have
their requirements and characteristic. The end-user sends tasks
to the fog layer to being executed then achieving the result.
However, sorting the tasks in a queue is different from one
application to another one. For instance, an eHealth
application will give the tasks high priority if the patient has a
high blood pressure to execute early. The priority mechanism
is based on the task’s type. In other words, each task has a
deadline to be completed depending on the application
requirements, as shown in Fig. 5. Based on the application
requirement, we suggest a priority scheduling for the
incoming tasks according to two factors:

1) The task would reach its threshold so that it will be
considered a high priority.

2) The task has already been assigned as a high priority
through the applanation requirement.

Algorithm1: optimized fog topology job scheduling
(OFTJS)

1. If scheduling cycle s is launched then

2. scan the fog system and discover the set N of M free
resources: N = {n1,…,nM}

3. gather the set t of T from job pool: T = {t1,…,tm}

4. if task_type(ti) == mobile_agent then

 initates_mobile_agent_toCLoud(ti)

 else

 Job Placement (J , N)  Algorithm 2

7. If all the tasks in T are executed then

 terminate the scheduling cycle s+1

 else if ti € T is rejected then

 if service_not_aval(ti) == true then

 migrate_to_cloud(ti)

 terminate the scheduling cycle s+1

 else

 reserve space in job pool

Fig. 3. Job Scheduling Algorithm.

Algorithm2: job placement

Input: i) the set N of M nodes: N= { n1, n2, … , nm }

 ii) the set t of T waiting jobs in the task-pool: T = { t1, t2
, … , tm}

1. sort and rank each ni increasingly by free space for tasks

2. PR = priority_assign(t)  Algorithm 3

3. if PRi == H then

 place ti in TPH // high task pool

 else

 place ti in TPN // normal task pool

4. for each task € TPH DO // high task pool placement

5. scan the system to obtain updated set N of free fog nodes

6. if ni has more space for TPH
i then

 return placing TPH
i in ni

 else

 continue

7. for each task € TPN DO // normal task pool placement

8. scan the system to obtain updated set N of free fog nodes

9. if ni has more space for TPN
i then

 return placing TPN
i in ni

 else

 continue

Fig. 4. Job Placement Algorithm.

B. Job Placement
The job placement algorithm plays a significant role in

reducing the power consumption and the response time by
placing the task close to the IoT device. Moreover, selecting
the task to be executed early is essential for achieving the
(QoS) and (SLA). In our job placement algorithm, it receives
the tasks and the available and suitable resources. The first
step is to sort the resources increasingly by free space to
execute a task. Secondly, the priority function assigns priority
for each task, as explained in the previous paragraph. Thirdly,
if the task is assigned as a high priority, it will be placed in the
high task pool; otherwise, it will be placed in the normal task
pool, as shown in Fig. 4.

486 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Algorithm3: priority assignment

Input: the set t of T waiting jobs in the task-pool: T = { t1,
t2 , … , tm}

Step1: /* assign the task that will reach the threshold */

 If delayi
t == THi then

 return (H)

Step2: /* assign the task that has high priority given by the
application requirements */

 If Tpri == 1 then

 return (H)

 else

 return (N)

Fig. 5. Task Priority Assignment Algorithm.

C. Mobile Agent Software Technology
Once the job scheduling, as mentioned in the previous

section, determines the task as a mobile agent software, the
task will be considered as a mobile IoT agent. When
the mobile IoT agent is launched, the discovery
manager requests the cloud service pool to provide a set of
available virtual machines in the cloud layer, high speed, and
high processing power devices. Moreover, it determines the
required service from the caller/IoT. Finally, the discovery
manager generates an action plan including routing decisions
for the mobile IoT agent, as shown in Fig. 6 and Fig. 7.

Upon the fog layer's migration to the cloud layer, the
execution and data transmission paths select the same bridge.
If the connection between the fog and the cloud is interrupted,
the mobile IoT agent may remain on the cloud side till the
caller reconnects to achieve the result.

The model consists of three main components as follows:

• Discovery manager: this agent aims to provide the
available Virtual Machines in the cloud server and
calculates the bandwidth between the caller/IoT and the
VM host; as a result, the execution time would be
minimized. This method can be achieved by sending a
request to the cloud service pool to provide the
available VMs in the cloud server.

• Cloud service pool: the cloud service pool is a database
that continuously provides VMs hosts that implement
the mobile IoT agent. All VMs hosts' specifications are
provided by this database, such as CPU speed and cores
number, storage size, and current capacity.

• Cloud VMs: these machines are available in the cloud
layer for executing the incoming mobile IoT agent’s
task. In this case, the service is provided as platform as
a service (PaaS) from the cloud server.

Fig. 6. Mobile Agent Architecture.

Fig. 7. FNAMM Sequence Diagram.

IV. DISCUSSION
The proposed solution's effectiveness compared to [25]

and [38] architectures deals with high efficiency when dealing
with big data in the cloud. In the proposed solution, we used a
mobile agent to reduce the volume of data that is transferred
between the end-user and the cloud server, which also
contributed to reducing the cost of the network as well. As for
the fog network, our task scheduling tries as much as possible
to implement tasks locally, near the end-user. On both [25]
and [38], when the device cannot perform the tasks, it sends it
north towards the cloud server. While in the proposed
solution, we try to implement the tasks in devices that are
adjacent to this device, taking into account both the left and
right directions. Finally, the proposed model differs from the
compared architectures in that the task priority collaborates in
our solution. Each IoT applications have their requirements
that can affect the task priority. So, depending on the

487 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

application requirements, the proposed task scheduling
algorithm will regard these requirements in sorting the task in
the queue.

Most of the recent architectures have not considered a
massive amount of process in fog computing networks. When
we compare it with other architectures, the proposed
architecture's significant feature is considering the data
velocity in the IoT environment. We can optimize the
performance and scalability by building an efficient resource
management model. Creating a repository that contains all
available resources/service and their capability in the fog
network can enhance task scheduling and load balancing.
Also, the metadata in the repository can indicate the data
locality and then decide if it would be implemented in the fog
network or must be migrated to the cloud side in early stage.

The strength of this architecture can be demonstrated in
the next point:

• Dynamic: the architecture supports the collaboration
between the resources to scale the dynamic changes in
the network. Also, the collaboration between the
networks is dynamic, which can enhance the join
process.

• Saving energy: since the architecture focuses on
utilizing all the resources in the networks, the
transferred process to the central cloud would be
reduced.

• Response Time: the architecture determines the short
path between the resource and the destination, leading
to reduced latency, also, by early determining, on the
distribution task phase, if the job would be executed in
the fog resource or on the cloud server.

It is insufficient to use traditional methods when required
data is transferred from the cloud servers to the user or IoT
devices. In some cases, unused data is transmitted; thus, there
is a waste of energy and delays in responding to demands.
From this challenge, mobile agent technology which does
analysis or processing on the cloud side, then transmits target
data in a small amount to the end-user.

V. CONCLUSION AND FUTURE WORK
IoT applications generate massive tasks that need to be

served adequately and received a fast-responding. Fog
computing is proposed to accommodate the cloud server by
providing the service close to IoT devices. However, many
fog computing architectures are insufficient to utilize all
available resources. A holistic fog-based resource
management model is proposed to overcome the mentioned
issue by building an efficient job scheduling and deploy the
job to appropriate available resources considering capabilities.
Our proposed model's benefits can be summarised in making a
reduction in response time, network cost, and power
consumption. These metrics play a significant factor in
optimizing the performance of IoT applications. The future
work is to implement this model in a simulation work or a
real-time environment. Moreover, the mobility of IoT devices
is not considered in our solution, which can be investigated in
further research.

REFERENCES
[1] K. Kambatla, “Trends in big data analytics”, J. Parallel Distrib.

Comput., vol. 74, no. 7, pp. 2561-2573, 2014.
[2] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, Sateesh Addepalli, “Fog

computing and its role in the internet of things”, Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, pp. 13-16,
2012.

[3] Mckinsy Global Institute website “The Internet of Things: Mapping The
Value Beyond The Hype”. Accessed Jan. 10, 2021. [Online]. Available:
https://www.mckinsey.com.

[4] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
“Fog computing: Principles, architectures, and applications,” in Internet
of Things, Elsevier, ch.4, pp. 61–75, 2016.

[5] J. Noymanee, W. San-Um, Theeramunkong, “T. A Conceptual
Framework for the Design of an Urban Flood Early-Warning System
Using a Context-Awareness Approach in Internet-of-Things Platform”,
In: Kim K., Joukov N. (eds) Information Science and Applications
(ICISA) 2016.

[6] P. Hu, H. Ning, T. Qiu, Y. Zhang, X. Luo, “Fog computing based face
identification and resolution scheme in Internet of Things”, IEEE Trans.
Ind. Informat., vol. 13, no. 4, pp. 1910-1920, Aug. 2017.

[7] I. Gudymenko, K. Borcea-Pfitzmann, & K. Tietze, “Privacy implications
of the Internet of Things”, in International Joint Conference on Ambient
Intelligence, Springer Berlin Heidelberg, pp. 280-286, 2011.

[8] M. Aazam, S. Zeadally, K. A. Harras, “Fog Computing Architecture
Evaluation and Future Research Directions’’, in IEEE Communications
Magazine, vol. 56, no. 5, pp. 46-52, 2018.

[9] O. Kwon and N. B. L. Shin, “Data quality management, data usage
experience and acquisition intention of big data analytics”, Int. J. Inf.
Manage., vol. 34, no. 3, pp. 387–394, 2014.

[10] M. Marjani et al., “Big IoT data analytics: Architecture opportunities
and open research challenges”, IEEE Access, vol. 5, pp. 5247-5261,
2017.

[11] K. Peng, R. Lin, B. Huang, H. Zou, and F. Yang, “Link importance
evaluation of data center network based on maximum flow,” Journal of
Internet Technology, vol.18, no.1, pp.23–31, 2017.

[12] X. Xu, X. Zhang, M. Khan, W. Dou, S. Xue, S. Yu, “A balanced virtual
machine scheduling method for energy-performance trade-offs in cyber-
physical cloud systems”, Future Generation Computer Systems, 2017.

[13] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S.
Nikolopoulos, “Challenges and Opportunities in Edge Computing”, in
IEEE International Conference on Smart Cloud, pp. 20–26, 2016.

[14] B. Varghese, N. Wang, J. Li, and D. Nikolopoulos, “Edge-as-a-Service:
Towards Distributed Cloud Architectures”, in International Conference
on Parallel Computing, ser. Advances in Parallel Computing. IOS Press,
pp. 784–793, 2017.

[15] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B.
Ottenwälder, “Incremental Deployment and Migration of Geo-
distributed Situation Awareness Applications in the Fog”, in
Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems, pp. 258–269, 2016.

[16] R. Kolcun, D. Boyle, and J. A. McCann, “Optimal processing node
discovery algorithm for distributed computing in IoT”, in 5th
International Conference on the Internet of Things, pp. 72–79, 2015.

[17] Xu, X.; Fu, S.; Cai, Q.; Tian, W.; Liu, W.; Dou, W.; Sun, X.; Liu, A.X.,
“Dynamic Resource Allocation for Load Balancing in Fog
Environment”, Wirel. Commun. Mob. Comput., 2018.

[18] W. Tärneberg, A. Mehta, E. Wadbro, J. Tordsson, J. Eker, M. Kihl, E.
Elmroth, “Dynamic application placement in the mobile cloud
network”, Future Generation ComputerSystems, vol. 70, pp. 163-177,
2017.

[19] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis, G.
Mastorakis, “Drop computing: Ad-hoc dynamic collaborative
computing”, Future Gener. Comput. Syst., vol. 92, pp. 889-899, Mar.
2017.

[20] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, “Analysis of an
offloading scheme for data centers in the framework of fog computing”,

488 | P a g e
www.ijacsa.thesai.org

https://www.mckinsey.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 1, no. 4, p. 16,
2016.

[21] X. Guo, R. Singh, T. Zhao, Z. Niu, “An index based task assignment
policy for achieving optimal power-delay tradeoff in edge cloud
systems”, Proc. IEEE Int. Conf. Commun. (ICC), pp. 1-7, May 2016.

[22] S. Ningning, G. Chao, A. Xingshuo and Z. Qiang, “Fog computing
dynamic load balancing mechanism based on graph repartitioning”, in
China Communications, vol. 13, no. 3, pp. 156-164, Mar. 2016.

[23] Po-Huei Liang and Jiann-Min Yang, “Evaluation of two level global
load balancing framework in Cloud Environment”, International Journal
of Computer Science and Information Technology (IJCSIT), Vol. 7 No
2, Apr. 2015.

[24] R. Beraldi, A. Mtibaa, and H. Alnuweiri, “Cooperative Load Balancing
Scheme for Edge Computing Resources”, in 2nd International
Conference on Fog and Mobile Edge Computing. IEEE, pp. 94–100,
2017.

[25] V. B. C. Souza, W. Ramirez, X. Masip-Bruin, E. Marin-Tordera, G.
Ren, and G. Tashakor, “Handling service allocation in combined fog-
cloud scenarios,” Proc. IEEE Int. Conf. Commun. (ICC), Kuala Lumpur,
Malaysia, pp. 1-5, 2016.

[26] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti.
“Cutting Throughput on the Edge: App-Aware Placement in Fog
Computing”. Proc. 6th IEEE Int. Conf. (CSCloud), pp. 196-203, 2019.

[27] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, ‘‘Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016.

[28] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, ‘‘Resource
provisioning for IoT services in the fog,’’ in Proc. IEEE 9th Int. Conf.
ServiceOriented Comput. Appl. (SOCA), pp. 32–39, Nov. 2016.

[29] K. Intharawijitr, K. Iida, and H. Koga, “Analysis of fog model
considering computing and communication latency in 5G cellular
networks,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun.
Workshops (PerCom Workshops), Sydney, NSW, Australia, pp. 1–4,
2016.

[30] I. Lera, C. Guerrero, and C. Juiz, ‘‘Comparing centrality indices for
network usage optimization of data placement policies in fog devices,’’

in Proc. 3rd Int. Conf. Fog Mobile Edge Comput. (FMEC), vol. 1, no. 1,
pp. 115–122, Apr. 2018.

[31] S. Agarwal, S. Yadav, and A. K. Yadav, “An efficient architecture and
algorithm for resource provisioning in fog computing,” Int. J. Inf. Eng.
Electron. Bus., vol. 8, no. 1, pp. 48–61, 2016.

[32] A. A. Alsaffar, H. P. Pham, C.-S. Hong, E.-N. Huh, M. Aazam, "An
architecture of IoT service delegation and resource allocation based on
collaboration between fog and cloud computing", Mobile Inf. Syst., vol.
2016, Aug. 2016.

[33] T. Ouyang, Z. Zhou, and X. Chen, ‘‘Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,’’ IEEE J.
Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345, Oct. 2018.

[34] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar. (Aug. 2018).
‘‘A dynamic service-migration mechanism in edge cognitive
computing.’’ [Online]. Available: https://arxiv.org/abs/1808.07198.

[35] A. Ascigil et al., "On uncoordinated service placement in edge-
clouds", Proc. IEEE CloudCom, pp. 41-48, 2017.

[36] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya,
Q. Zhang, W. Xie, J. P. Jue, "FOGPLAN: A lightweight QoS–aware
dynamic fog service provisioning framework", IEEE Internet Things J.,
vol. 6, pp. 5080-5096, Jun. 2019.

[37] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, K. K. Leung,
"Dynamic service migration and workload scheduling in edge-
clouds", Perform. Eval., vol. 91, pp. 205-228, Sep. 2015.

[38] J. Wang, J. Pan, and F. Esposito, “Elastic urban video surveillance
system using edge computing,” in Proceedings of the Workshop on
Smart Internet of Things, ser. SmartIoT ’17. New York, NY, USA, pp.
7:1–7:6, 2017.

[39] B. H. Malik, M. N. Ali, S. Yousaf, M. Mehmood, H. Saleem, ‘‘Efficient
Energy Utilization in Cloud Fog Environment, ’’ International Journal of
Advanced Computer Science and Applications (IJACSA), Vol. 10, No.
4, 2019.

[40] A. Alghamdi, A. Alzahrani, V. Thayananthan, ‘‘Execution Time And
Power Consumption Optimization In Fog Computing Environment,’’
International Journal of Computer Science and Network Security
(IJCSNS), Vol. 21 No. 1 pp. 137-142, 2021.

489 | P a g e
www.ijacsa.thesai.org

https://arxiv.org/abs/1808.07198

	I. Introduction
	II. Related Work
	III. Proposed Model
	A. Optimized fog Topology Job Scheduling (OFTJS)
	1) The task would reach its threshold so that it will be considered a high priority.
	2) The task has already been assigned as a high priority through the applanation requirement.

	B. Job Placement
	C. Mobile Agent Software Technology

	IV. Discussion
	V. Conclusion and Future Work

