
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Automata-based Algorithm for Multiple Word
Matching

Majed AbuSafiya

Software Engineering Department
Al-Ahliyya Amman University, Amman, Jordan

Abstract—In this paper, an automata-based algorithm that
finds the valid shifts of a given set of words W in text T is
presented. Unlike known string matching algorithms, a
preprocessing phase is applied to T and not to the words being
searched for. In this phase, a deterministic finite state automaton
(DFA) that recognizes the words in T is built and is augmented
with their shifts in T. The preprocessing phase is relatively
expensive in terms of time and space. However, it needs to be
done once for any number of words to match in a given text
document. The algorithm is analyzed for complexity,
implemented and compared with an adjusted version of KMP
algorithm. It showed better performance than KMP algorithm
for large number of words to match in T.

Keywords—Algorithms; finite state automata; word matching;
KMP

I. INTRODUCTION
In this paper, a special case of string matching [1] problem

is considered that is called multiple word matching. Its input is
a set of words W to match in a text string T of length n. Its
output is a vector of the valid shifts of each word of W in T.
The motivation for this research is that it is common to have a
text document that need to be repeatedly searched for single
words. Another motivation is the speed illustrated by the
proposed algorithm to solve this problem compared with other
matching algorithms for large |W|.

The proposed solution is based on a preprocessing phase
that is applied on T not on the words to search for. The idea is
based on scanning the words in T and incrementally building a
deterministic finite automaton (DFA) [2] that recognizes only
the words of T. Once created, the DFA is used to search for a
set of words W (repetition of words in W is allowed). Although
building this DFA is time consuming, it is needed to be built
only once for searching any number of words in T. The search
time for the individual words will be O(m×|Σ|) where m is the
length of the word searched for and |Σ| is the size of the
alphabet. This means that search time will be independent of
the length of T. The algorithm does better than other matching
algorithms only in case of a large number of word searches in
T is needed.

This paper is organized as follows: Section 2 introduces
related work. Section 3 presents the proposed algorithm.
Section 4 gives a rough complexity analysis of the proposed
algorithm. Section 5 shows the experimental study that was
conducted to compare the proposed algorithm with KMP string
matching algorithm that is adjusted for multiple search words.
The paper ends up with a conclusion and a list of references.

II. RELATED WORK
String matching algorithms are well-known class of

algorithms that have two inputs: a string to search in of length
n called T, and a pattern string to search for of length m called
P. Their output is the valid shifts of P in T. The simplest and
the most expensive among these algorithms – with complexity
O(m n) - is the Naïve string matching algorithm [1]. In this
algorithm, P is compared with every sub-string in T of length
m. Many string matching algorithms with better efficiency
were invented such as Boyer-Moore[3], Knuth-Morris-Pratt[4],
Karp-Rabin [5], Horspool [6], Quick search [7], Shift-Or [8],
Raita [9], Berry-Ravendran [10]. Knuth-Morris-Pratt (KMP)
algorithm is widely known and proven to be a very efficient
and generic. Its complexity is O(n) for small m. It requires
computing a prefix-function on P, which costs O(m), prior
matching against T. A strong relation between string matching
and the theory of finite automata exists, and this was discussed
in detail in [11]. A very close work related to our work is the
work of Aho-Corasick [12]. Their algorithm searches for a set
of words in T by constructing a finite state automaton to
recognize these words. This finite state automaton is then used
to find the occurrences of these words in T. The main
difference between our work and theirs is that in our algorithm,
a finite automaton to recognize the words of T and not the
words to search for is constructed. This means that Aho-
Corasick approach will require O(n) string matching
complexity, and our approach will have O(|W|*m) where |W| is
the number of words to search for and m is the length of words
which is known to be short compared to n in the context of
natural languages text. However, our algorithm pays for this
shorter search time, by a pre-processing phase that takes longer
time. This is because constructing a finite state automaton for T
takes longer time. On the other hand, Aho-Corasick algorithm
constructs the finite state machine for the words to search for,
which is usually much smaller than the set of words of T.

The difference between our algorithm and other string
matching algorithms can be summarizes in two points: (1) Ours
matches single words. So, m for our problem is relatively short.
This means that our algorithm is less generic than other string
matching algorithms where a pattern could be a sub-word or
multiple words. (2) Ours is directed to solve the multiple word
matching problem. The input is a set of words for each to be
matched in T. One run of our algorithm will serve multiple
search requests. Other string matching algorithms serve a
search for one pattern in a single run. However, these string
matching algorithms can be simply adjusted to solve the

490 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

multiple word matching problem by repeatedly applying them
on a set of words on the same T.

KMP algorithm was chosen to evaluate the performance of
our proposed algorithm. This algorithm is among the best and
most generic known string matching algorithms. KMP is
adjusted slightly to do multiple word search and hence can be
used to study the performance of our algorithm. Through this
comparison, the circumstances where the proposed algorithm
out-performs other string matching algorithms is explored.

III. PROPOSED ALGORITHM
MULTIPLE-WORD-MATCHING algorithm is shown in

(Fig. 1). The input of the algorithm is a text to search T in and a
set of words W to search for. The multiple searches for words
in T is passed as an input to the algorithm. However, our
algorithm may also be applied in the context where repeated
search requests (for words in T) successively arrive in the same
session. A word is to be a sequence of characters that does not
contain spaces nor white characters. It is the same known
concept of “word” in the context of natural languages. Our
algorithm will only match single words in T. So, patterns that
are sub-words or multiple words will not be matched by our
algorithm. For example, if T=<abc abd>, our algorithm will
assume that the only words existing in T are abc and abd. It
will assume the strings “ab” and “abc abd” do not exist in T.
This assumption is considered for simplicity. The output of the
algorithm will be a vector of the valid shifts (in T) for each w in
W. The first step is to build a DFA that recognizes the words of
T. Then, GET-SHIFTS(DFA,w) is called for every w in W and
the valid shifts are returned. It is assumed that a w has an
attribute called shiftVector that will be set by the shift vector
that is returned by GET-SHIFTS(DFA,w).

The algorithm for BUILD-DFA(T) is shown in Fig. 2. In
this algorithm, the DFA is initialized where the start state is
created and its name field is set to the empty string. Each state
s in the DFA will be augmented with a name field which
corresponds to the string that takes the DFA from the start state
to this state s. The loop will get the words of T one at a time
and then add them to the DFA along with their shifts in T.
ADD-TO-DFA will be called once for every word in T. The
shift variable is updated to contain the shift of the next word by
adding the shift of the current word, its length plus 1. For
simplicity, T is assumed to be normalized. This means that T
contains only words and these words are separated by single
spaces. Additional processing may be needed to do this
normalization. This assumption eases the calculation of the
shifts of the words in T.

ADD-TO-DFA algorithm (Fig. 3) will set the currentState
to be start state of the DFA. The loop gets the letters of the
word, one at a time. In each iteration, the nextLetter of the
word is taken. A transition with nextLetter from the
currentState is checked. If no such transition was found,
nextState will be null. This requires that a new state (is called
nextState) to be created with a transition from the currentState
to nextState and is labeled with nextLetter. The name field of
the nextState will be set to be the concatenation of name field
of the currentState with the nextLetter. The currentState is set
to be the nextState. This should be done in each iteration,
whether if nextState was created or found. Once the loop

terminates, all the letters of the word are consumed. The
algorithm will set the current State to be a final state and shift
is added to the shift vector of this final state. Note that only the
final states are augmented with shifts vector. This is because
augmenting all the states with shift vectors will result in too
large shift vectors, especially for these states that are shallow in
the DFA.

To illustrate this algorithm with an example (Fig. 4),
assume that T=<ab ac a>. Adding the word ab to the DFA will
be done by calling ADD-TO-DFA(“ab”, 0). The name field is
shown for all states. For example, s2.name is the word ab which
corresponds to the prefix of the word ab that takes the DFA
from the start state s0 to s2. The name field of the start state (s0)
is the empty string. Only s2 has the attribute shiftVector since it
is a final state. Final states are distinguished with a different
color.

The next call will be ADD-TO-DFA(“ac”, 3) because the
next word in T is ac with shift equals 3. The currentState is set
to s0.The word length is 2. So the loop will iterate twice. In the
first iteration, nextLetter will be the letter 'a'. The algorithm
finds a transition from s0 with 'a'. A nextState is found which is
s1.The currentState becomes s1. In the second iteration, no
transition from s1 with letter 'c' is found. So, a new state is
created which is s3. When the loop terminates, the s3 is set to be
a final state and the shift is added to the shift vector of s3. The
DFA will be as shown in Fig. 5.

Fig. 1. Multiple-Word-Matching Algorithm.

Fig. 2. BUILD-DFA Algorithm.

491 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 3. ADD-TO-DFA Algorithm.

Fig. 4. DFA after ADD-TO-DFA(”ab”, 0) Call.

Fig. 5. DFA after ADD-TO-DFA(“ac”, 3).

ADD-TO-DFA will be called for the third word in T which
is “a” ending with DFA in Fig. 6. Note that s1 became a final
state and a shift vector is set.

Fig. 6. DFA for T=<ab ac a>.

Next, how the DFA is used to get the shifts of a word w in
T need to be defined. This is done by calling GET-
SHIFTS(DFA, w) as shown in Fig. 7. Initially, the variable
currentState contains the start state. It will change to represent
the state that is reached while scanning the letters of w. The
letters of w are taken one by one. A check for a next state from
the currentState with letter is made. If not found, this means
that w does not exist in T and an empty shift vector is returned.
However, if a next state is found, the currentState is updated to
be the nextState. The loop will break either when (1) a null
state is reached which means that w does not exist in T or (2)
all the letters of the word where consumed. In case all the
letters of w were consumed ending in a final state, then w is in
T and the shift vector (augmented in the reached final state) is
returned. An empty shifts vector is returned when (1) w could
not be completely consumed because of reaching a null state,
or (2) if w was completely consumed but a non-final state was
reached.

Fig. 7. Get-Shifts(DFA,w).

For example, to search for the word “ac” in T using the
DFA in Fig. 6, GET-SHIFTS(DFA,”ac”) is called. The
nextLetter will be “a” and next state will be found which will
be s1 which is not null. This will result in another loop iteration
where next letter will be “c”. The next state will be s3 which is
not null. The loop will break and since all w's letters were
consumed. Since the reached state (s3) is a final state, the shift
vector will be returned which is <3>.

IV. ANALYSIS OF THE PROPOSED ALGORITHM
To analyze the time complexity of the MULTIPLE-

WORD-MATCHING algorithm, for each step, the following
need to be found (1) its time complexity for a single run and
(2) the number of times it's executed. These two values are
multiplied and added up for all the steps. A bottom-up
approach is taken, where we start analyzing the supporting
algorithms and then find the complexity of the main algorithm.

Starting with ADD-TO-DFA, each statement is executed
only once except for the statements within the loop which will

492 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

be run m times in worse case where m is the length of the
word. All the steps take constant time to execute except for the
step of finding the nextState for currentState with letter. It
requires scanning the next states of the currentState to find a
transition with nextLetter label. An upper bound on the number
of the next states for a currentState is the size of the alphabet of
the text language |Σ|. This is a loose upper bound, because in
the words in natural languages, not all letters may appear next
to a given letter. Adding the complexities of the statements, it
is found that the complexity of ADD-TO-DFA algorithm is
O(m×|Σ|) which is constant and is independent of the size of T.

For a BUILD-DFA call, the loop will iterate a number of
times equals to the number of the words in T. All the steps
within the loop are of constant time complexity except for the
step (ADD-TO-DFA call) which is O(m×|Σ|). The time
complexity of BUILD-DFA will be O(n×m×|Σ|). A tighter
bound can be given, since the number of words multiplied by
m will be roughly equal to n. That is, it can be said that the
time complexity of BUILD-DFA will be O(n×|Σ|).

The statements of GET-SHIFTS will run only once, each
with constant time complexity, except for the loop statements.
The statements of the loop will run in the worst case m times
where m is the length of the word that is searched for. The
steps within the loop all take constant time expect for getting
the nextState step which will take O(|Σ|) to search for the next
state for a given letter. So the time complexity of GET-SHIFTS
will be O(m×|Σ|).

Now, the main algorithm needs to be analyzed. BUILD-
DFA step will run once and its complexity is O(n×|Σ|). The
loop will iterate a number of times equals to the size of word
set W to be searched for (i.e |W|). GET-SHIFTS will be run |W|
times with O(m×|Σ|). The total complexity of GET-SHIFTS
will be O(|W|×m×|Σ|). So the total time complexity of the main
algorithm will be O(n×|Σ|)+O(|W|×m×|Σ|) which will be
O(n×|Σ|)+ O(|W|×m×|Σ|). Since we know that the length of the
words m and |Σ| in natural languages are relatively small
constants, we can roughly say that the complexity of the
MULTIPLE-WORD-MATCHING is O(n)+O(|W|) for very
large n and |W|.

To compare our algorithm with KMP, it was slightly
adjusted to solve our multiple word matching problem (Fig. 8).

Fig. 8. Adjusted KMP.

The loop will iterate |W| times. KMP(T,w) is the same as
KMP in [1] but adjusted to build a shift vector instead of
printing the shifts. From [1] we know that KMP(T,w) is of

O(n)+O(m) complexity. This is because, O(m) is needed to
build the prefix function for w and O(n) is needed to scan T for
w. KMP(T,w) will be called |W| times. So, the total complexity
of the Adjusted KMP will be O(n×|W|)+O(m×|W|). Knowing
that m is relatively small constant in natural languages, it can
be said that its complexity is O(n×|W|)+O(|W|) which will be
O(n×|W|) for very large n and |W|.

For space complexity, our algorithm needs O(n) space.
However a tighter analysis may be considered. It was found
that the number of states of the DFA is linear with the set of
prefixes of the words in T. Repeated words in T means less
number of states. Repetition of words, is a common feature in
natural language text documents. On the other hand, Adjusted
KMP needs only O(m) space to store the prefix function of the
current word being searched for. A comparison between
MULTIPLE-WORD-MATCHING and Adjusted KMP is
shown in Table I.

TABLE I. COMPARISON BETWEEN MWM AND ADJUSTED KMP

MWM Adjusted KMP Comparison Facet

T W Preprocessing phase is applied to

O(n||) O(m|W|) Preprocessing phase complexity for W

O(m||) O(n) Search phase complexity for a single
word

O(n)+O(|W|) O(n|W|) Search phase complexity for a |W|
words (|W| large)

O(n) O(m) Space Complexity

large W Small W Better for

V. EXPERIMENTAL STUDY
Both algorithms: MULTIPLE-WORD-MATCHING

(MWM) and ADJUSTED-KMP were implemented. We chose
T to be the text of the Holy Quran which is composed of
78,245 Arabic words. Fig. 9 shows the algorithm that was
written to compare the two algorithms.

Fig. 9. Comparison Algorithm.

493 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

The comparison algorithm is based on measuring the
running times for both algorithms for the growing sizes of W.
Initially W is empty. The experiment was conducted by
randomly selecting 200 words from the T. In each iteration, the
newly selected word w is added to W. We record the start time,
call the adjusted KMP algorithm for W and record the end
time. The same is applied for MWM. The size of W and run
time for both algorithms for this W is wrote into a file. The file
is charted as shown in Fig. 10. The x-axis represents the
growing |W| and the y-axis shows the run time needed by each
algorithm. We have two graphs for each algorithm where a
point (x,y) in any of these graphs means that searching for the x
randomly selected words took y milliseconds.

Fig. 10. Comparing MWM with Adjusted KMP.

The observations can be summarized as follows. The first
search operation took too long time for MWM compared to the
adjusted KMP algorithm. This is expected because of time
needed to construct the DFA. However, our algorithm
outperforms the adjusted KMP when |W| reaches 65 words.
Although this number is not a fixed value, it gives a notion
when our algorithm will out-perform the adjusted KMP for the
given T. Note also that the accumulated time for MWM looks
as if it is constant. However, it is increasing, but with very
small value. The line has very small slope.

VI. CONCLUSIONS
In this paper, we proposed a multiple word matching

algorithm. The proposed algorithm showed competitive
performance only in case of a large number of word matchings
is to be applied on T. However, it is really very expensive if
small number of word matchings is required on T.
Preprocessing of T may open new horizons for better text
search algorithms. As future work, we wish to work on
optimizations on our algorithm so that it shows better
performance than the adjusted KMP on lower |W|. We will
relax the restriction of word matching so that the algorithm can
be used to search for any pattern and not only for single words.

REFERENCES
[1] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to

Algorithms, 3rd ed., Massachusetts: MIT Press, 2009.
[2] J. Hopcroft, J. and Ullman, Introduction to Automata Theory, Languages

and Computation, 1st ed., New York: Edison Wesley, 1979.
[3] R. Boyer, and J. Moore, “A fast string searching algorithm,”

Communications of the ACM, vol. 20, pp. 762-772, 1977.
[4] D. Knuth, J, Morris, and V. Pratt, “Fast pattern matching in strings,”

SIAM journal on Computing, vol. 6 No.2, pp. 323-350, 1977.
[5] R. Karp, and M. Rabin, “Efficient randomized pattern matching

algorithms,” IBM journal of Research and Development, vol. 31, no. 2,
pp. 249-260, 1987.

[6] R. Horspool, “Practical fast searching in strings, “Software: Practice and
Experience,” vol. 10 no. 6, pp. 501-506, 1980.

[7] D. Sunday, “A very fast substring search algorithm,” Communications
of the ACM, vol. 33, no. 8, pp. 132-142, 1990.

[8] R. Baeza-Yates and G. Gonnet, “A new approach to text searching,”
Communications of the ACM, vol. 35, no. 10, pp. 74-82, 1992.

[9] T. Ratia, “Tuning the Boyer-Moore-Horspool string searching
algorithm,” Software: Practice and Experience, vol. 22, no. 10, pp. 879-
884, 1992.

[10] T. Berry, and S. Ravindran (1999), “A fast string matching algorithm
and experimental results,” Proceedings of the Prague Stringology Club
Workshop, Prague, Czech Republic, pp. 16-28, 1999.

[11] A. Aho, J. Hopcroft, and D. Ullman, The Design and Analysis of
Computer Algorithms (1st ed.). Massachusetts: Addison Wesley. 1974.

[12] A. Aho, and M. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the A vol. 18, no. 6, pp.333-
340, 1975.

494 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Proposed Algorithm
	IV. Analysis of the Proposed Algorithm
	V. Experimental Study
	VI. Conclusions

