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Abstract—In this paper, an automata-based algorithm that 
finds the valid shifts of a given set of words W in text T is 
presented. Unlike known string matching algorithms, a 
preprocessing phase is applied to T and not to the words being 
searched for. In this phase, a deterministic finite state automaton 
(DFA) that recognizes the words in T is built and is augmented 
with their shifts in T. The preprocessing phase is relatively 
expensive in terms of time and space. However, it needs to be 
done once for any number of words to match in a given text 
document. The algorithm is analyzed for complexity, 
implemented and compared with an adjusted version of KMP 
algorithm. It showed better performance than KMP algorithm 
for large number of words to match in T. 
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KMP 

I. INTRODUCTION 
In this paper, a special case of string matching [1] problem 

is considered that is called multiple word matching. Its input is 
a set of words W to match in a text string T of length n. Its 
output is a vector of the valid shifts of each word of W in T. 
The motivation for this research is that it is common to have a 
text document that need to be repeatedly searched for single 
words. Another motivation is the speed illustrated by the 
proposed algorithm to solve this problem compared with other 
matching algorithms for large |W|. 

The proposed solution is based on a preprocessing phase 
that is applied on T not on the words to search for. The idea is 
based on scanning the words in T and incrementally building a 
deterministic finite automaton (DFA) [2] that recognizes only 
the words of T. Once created, the DFA is used to search for a 
set of words W (repetition of words in W is allowed). Although 
building this DFA is time consuming, it is needed to be built 
only once for searching any number of words in T. The search 
time for the individual words will be O(m×|Σ|) where m is the 
length of the word searched for and |Σ| is the size of the 
alphabet. This means that search time will be independent of 
the length of T. The algorithm does better than other matching 
algorithms only in case of a large number of word searches in 
T is needed. 

This paper is organized as follows: Section 2 introduces 
related work. Section 3 presents the proposed algorithm. 
Section 4 gives a rough complexity analysis of the proposed 
algorithm. Section 5 shows the experimental study that was 
conducted to compare the proposed algorithm with KMP string 
matching algorithm that is adjusted for multiple search words. 
The paper ends up with a conclusion and a list of references. 

II. RELATED WORK 
String matching algorithms are well-known class of 

algorithms that have two inputs: a string to search in of length 
n called T, and a pattern string to search for of length m called 
P. Their output is the valid shifts of P in T. The simplest and 
the most expensive among these algorithms – with complexity 
O(m n) - is the Naïve string matching algorithm [1]. In this 
algorithm, P is compared with every sub-string in T of length 
m. Many string matching algorithms with better efficiency 
were invented such as Boyer-Moore[3], Knuth-Morris-Pratt[4], 
Karp-Rabin [5], Horspool [6], Quick search [7], Shift-Or [8], 
Raita [9], Berry-Ravendran [10]. Knuth-Morris-Pratt (KMP) 
algorithm is widely known and proven to be a very efficient 
and generic. Its complexity is O(n) for small m. It requires 
computing a prefix-function on P, which costs O(m), prior 
matching against T. A strong relation between string matching 
and the theory of finite automata exists, and this was discussed 
in detail in [11]. A very close work related to our work is the 
work of Aho-Corasick [12]. Their algorithm searches for a set 
of words in T by constructing a finite state automaton to 
recognize these words. This finite state automaton is then used 
to find the occurrences of these words in T. The main 
difference between our work and theirs is that in our algorithm, 
a finite automaton to recognize the words of T and not the 
words to search for is constructed. This means that Aho-
Corasick approach will require O(n) string matching 
complexity, and our approach will have O(|W|*m) where |W| is 
the number of words to search for and m is the length of words 
which is known to be short compared to n in the context of 
natural languages text. However, our algorithm pays for this 
shorter search time, by a pre-processing phase that takes longer 
time. This is because constructing a finite state automaton for T 
takes longer time. On the other hand, Aho-Corasick algorithm 
constructs the finite state machine for the words to search for, 
which is usually much smaller than the set of words of T. 

The difference between our algorithm and other string 
matching algorithms can be summarizes in two points: (1) Ours 
matches single words. So, m for our problem is relatively short. 
This means that our algorithm is less generic than other string 
matching algorithms where a pattern could be a sub-word or 
multiple words. (2) Ours is directed to solve the multiple word 
matching problem. The input is a set of words for each to be 
matched in T. One run of our algorithm will serve multiple 
search requests. Other string matching algorithms serve a 
search for one pattern in a single run. However, these string 
matching algorithms can be simply adjusted to solve the 
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multiple word matching problem by repeatedly applying them 
on a set of words on the same T. 

KMP algorithm was chosen to evaluate the performance of 
our proposed algorithm. This algorithm is among the best and 
most generic known string matching algorithms. KMP is 
adjusted slightly to do multiple word search and hence can be 
used to study the performance of our algorithm. Through this 
comparison, the circumstances where the proposed algorithm 
out-performs other string matching algorithms is explored. 

III. PROPOSED ALGORITHM 
MULTIPLE-WORD-MATCHING algorithm is shown in 

(Fig. 1). The input of the algorithm is a text to search T in and a 
set of words W to search for. The multiple searches for words 
in T is passed as an input to the algorithm. However, our 
algorithm may also be applied in the context where repeated 
search requests (for words in T) successively arrive in the same 
session. A word is to be a sequence of characters that does not 
contain spaces nor white characters. It is the same known 
concept of “word” in the context of natural languages. Our 
algorithm will only match single words in T. So, patterns that 
are sub-words or multiple words will not be matched by our 
algorithm. For example, if T=<abc abd>, our algorithm will 
assume that the only words existing in T are abc and abd. It 
will assume the strings “ab” and “abc abd” do not exist in T. 
This assumption is considered for simplicity. The output of the 
algorithm will be a vector of the valid shifts (in T) for each w in 
W. The first step is to build a DFA that recognizes the words of 
T. Then, GET-SHIFTS(DFA,w) is called for every w in W and 
the valid shifts are returned. It is assumed that a w has an 
attribute called shiftVector that will be set by the shift vector 
that is returned by GET-SHIFTS(DFA,w). 

The algorithm for BUILD-DFA(T) is shown in Fig. 2. In 
this algorithm, the DFA is initialized where the start state is 
created and its name field is set to the empty string. Each state 
s in the DFA will be augmented with a name field which 
corresponds to the string that takes the DFA from the start state 
to this state s. The loop will get the words of T one at a time 
and then add them to the DFA along with their shifts in T. 
ADD-TO-DFA will be called once for every word in T. The 
shift variable is updated to contain the shift of the next word by 
adding the shift of the current word, its length plus 1. For 
simplicity, T is assumed to be normalized. This means that T 
contains only words and these words are separated by single 
spaces. Additional processing may be needed to do this 
normalization. This assumption eases the calculation of the 
shifts of the words in T. 

ADD-TO-DFA algorithm (Fig. 3) will set the currentState 
to be start state of the DFA. The loop gets the letters of the 
word, one at a time. In each iteration, the nextLetter of the 
word is taken. A transition with nextLetter from the 
currentState is checked. If no such transition was found, 
nextState will be null. This requires that a new state (is called 
nextState) to be created with a transition from the currentState 
to nextState and is labeled with nextLetter. The name field of 
the nextState will be set to be the concatenation of name field 
of the currentState with the nextLetter. The currentState is set 
to be the nextState. This should be done in each iteration, 
whether if nextState was created or found. Once the loop 

terminates, all the letters of the word are consumed. The 
algorithm will set the current State to be a final state and shift 
is added to the shift vector of this final state. Note that only the 
final states are augmented with shifts vector. This is because 
augmenting all the states with shift vectors will result in too 
large shift vectors, especially for these states that are shallow in 
the DFA. 

To illustrate this algorithm with an example (Fig. 4), 
assume that T=<ab ac a>. Adding the word ab to the DFA will 
be done by calling ADD-TO-DFA(“ab”, 0). The name field is 
shown for all states. For example, s2.name is the word ab which 
corresponds to the prefix of the word ab that takes the DFA 
from the start state s0 to s2. The name field of the start state (s0) 
is the empty string. Only s2 has the attribute shiftVector since it 
is a final state. Final states are distinguished with a different 
color. 

The next call will be ADD-TO-DFA(“ac”, 3) because the 
next word in T is ac with shift equals 3. The currentState is set 
to s0.The word length is 2. So the loop will iterate twice. In the 
first iteration, nextLetter will be the letter 'a'. The algorithm 
finds a transition from s0 with 'a'. A nextState is found which is 
s1.The currentState becomes s1. In the second iteration, no 
transition from s1 with letter 'c' is found. So, a new state is 
created which is s3. When the loop terminates, the s3 is set to be 
a final state and the shift is added to the shift vector of s3. The 
DFA will be as shown in Fig. 5. 

 
Fig. 1. Multiple-Word-Matching Algorithm. 

 
Fig. 2. BUILD-DFA Algorithm. 
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Fig. 3. ADD-TO-DFA Algorithm. 

 
Fig. 4. DFA after ADD-TO-DFA(”ab”, 0) Call. 

 
Fig. 5. DFA after ADD-TO-DFA(“ac”, 3). 

ADD-TO-DFA will be called for the third word in T which 
is “a” ending with DFA in Fig. 6. Note that s1 became a final 
state and a shift vector is set. 

 
Fig. 6. DFA for T=<ab ac a>. 

Next, how the DFA is used to get the shifts of a word w in 
T need to be defined. This is done by calling GET-
SHIFTS(DFA, w) as shown in Fig. 7. Initially, the variable 
currentState contains the start state. It will change to represent 
the state that is reached while scanning the letters of w. The 
letters of w are taken one by one. A check for a next state from 
the currentState with letter is made. If not found, this means 
that w does not exist in T and an empty shift vector is returned. 
However, if a next state is found, the currentState is updated to 
be the nextState. The loop will break either when (1) a null 
state is reached which means that w does not exist in T or (2) 
all the letters of the word where consumed. In case all the 
letters of w were consumed ending in a final state, then w is in 
T and the shift vector (augmented in the reached final state) is 
returned. An empty shifts vector is returned when (1) w could 
not be completely consumed because of reaching a null state, 
or (2) if w was completely consumed but a non-final state was 
reached. 

 
Fig. 7. Get-Shifts(DFA,w). 

For example, to search for the word “ac” in T using the 
DFA in Fig. 6, GET-SHIFTS(DFA,”ac”) is called. The 
nextLetter will be “a” and next state will be found which will 
be s1 which is not null. This will result in another loop iteration 
where next letter will be “c”. The next state will be s3 which is 
not null. The loop will break and since all w's letters were 
consumed. Since the reached state (s3) is a final state, the shift 
vector will be returned which is <3>. 

IV. ANALYSIS OF THE PROPOSED ALGORITHM 
To analyze the time complexity of the MULTIPLE-

WORD-MATCHING algorithm, for each step, the following 
need to be found (1) its time complexity for a single run and 
(2) the number of times it's executed. These two values are 
multiplied and added up for all the steps. A bottom-up 
approach is taken, where we start analyzing the supporting 
algorithms and then find the complexity of the main algorithm. 

Starting with ADD-TO-DFA, each statement is executed 
only once except for the statements within the loop which will 
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be run m times in worse case where m is the length of the 
word. All the steps take constant time to execute except for the 
step of finding the nextState for currentState with letter. It 
requires scanning the next states of the currentState to find a 
transition with nextLetter label. An upper bound on the number 
of the next states for a currentState is the size of the alphabet of 
the text language |Σ|. This is a loose upper bound, because in 
the words in natural languages, not all letters may appear next 
to a given letter. Adding the complexities of the statements, it 
is found that the complexity of ADD-TO-DFA algorithm is 
O(m×|Σ|) which is constant and is independent of the size of T. 

For a BUILD-DFA call, the loop will iterate a number of 
times equals to the number of the words in T. All the steps 
within the loop are of constant time complexity except for the 
step (ADD-TO-DFA call) which is O(m×|Σ|). The time 
complexity of BUILD-DFA will be O(n×m×|Σ|). A tighter 
bound can be given, since the number of words multiplied by 
m will be roughly equal to n. That is, it can be said that the 
time complexity of BUILD-DFA will be O(n×|Σ|). 

The statements of GET-SHIFTS will run only once, each 
with constant time complexity, except for the loop statements. 
The statements of the loop will run in the worst case m times 
where m is the length of the word that is searched for. The 
steps within the loop all take constant time expect for getting 
the nextState step which will take O(|Σ|) to search for the next 
state for a given letter. So the time complexity of GET-SHIFTS 
will be O(m×|Σ|). 

Now, the main algorithm needs to be analyzed. BUILD-
DFA step will run once and its complexity is O(n×|Σ|). The 
loop will iterate a number of times equals to the size of word 
set W to be searched for (i.e |W|). GET-SHIFTS will be run |W| 
times with O(m×|Σ|). The total complexity of GET-SHIFTS 
will be O(|W|×m×|Σ|). So the total time complexity of the main 
algorithm will be O(n×|Σ|)+O(|W|×m×|Σ|) which will be 
O(n×|Σ|)+ O(|W|×m×|Σ|). Since we know that the length of the 
words m and |Σ| in natural languages are relatively small 
constants, we can roughly say that the complexity of the 
MULTIPLE-WORD-MATCHING is O(n)+O(|W|) for very 
large n and |W|. 

To compare our algorithm with KMP, it was slightly 
adjusted to solve our multiple word matching problem (Fig. 8). 

 
Fig. 8. Adjusted KMP. 

The loop will iterate |W| times. KMP(T,w) is the same as 
KMP in [1] but adjusted to build a shift vector instead of 
printing the shifts. From [1] we know that KMP(T,w) is of 

O(n)+O(m) complexity. This is because, O(m) is needed to 
build the prefix function for w and O(n) is needed to scan T for 
w. KMP(T,w) will be called |W| times. So, the total complexity 
of the Adjusted KMP will be O(n×|W|)+O(m×|W|). Knowing 
that m is relatively small constant in natural languages, it can 
be said that its complexity is O(n×|W|)+O(|W|) which will be 
O(n×|W|) for very large n and |W|. 

For space complexity, our algorithm needs O(n) space. 
However a tighter analysis may be considered. It was found 
that the number of states of the DFA is linear with the set of 
prefixes of the words in T. Repeated words in T means less 
number of states. Repetition of words, is a common feature in 
natural language text documents. On the other hand, Adjusted 
KMP needs only O(m) space to store the prefix function of the 
current word being searched for. A comparison between 
MULTIPLE-WORD-MATCHING and Adjusted KMP is 
shown in Table I. 

TABLE I. COMPARISON BETWEEN MWM AND ADJUSTED KMP 

MWM Adjusted KMP Comparison Facet 

T W Preprocessing phase is applied to 

O(n||) O(m|W|) Preprocessing phase complexity for W 

O(m||) O(n) Search phase complexity for a single 
word 

O(n)+O(|W|) O(n|W|) Search phase complexity for a |W| 
words (|W| large) 

O(n) O(m) Space Complexity 

large W Small W Better for 

V. EXPERIMENTAL STUDY 
Both algorithms: MULTIPLE-WORD-MATCHING 

(MWM) and ADJUSTED-KMP were implemented. We chose 
T to be the text of the Holy Quran which is composed of 
78,245 Arabic words. Fig. 9 shows the algorithm that was 
written to compare the two algorithms. 

 
Fig. 9. Comparison Algorithm. 
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The comparison algorithm is based on measuring the 
running times for both algorithms for the growing sizes of W. 
Initially W is empty. The experiment was conducted by 
randomly selecting 200 words from the T. In each iteration, the 
newly selected word w is added to W. We record the start time, 
call the adjusted KMP algorithm for W and record the end 
time. The same is applied for MWM. The size of W and run 
time for both algorithms for this W is wrote into a file. The file 
is charted as shown in Fig. 10. The x-axis represents the 
growing |W| and the y-axis shows the run time needed by each 
algorithm. We have two graphs for each algorithm where a 
point (x,y) in any of these graphs means that searching for the x 
randomly selected words took y milliseconds. 

 
Fig. 10. Comparing MWM with Adjusted KMP. 

The observations can be summarized as follows. The first 
search operation took too long time for MWM compared to the 
adjusted KMP algorithm. This is expected because of time 
needed to construct the DFA. However, our algorithm 
outperforms the adjusted KMP when |W| reaches 65 words. 
Although this number is not a fixed value, it gives a notion 
when our algorithm will out-perform the adjusted KMP for the 
given T. Note also that the accumulated time for MWM looks 
as if it is constant. However, it is increasing, but with very 
small value. The line has very small slope. 

VI. CONCLUSIONS 
In this paper, we proposed a multiple word matching 

algorithm. The proposed algorithm showed competitive 
performance only in case of a large number of word matchings 
is to be applied on T. However, it is really very expensive if 
small number of word matchings is required on T. 
Preprocessing of T may open new horizons for better text 
search algorithms. As future work, we wish to work on 
optimizations on our algorithm so that it shows better 
performance than the adjusted KMP on lower |W|. We will 
relax the restriction of word matching so that the algorithm can 
be used to search for any pattern and not only for single words. 
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