
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Empirical Study on Microsoft Malware Classification
Rohit Chivukula1, Mohan Vamsi Sajja2, T. Jaya Lakshmi3, Muddana Harini4

University of Huddersfield, Huddersfield, United Kingdom1

Department of Computer Science and Engineering, SRM University, Andhra Pradesh, India2, 3, 4

Abstract—A malware is a computer program which causes
harm to software. Cybercriminals use malware to gain access to
sensitive information that will be exchanged via software infected
by it. The important task of protecting a computer system from a
malware attack is to identify whether given software is a
malware. Tech giants like Microsoft are engaged in developing
anti-malware products. Microsoft's anti-malware products are
installed on over 160M computers worldwide and examine over
700M computers monthly. This generates huge amount of data
points that can be analyzed as potential malware. Microsoft has
launched a challenge on coding competition platform
Kaggle.com, to predict the probability of a computer system,
installed with windows operating system getting affected by a
malware, given features of the windows machine. The dataset
provided by Microsoft consists of 10,868 instances with 81
features, classified into nine classes. These features correspond to
files of type asm (data with assembly language code) as well as
binary format. In this work, we build a multi class classification
model to classify which class a malware belongs to. We use K-
Nearest Neighbors, Logistic Regression, Random Forest
Algorithm and XgBoost in a multi class environment. As some of
the features are categorical, we use hot encoding to make them
suitable to the classifiers. The prediction performance is
evaluated using log loss. We analyze the accuracy using only asm
features, binary features and finally both. xGBoost provide a
better log-loss value of 0.078 when only asm features are
considered, a value of 0.048 when only binary features are used
and a final log loss of 0.03 when all features are used, over other
classifiers.

Keywords—Multi-class classification; malware detection;
XGBoost

I. INTRODUCTION
There are several kinds of malware that can infect a

computer system. The number of malwares exceeds 800M in
2019 [1]. Detecting a given file as malware is one of the
interesting research problems. Malware detection is
challenging because the cybercriminals continuously change
the way of attacking the computer systems, resulting in change
in the features of malware software. There is a long-lasting
confrontation between cyber security experts and malware
creators. Machine learning algorithms can be efficiently used
to identify whether a given file is malware or not. These
algorithms require features/attributes of malwares. Malware
files exist either in the form of byte files or assembly language
files. Features can be successfully extracted from these files.

Microsoft is one of the major companies that develop anti-
malware products. Microsoft has launched a challenge to
detect malwares on Kaggle.com [2]. Microsoft has provided
nearly half a tera byte of data consisting of malware files. The

dataset given in [2] consists of 10,868 instances with 81
features, classified into nine classes.

Several works are available in the literature on malware
classification. Ahmadi et al and Drew et al work on textual
feature extraction from the challenge dataset [3,4]. The dataset
is of huge size and it is difficult to work on a computer with
moderate configuration. Hu et al. address scalability of the
dataset [5]. Scofield et al. utilize an entity resolution strategy
that merges syntactically dissimilar features [6]. Deep learning
techniques are used in [7] and [8] to classify malwares based
on the textual features. Narayanan et al. use the classifications
like SVM, k-Nearest Neighbours and Artificial Neural
Networks in their work [9]. More recent works can be found
in [10].

In this work, we apply various multi class classification
algorithms to predict the class of a given malware. The
organization of this paper is as follows: Section 2 describes
the research problem, dataset details, feature extraction and
evaluation measures. Section 3 explains proposed approach to
solve the problem. Section 4 details the experimental setup.
Results are given in Section 5 along with some discussion.
Conclusions are given at the end.

II. PROBLEM DESCRIPTION

A. Problem Statement
Microsoft has classified malware into 9 classes. Microsoft

malware classification is the problem of determining in which
class of malware, a given file belongs to. This is a multi-class
classification problem. To problem can be elaborated as
follows: Given a file, the problem is to estimate the
probability of the file belonging to each type of nine classes of
malware. In multi-class classification problems, the algorithm
predicts the class with maximum probability as the target
class. But this kind of approach is not probable for malware
classification because, estimation of the probabilities that
belong to each class is valuable. For example, the probability
of a file belonging to class 3 is 0.5 and class 4 is 0.4. If the
problem is modelled such that the file belongs to class 3
considering the maximum probability, we will lose the
information of the file may also be affected by class 4 with
slight margin. Therefore, our approach computes probability
of a given malware belonging to each of the 9 classes. The
structure of the solution followed in this work is given in
Fig. 1.

B. Dataset Description
The dataset available at Microsoft malware classification

challenge webpage [1] has been used in this work. The
organizers of this challenge have provided the training and test

509 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

datasets separately. There are two kinds of files in this dataset.
(1): .asm file and (2): .bytes file. Total train dataset consists of
200GB of data, out of which 50GB is .bytes files and 150GB
is .asm files. There is a total of 10,868 .bytes files and 10,868
asm files, comprising 21,736 files in total, with nine possible
class labels denoting 9 types of malwares. The number of files
in each kind of class is given in Table I.

Fig. 2 shows the distribution of instances among nine
classes of malware in the given dataset. It is understood from
Fig. 2 that the problem is highly imbalanced with 27% of
instances belonging to class 3 and 0.4% of instances in class 5.
Classes 4, 5 and 7 occur very infrequently whereas, classes 1,
2 and 3 are the malwares that occur frequently.

Box plot on asm file size is given in Fig. 3. This indicates
that class 2 and 5 have some similarity. But from class
distribution plot in Fig. 2 implies that class 2 is frequently
occurring, and class 5 is the least occurring class. This
signifies that file size is useful in predicting class labels.

Predicted
Probability 0.5 0 0 0 0.1 0.4 0 0 0

Class Label 1 2 3 4 5 6 7 8 9

Fig. 1. Structure of Solution.

TABLE I. DATASET DESCRIPTION

Class ID Family name #files Type

1 Ramnit 1541 Worm

2 Lollipop 2478 Adware

3 Kelihos_ver3 2942 Backdoor

4 Vundo 475 Trojan

5 Simda 42 Backdoor

6 Tracur 751 TrojanDownloader

7 Kelihos_ver1 398 Backdoor

8 Obfuscator.ACY 1228 Any kind of obfuscated
malware

9 Gatak 1013 Backdoor

A sample data points in both files are given in Table II.

TABLE II. SAMPLE DATA POINT

Sample data point in .asm file

1 .text:00401000 assume es:nothing, ss:nothing, ds:_data, fs:nothing,
gs:nothing

2 .text:00401000 56 push esi

3 .text:00401001 8D 44 24 08 lea eax, [esp+8]

Sample data point in .bytes file

1 00401000 00 00 80 40 40 28 00 1C 02 42 00 C4 00 20 04 20

2 00401010 00 00 20 09 2A 02 00 00 00 00 8E 10 41 0A 21 01

3 00401020 40 00 02 01 00 90 21 00 32 40 00 1C 01 40 C8 18

Fig. 2. Class Distribution of Instances.

Fig. 3. Box Plot of Byte Files Sizes.

C. Feature Extraction
1) Features related to byte files: As byte files are

represented using hexadecimal values, there are 256 distinct
values. To pose this as text processing problem, we encode all
these 256 values as unigram bag of words. The t-SNE diagram
with different perplexities is shown in Fig. 4 and 5. This
indicates that some classes are well separated from others.
Features extracted from byte files: file_size, unigram_bag_
of_words of size 256.

510 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 4. t-SNE Diagram with Perplexity 50.

Fig. 5. t-SNE Diagram with Perplexity 30.

2) Features related to asm files: There are 10,868 files of
asm of size around 150 GB. The initial observation of asm
files says that there are Address, Segments, Opcodes,
Registers, function calls and API related words in asm files.
We have extracted 52 features from all the asm files. These
features consist of file_size, bag of words related to 13
prefixes, 26 opcodes, 3 keywords and 9 registers. As the file
size is huge, we use multi-threading with 5 threads to extract
these features.

D. Evaluation Measures
1) Multi-class log-loss [17, 18]: Log loss is the common

evaluation measure used for multi class classification
problems. Multi class log loss is defined as follows:

−
1
𝑛
��𝑦𝑖𝑗log (𝑝𝑖𝑗)

𝑐

𝑗=1

𝑛

𝑖=1

where, n is the number of instances,

c is the number of classes,

yij =1 if instance i belongs to class j and

pij is the predicted probability estimate of instance i belonging
to class j.

A pure classifier yields a log loss of 0. The log loss value
increases as the probability estimate by the chosen algorithm
goes wrong. The aim of machine learning algorithm is to
minimize the log loss value.

2) Confusion matrix: A confusion matrix for a n-class
problem will be an n X n matrix, where columns correspond to
the predicted class labels and the rows corresponds to the
actual [19, 20, 21]. The main diagonal gives the correct
predictions. That is, the cases where the actual values and the
model predictions are the same. In malware classification
problem, the matrix is of size 9 X 9. Each cell [i,j] represents
number of points of class i are predicted to belong to class j.
The ideal value of confusion matrix C can be

C[i,j] = 0 if i≠j

 = Number of instances of class i(or j) if i=j

3) Precision: Precision is the fraction of correctly
predicted instances out of total predictions for a given class
[20, 21]. Precision is good if cost of wrong belongingness
prediction to a class.

4) Recall: Recall is the capture of correct predictions
among total instances belonging to the class [20, 21]. Recall is
good if cost of identifying an instance which is a member of
the class. If a patient who is cancerous is not predicted, it is a
huge loss to the patient.

The proposed approach is explained in the next section.

III. PROPOSED APPROACH
Various machine learning algorithms are used in a multi

class environment in this work. The proposed approach is
shown in Fig. 6. The algorithms used in this work are briefly
explained.

A. Random Model
In random model, we compute the probabilities of each

class in the solution shown in Table I purely in random and
normalise the sum to be 1. A random model gives us the worst
possible log loss value of any algorithm. Any model
performing worse than random model can be immediately
rejected.

B. k-Nearest Neighbours (k-NN) Classifier [11]
k-NN algorithm is a lazy learning algorithm. It doesn’t

train the model in advance. The algorithm computes distance
of test instance from k nearest instances in the training data.
The class to which majority of k nearest neighbours belongs to
is taken as the class of the test instance. Determining right k is
a challenge in this algorithm. Hyper parameter tuning helps us
in finding right k.

511 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 6. Proposed Approach.

C. Logistic Regression [12]
Logistic regression is basically defined for binary

classification problem. We use multinomial logistic regression
[13], which is a variant of logistic regression for multi class
problem. This algorithm predicts the probability of test
instance belonging to a class in multi class environment.

D. Random Forest [14]
Random forest is an ensemble of decision trees trained

with bagging. Random forest algorithm constructs n number
of decision trees using train data. The class lable will be
determined by majority voting of all these constructed
decision trees. The decision tree algorithm can naturally
handle multi class case too.

E. XGBoost [15]
XGBoost is an optimized distributed gradient boosting

library. It utilises Gradient Boosting framework. XGBoost
provides a parallel tree boosting method, which is very fast
and accurate in many cases. XGBoost is a kind of ensemble.
Ensemble learning constructs of a group of predictors that use
multiple models and aggregates the performance of each tree.
In Boosting technique, the errors made by previous models are

tried to be corrected by succeeding models by adding some
weights to the models.

Characteristics of XGBoost:

• XGBoost is used in regression as well as classification
problems.

• Supports parallel processing.

• Can be able to manage memory very efficiently for
large datasets exceeding RAM.

• Supports different kinds of regularizations which helps
in reducing overfitting.

• Provides auto pruning of tree.

• Efficiently handles missing values.

• Has inbuilt Cross-Validation.

• Takes care of outliers to some extent.

All the classification algorithms chosen are sensitive to
parameters. The experimental setup and parameter setting is
discussed in the next section.

512 | P a g e
www.ijacsa.thesai.org

https://en.wikipedia.org/wiki/Gradient_boosting
https://analyticsindiamag.com/complete-guide-to-xgboost-with-implementation-in-r/
https://analyticsindiamag.com/ensemble-modeling-explained-through-music/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

IV. EXPERIMENTAL SETUP
This section describes the parameter selection of machine

learning algorithms used for experimentation. Some classifiers
we intend to use are sensitive to parameters. We perform
hyper parameter tuning to fix the best parameter. The hyper
parameter tuning is shown in Fig. 7 to 10.

k-NN classifier is sensitive to the value of k [16]. To find
best k, we have tested the model with different values of k
from 1 to 15. The model gives best log loss for k=1, as shown
in Fig. 7. Therefore, we use k=1 in our experimentation.

For Random Forest classifier, we have tested with number
of trees varying from 10 to 3000 (Fig. 9). With 1000 trees we
could achieve best log loss and low misclassification error.
Therefore, we use 1000 trees in random forest. We use
XGBoost classifier with 500 trees, 500 estimators with a
maximum depth of 5 and learning rate 0.05.

Any machine learning algorithm needs training and testing
to determine the performance of the classifier. We split the
dataset randomly into three parts train, cross validation and
test with 64%, 16%, 20% of data respectively. We use 80% of
data for training and 20% for testing.

Fig. 7. Hyper Parameter Tuning for k-NN.

Fig. 8. Hyper Parameter Tuning for Logistic Regression.

Fig. 9. Hyper Parameter Tuning for Random Forest.

Fig. 10. Hyper Parameter Tuning for XGBoost.

V. RESULTS AND DISCUSSION
We experiment with the features extracted from byte files,

asm files individually and by combining them all. The
following sections present the results.

A. Results on Byte Files
The log loss values on cross validation as well as test data

are tabulated in Table III. Random forest classifier achieves
low log loss value on cross validation data, whereas XGBoost
is the winner on test data as well as misclassified errors.

From Table IV, we can see that the precision and recall of
k-NN for class 5 is low compared to other classes. We guess
that this is because of very few number of instances in class 5
(Fig. 1). From precision matrix, it is understood that there is a
confusion between class 1 and class 5.

B. Results on Features Extracted from asm Files
The log loss values computed using features extracted

from asm files are tabulated in Table V. XGBoost obtain
better log loss on test data. But precision and recall for class 5
is improved using asm file features as shown in Table VI.

513 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

TABLE III. LOG LOSS RESULTS USING ONLY BYTE FILES

Algorithm
Log loss #misclassified points

cross validation test data

Random model 2.4561 2.4850 88.5000

k-NN 0.2253 0.2415 4.5078

Logistic Regression 0.5499 0.5283 12.3275

Random Forest 0.0879 0.0858 2.0239

XGBoost 0.0928 0.0782 1.2419

TABLE IV. PRECISION AND RECALL USING ONLY BYTE FILES

Classifier↓ Class → 1 2 3 4 5 6 7 8 9

KNN
Precision 0.88 0.97 1.00 0.97 0.75 0.89 0.94 0.96 0.91

Recall 0.96 0.93 1.00 0.96 0.75 0.92 0.91 0.93 0.92

Logistic Regression
Precision 0.76 0.96 0.99 0.78 0.00 0.78 0.96 0.70 0.86

Recall 0.78 0.89 0.99 0.97 0.00 0.68 0.95 0.88 0.70

Random Forest
Precision 0.94 0.99 0.99 0.95 1.00 0.95 1.00 0.95 0.98

Recall 0.98 0.99 1.00 0.96 0.87 0.95 0.95 0.93 0.97

XGBoost
Precision 0.95 0.99 1.00 0.95 1.00 0.97 1.00 0.99 0.99

Recall 0.99 0.99 1.00 0.98 0.75 0.98 0.96 0.95 0.98

TABLE V. LOG LOSS RESULTS USING ONLY ASM FILES

Algorithm
Log loss

#misclassified points
cross validation test data

Random model 2.4561 2.4850 88.5000

k-NN 0.0958 0.0894 2.0239

Logistic Regression 0.4244 0.4156 9.6136

Random Forest 0.0496 0.0571 1.1499

XGBoost 0.0560 0.0491 0.8739

TABLE VI. PRECISION AND RECALL USING ONLY ASM FILES

Classifier↓ Class → 1 2 3 4 5 6 7 8 9

KNN
Precision 0.96 1.00 0.99 0.96 0.70 0.98 0.95 0.95 0.97

Recall 0.97 0.99 0.99 0.91 0.87 0.95 0.97 0.94 1.00

Logistic Regression
Precision 0.89 0.97 0.84 0.97 0.00 0.93 0.47 0.89 0.95

Recall 0.91 0.99 0.99 0.71 0.00 0.88 0.10 0.83 0.95

Random Forest
Precision 0.97 1.00 0.99 0.98 1.00 0.99 0.96 0.97 0.98

Recall 0.99 1.00 0.99 0.95 0.87 0.96 0.98 0.96 0.99

XGBoost
Precision 0.97 1.00 0.99 0.98 1.00 1.00 0.96 0.98 0.98

Recall 0.99 1.00 0.99 0.95 0.87 0.97 0.98 0.98 0.99

514 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

C. Results on Both Byte and asm Files
Random forest ensemble and XGBoost clearly obtain

better accuracy in both cases of asm as well as byte files. We
have used both features in these two models and present
results in Table VII. When 257 features related to byte files as
well as 53 features extracted from asm files are used for
training, log loss result of XGBoost is improved for both cross
validation as well as testing data from 0.048 to 0.031.

TABLE VII. LOG LOSS RESULTS USING ASM AND BYTE FILES

Algorithm
Log loss

cross validation test data

Random Forest 0.0355 0.0401

XGBoost 0.0315 0.0323

VI. CONCLUSION
In this paper, we detect the type of malware that a given

file belongs to. We use unigram model to construct bag of
words from byte files as well as asm files. Random forest and
XGBoost classifiers achieve a better log loss value of 0.031
over other classifiers used in this work. Usage of only byte
files failed to detect some class of malware especially class 5,
where the number of files are few, but the other information
pertaining to asm files could succeed in detecting malwares
belonging to all class. In future, we would like to apply
advanced text retrieval features on byte files to improve the
log-loss.

REFERENCES
[1] Beek, C., et al. "Mcafee labs threats report: August 2019." McAfee Labs

(2019).
[2] https://www.kaggle.com/c/malware-classification/data.
[3] Ahmadi, Mansour, et al. "Novel feature extraction, selection and fusion

for effective malware family classification." Proceedings of the sixth
ACM conference on data and application security and privacy. 2016.

[4] Drew, Jake, Tyler Moore, and Michael Hahsler. "Polymorphic malware
detection using sequence classification methods." 2016 IEEE Security
and Privacy Workshops (SPW). IEEE, 2016.

[5] Hu, Xin, et al. "Scalable malware classification with multifaceted
content features and threat intelligence." IBM Journal of Research and
Development 60.4 (2016): 6-1.

[6] Scofield, Daniel, Craig Miles, and Stephen Kuhn. "Fast model learning
for the detection of malicious digital documents." Proceedings of the 7th
Software Security, Protection, and Reverse Engineering/Software
Security and Protection Workshop. 2017.

[7] Kebede, Temesguen Messay, et al. "Classification of malware programs
using autoencoders based deep learning architecture and its application
to the microsoft malware classification challenge (big 2015) dataset."
2017 IEEE National Aerospace and Electronics Conference (NAECON).
IEEE, 2017.

[8] Yuxin, Ding, and Zhu Siyi. "Malware detection based on deep learning
algorithm." Neural Computing and Applications 31.2 (2019): 461-472.

[9] Narayanan, Barath Narayanan, Ouboti Djaneye-Boundjou, and
Temesguen M. Kebede. "Performance analysis of machine learning and
pattern recognition algorithms for malware classification." 2016 IEEE
National Aerospace and Electronics Conference (NAECON) and Ohio
Innovation Summit (OIS). IEEE, 2016.

[10] Zagi, Luqman Muhammad, and Baharuddin Aziz. "Searching for
Malware Dataset: a Systematic Literature Review." 2020 International
Conference on Information Technology Systems and Innovation
(ICITSI). IEEE, 2020.

[11] Aha, David W., Dennis Kibler, and Marc K. Albert. "Instance-based
learning algorithms." Machine learning 6.1 (1991): 37-66.

[12] Kleinbaum, David G., et al. Logistic regression. New York: Springer-
Verlag, 2002.

[13] Böhning, Dankmar. "Multinomial logistic regression algorithm." Annals
of the institute of Statistical Mathematics 44.1 (1992): 197-200.

[14] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001.

[15] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining (pp. 785-794).

[16] Zhang, Shichao, et al. "Learning k for knn classification." ACM
Transactions on Intelligent Systems and Technology (TIST) 8.3 (2017):
1-19.

[17] Ferri, César, José Hernández-Orallo, and R. Modroiu. "An experimental
comparison of performance measures for classification." Pattern
Recognition Letters 30.1 (2009): 27-38.

[18] Read, Jesse, et al. "Classifier chains for multi-label classification." Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, Berlin, Heidelberg, (2009): 254-269.

[19] Townsend, James T. "Theoretical analysis of an alphabetic confusion
matrix." Perception & Psychophysics 9.1 (1971): 40-50.

[20] Powers, David MW. "Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation." arXiv preprint
arXiv:2010.16061 (2020).

[21] Ting, K. M. "Confusion Matrix, Encyclopedia of Machine Learning and
Data Mining." (2017).

515 | P a g e
www.ijacsa.thesai.org

https://www.kaggle.com/c/malware-classification/data

	I. Introduction
	II. Problem Description
	A. Problem Statement
	B. Dataset Description
	C. Feature Extraction
	1) Features related to byte files: As byte files are represented using hexadecimal values, there are 256 distinct values. To pose this as text processing problem, we encode all these 256 values as unigram bag of words. The t-SNE diagram with different perp�
	2) Features related to asm files: There are 10,868 files of asm of size around 150 GB. The initial observation of asm files says that there are Address, Segments, Opcodes, Registers, function calls and API related words in asm files. We have extracted 52 f�

	D. Evaluation Measures
	1) Multi-class log-loss [17, 18]: Log loss is the common evaluation measure used for multi class classification problems. Multi class log loss is defined as follows:
	2) Confusion matrix: A confusion matrix for a n-class problem will be an n X n matrix, where columns correspond to the predicted class labels and the rows corresponds to the actual [19, 20, 21]. The main diagonal gives the correct predictions. That is, the�
	3) Precision: Precision is the fraction of correctly predicted instances out of total predictions for a given class [20, 21]. Precision is good if cost of wrong belongingness prediction to a class.
	4) Recall: Recall is the capture of correct predictions among total instances belonging to the class [20, 21]. Recall is good if cost of identifying an instance which is a member of the class. If a patient who is cancerous is not predicted, it is a huge lo�

	III. Proposed Approach
	A. Random Model
	B. k-Nearest Neighbours (k-NN) Classifier [11]
	C. Logistic Regression [12]
	D. Random Forest [14]
	E. XGBoost [15]

	IV. Experimental Setup
	V. Results and Discussion
	A. Results on Byte Files
	B. Results on Features Extracted from asm Files
	C. Results on Both Byte and asm Files

	VI. Conclusion
	References

