(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 3, 2021

Distributed Mining of High Utility Sequential
Patterns with Negative Item Values

Manoj Varmal, Saleti Sumalatha?, Akhileshwar reddy3
School of Engineering and Sciences
Computer Science and Engineering
SRM University AP
India

Abstract—The sequential pattern mining was widely used to
solve various business problems, including frequent user click
pattern, customer analysis of buying product, gene microarray
data analysis, etc. Many studies were going on these pattern
mining to extract insightful data. All the studies were mostly
concentrated on high utility sequential pattern mining (HUSP)
with positive values without a distributed approach. All the ex-
isting solutions are centralized which incurs greater computation
and communication costs. In this paper, we introduce a novel
algorithm for mining HUSPs including negative item values in
support of a distributed approach. We use the Hadoop map
reduce algorithms for processing the data in parallel. Various
pruning techniques have been proposed to minimize the search
space in a distributed environment, thus reducing the expense of
processing. To our understanding, no algorithm was proposed to
mine High Utility Sequential Patterns with negative item values in
a distributed environment. So, we design a novel algorithm called
DHUSP-N (Distributed High Utility Sequential Pattern mining
with Negative values). DHUSP-N can mine high utility sequential
patterns considering the negative item utilities from Bigdata.

Keywords—High utility sequential pattern mining; big data;
utility mining; negative utility; distributed algorithms

I. INTRODUCTION

These days we can’t imagine the volume of data that is
produced every day in the form of sequences [14] [15]. Mining
high utility patterns is a prominent job in data mining that
discovers the itemsets which appear frequently in sequences.
Many current algorithms [5] [16] [24] only take into account
the frequency of each object in a sequence and presume that
the importance of items is the same for various items. In
[6], the authors depicted such approaches are not sufficient
for industry needs. In reality, these algorithms mined patterns
are not especially related to business needs, so they don’t
really know the patterns are interesting for their business. For
example, in a retail market analysis, each item possess its
own profit value, and an item will exist in the purchasing
record of a customer many times. Utility was introduced to
mine frequent patterns to resolve this issue by considering
the profit (quality) and quantity of products. This introduce
a novel field of study, namely, high utility itemset mining and
high utility sequential pattern mining (HUSP), these are able
to mine insightful knowledge, given a minimum utility defined
by the user instead of minimum support. Utility model-based
knowledge can supply more useful and applicable decision-
making information than those based on a conventional support
framework. High utility sequential pattern (HUSP) mining [2]
[23] is used to extract profitable and more beneficial sequential

patterns from databases. It considers a business intention such
as profit, user interests, value, etc. A sequence mined from a
sequence database is said to be a high utility sequential pattern
only if it is having an utility not less than the minimum utility
threshold supplied by the user. So, we came up with a new
method for mining sequential patterns with high utility that
includes negative item values using a distributed approach.
Here we use algorithms like Hadoop map reduce [9] to operate
data quickly in parallel. We suggest few pruning strategies to
eliminate unpromising items that leads to minimize the search
space in distributed circumstances.

The following are the contributions of the current work:

1. We made a complete overhaul to HUSP-NIV [21]
algorithm and studied the distributed solution to the problem
of HUSP-N [22] mining.

2. MapReduce algorithm is proposed for extracting HUSPs
with negative item values.

3. Proposed a distributed utility upper bound that supports
global mining of HUSP-N’s.

4. Several experimental evaluations have been accom-
plished on the real as well as synthetic datasets to assess the
efficiency of DHUSP-N algorithm.

The remaining sections in the paper are composed as
follows: Description of related work is mentioned in Section
II. Section III provides a detailed description of problem
definition. The details of DHUSP-N are given in Section
IV. The performance details of DHUSP-N obtained from the
experimental results are noted in Section V. The enhancements
of the current work and its conclusion is given in Section VI.

II. RELATED WORK

Sequential pattern mining became a buzzword and many
algorithms [1] [4] [7] [8] [17] have been proposed. Sequential
pattern mining is an extenison to frequent itemset mining based
on support framework that was firstly introduced by Srikant
and Agrawal [1] in their studies. He gave a new definition
by adding different time constraints and other attributes like
sliding time window, user-defined taxonomy, and introduced
a generalised sequential pattern (GSP) algorithm. Wang et
al. [20] proposed novel pruning strategies namely, RSU and
PEU to remove the sequences with less utility and designed
HUS-Span algorithm to efficiently extract HUSPs. Truong-
Chi & Fournier-Viger [8] has described about high utility

www.ijacsa.thesai.org

592 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE I. SAMPLE DATASET

Sid Q — sequence
1 ((I5,2)[(11,4)(I2,2)] (14, 4))
2 ([(1,3)(I2, D][(11,1), (I3, 1), (11, 3)][(L1, 2), (14, 3)(I5, 3)])
3 ([(I3,4)(Ts, 6)1[(I2, 3) (14, 3)])
4 ([(I2,1)(I5, 6)][({1, 3) ({4, 3)][(11, 4)(I2, 1)(I5, 2)])
5 ([(I2,2)(I5, 3)][(I1,3)(Ts, 2)][({1, 2) (12, 1)])

sequence mining. Many other pattern mining problems were
generalized by the authors, such as frequent itemset mining in
transaction databases, sequential pattern mining in sequence
databases, and high utility itemsets in databases of quantitative
transactions. The sequential order between the items and their
utility has been considered to mine high utility sequences from
a quantitative sequence database. Guha et al. [11] used the
regular expressions as a constraint for user-controlled focus on
mining sequential patterns. Some more algorithms like USpan
[23], HUS-Span [20] and HuspExt [3] algorithms have been
designed to extract high utility patterns based on utility concept
but they are not designed to use negative patterns. Negative
sequential patters (such as missing medical check-ups) are
crucial and more useful than positive sequential patterns (e.g.
visiting a medical check-up) in many intellectual systems and
applications such as healthcare analysis and risk management.
However, exploring sequential patterns with negative item
values is considerably more complex than sequential pattern
mining including positive item values because of acute time
complexity occurred by non-repeating elements, high time
complexity and large search space in finding negative sequen-
tial patterns. Xu et al. [21] came up with HUNSPM. This
algorithm considers the items that do not occur into attention.
These are the first studies to mine HUNSPM (high utility
negative sequential pattern mining). These algorithms can mine
HUSPs efficiently from a non-decentralized database using a
single machine, however, they cannot handle big data [12].
Also, their proposed pruning techniques cannot be applied in
a distributed environment. Mining patterns from big data on a
single machine is very costly to execute the mining algorithms.
Developing a distributed algorithm that mines HUNSPs is a
key to handle the problem. Recently, Lin et al. [13] introduced
an algorithm for high utility itemset mining which is applicable
for handling big data. The approach proposed in [13] do
not consider the sequential ordering of itemsets. Adding the
sequential order of itemsets makes it more challenging to mine.
Recently, we proposed a distributed MapRedcue algorithm that
can mine high utility time interval sequential patterns [19].
However, we do not include the negative item values. This
motivates us to study a novel approach of mining HUSP that
includes negative item values from a distributed environment.

No approach has been introduced till now for high utility
sequential pattern mining that can consider both the utilities
and negative values in a distributed environment, to the best
of our understanding. So, we design a novel algorithm called
DHUSP-N that can extract all sequential patterns with high
utility and negative item values that appear in bigdata.

III. PROBLEM DEFINITION

Given a sequential database D, the problem of mining
sequential patterns of high utility with negative item values

Vol. 12, No. 3, 2021

TABLE II. QUALITY TABLE

Ttem L || L)Ll]l
Quality || 5 || 3 1 2 4 1

from large databases in a distributed way is described here.
Let a set of distinct items be I = {iy,i9,43,%4,...,0n}. A
positive or negative number p(iy), called its external utility is
associated with each item ;. The quantity or internal utility
of I is called a g-item (7,q), where ¢ € I and ¢ denotes the
purchased amount of . Our problem is to mine all high utility
sequential patterns with negative item values (DHUSP-N) in a
distributed environment with a minimum utility threshold 4.

Example: Consider a Q-sequence database as in Table 1.
Each entry in the Q-sequence database is said to be a g-
sequence. The g-sequence S; depicts the items I5, I1, I and
1, with internal utility of 2, 4, 2 and 4. Table II gives us the
external utilities of these items respectively 4, 5, -3 and 2. So
the item I is sold at loss. [(I1,4)(I2,2)] is the itemset with
two g-items.

Definition 1: Sequence o = ki,ks,...,k; is a sub-
sequence of sequence 8 = ki, ka,...,k;(i < j) or the other
way [is a super-sequence of .

Definition 2: Every element in the itemset consists of pos-
itive number p(I), called the external utility (e.g. price/profit
per unit). Every item I in itemset X of particular sequence S,
(i.e., S¢) has a positive number g(I, S¢), called as its internal
utility (e.g., quantity) of I in itemset of particular sequence.

Definition 3: The utility of a g-item is defined as the
product of internal utility and external utility. The utility of
a g-itemset is defined as the sum of each item utility in the
g-itemset. The g-sequence utility is defined as the sum of each
item utility having positive external utility. For example, utility
of (I1,4) in itemset 2 of sequence S is 4 x 5 = 20. The utility
of itemset [(I1,4)(I2,2)] is S1 is 4x54+2x—3 =20—6 = 14.
The g-sequence utility of S7 = ((I5,2)[(11,4)(I2,2)](14,4))
is2x444x5+2x4=8+4+20+8=36.

Definition 4: The sequence local utility in partitioned
database D; is defined as sur (o, D;) = > g cp su(a, S;)
for sequence « in the partition D;. The sum of local utilities
of « in each partition D; is defined as its global utility and
denoted as sug.

Definition 5: The total utility of a partition D; is denoted as
Up, and is defined as sum of sequence utility of each S;, where
S; is an input sequence in D;. The total utility of sequence
database D is denoted as Up and is defined as the sum of
total utility of each D;.

Definition 6: Given a sequence c«, it is called a local high
utility sequential pattern with negative value (L-HUSP-N),
iff sup(o,D;) > 0 - Up,, where ¢ is the minimum utility
threshold.

Definition 7: Given a sequence q, it is called a global high
utility sequential pattern with negative value (G-HUSP-N), iff
sug(a, D) > 6-Up, where § is the minimum utility threshold.

Definition 8: Given a sequence dataset D and a minimum
utility threshold &, then the sequence « is said to be a high

www.ijacsa.thesai.org

593 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE III. UTILITY MATRIX FOR SEQUENCE S1

Item g-itemset1 g-itemset2 g-itemset3
a (0,36) (20,8) 0,8)
b (0,36) (-6,8) (0,8)
d (0,36) (0,8) (8,0)
e (2,28) (0,8) (0,8)

GSWU sequence if and only if GSWU(a, D) > 6 -UD.

Definition 9: Mining of HUSP with/without Negative Item
Values - Selecting the highest utility from the utility estima-
tions of every g-sequence and add them together to address
the sequence’s utility in a given sequence database.The max
utility is used to denote the utility of a sequence ¢ and it is
characterized as Upax(t) =), g maz{u(t,s)}.

HUSP mining is to mine all the HUSPs from the database
where each item possess only positive external utilities,
whereas HUSP-N mining is to mine all the HUSPs from
the database where each item in the database may have
either positive or negative external utilities. The sequence ¢
is called as HUSP in Q-sequence Database S if and only if
Umaz (t) > 0. The properties defined for HUSP-N mining are
as follows [21]:

Property 1: HUSP can have items with negative external
utilities.

Property 2: No less than one item having a positive external
utility must be included in a high utility sequential pattern.

Definition 10: Sequence-weighted Utilization (SWU) of a
particular sequence ¢ in g-sequence database S is defined as
sum of g-sequence utilities where ¢ is a subsequence to q-
sequence.

Definition 11: Given a bunch of sequences D;, the Local
Sequence-Weighted Utility (LSWU) of a sequence « in D,
indicated as LSWU («, D;), is characterized as the amount
of the utilities of sequences containing « in D;, where
a < S implies « is a subsequence of S. In like manner, the
Global Sequence-Weighted Utility (GSWU) of a sequence «
in information base D is characterized as: GSWU («a, D) =
Z(D,CD) LSWU(«, D;).

Property 3: Sequence-weighted Downward Closure
Property- Given the S database of g-sequences, and two t;
and to sequences, where ¢, contains ¢1, then to contains t1,
then SWU (t2) < SWU (ty).

Definition 12: Utility matirx (UM)- It is a data structure
introduced in USpan [23] algorithm to store the g-sequence
utility. Each element in the matrix stores two values, the first
one is item’s utility, where as the second is item’s remaining
utility.

Definition 13: The remaining utility in the Utility Matrix
is only the sum of all remaining g-sequence items’ positive
external utility values.

From Definitions 12 and 13, the utility matrix created for
sequence S; in our sample database is shown in Table III.

Definition 14: Given a sequence pattern «, an I-concatenate
pattern S is a sequence obtained by including an item I to the
last itemset ov.

Vol. 12, No. 3, 2021

Definition 15: Given a sequence «, S-concatenate pattern
B denotes a sequence obtained by including a 1-Ttemset {I}
after the last itemset of o

IV. METHODOLOGY

Mining HUSP with negative values in the big data era
is a hectic job to do due to the hurdles of data growth in
an exponential way. It is expensive to mine patterns in a
single individual machine. Designing a distributed and parallel
algorithm is the one solution that we are thinking of. To
implement this approach, we need to address a few key issues
like decreasing the search space in the data, decreasing the
communication overhead between different local machines,
and finally the scalability issues to be answered.

We propose an algorithm namely DHUSP-N (Distributed
High utility sequential pattern mining with negative values).
This algorithm mines high utility patterns in a distributed
approach. Fig. 1 demonstrates the phases of the methodology.
In the initialization phase, the sequence database is divided into
many partitions. Each partition is given to a mapper which in
turn gives a utility matrix [21]. The data structure UM [21] is
used in later stages to retrieve utility values. This stage also
identifies the items which do not form HUSP, which are pruned
by DHUSP-N in the later stage.

1. Initialization phase: This comprises of two stages,
namely, map and reduce.

Map stage: In each partition, utility matrix (UM) is con-
structed by the mapper for every input sequence in the given
partition of database. Here UM refers to a data structure which
contains utility values and the leftover utility of rest of items.
This data structure is used to determine the LHUSP-N from
each partitioned node. With this representation of utility matrix
the mining takes place even faster. These are stored in Resilient
Distributed Dataset (RDD). All elements in the database may
not form high utility patterns. We use local sequence weighted
utility (LSWU) and global sequence weighted utility (GSWU)
to find the unpromising items which may not form good
patterns. The pruned items are based on LSWU and GSWU
values. The results are stored in a resilient distributed dataset.

Reduce Stage: Each reducer receive the output of the same
key. So, basically, by adding all the LSWU values of the
similar items, the reducer calculates the GSWU values of each
item. The reducers emit the items for which the calculated
GSWU values are less than the user supplied minimum utility
threshold. These are referred as unpromising items. These are
also stored and maintained in resilient distributed dataset which
is used to update UM’s in next phase.

2. Local HUSP-N mining: In this stage, the search space is
reduced by pruning all the unnecessary items from each par-
tition. Since it is hard to find global search space initially, we
will find local HUSP-N from each partition then we will find
DHUSP-N using this stage. Two map transformation stages
play a key role in mining local HUSP-N. Map transformation
1 is used to prune unpromising items and map transformation
2 is used to find potential global HUSP. Rather than finding all
the patterns in the partition with non-zero utility, we discover
HUSPs locally. Pruning of low utility sequential patterns from
the sequential patterns will not result in any loss of global

www.ijacsa.thesai.org

594 | Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 3, 2021

Discover G-HUSP-N
Using PG-HUSP-N

Generate potential
G-HUSP-N
based on L-HUSP-N

e

PG-HUSP-N Generation ———» Global DHUSP-N Mining
o TTTTT

—

1
i

o

.._.‘ Reducer 1
]

N

vl—b{ Reducer 2

—

Mapper 3 |3

Reducer 2

DHUSP-N

Potertial G-HUSP-N

“+1a;—:ne' N| ‘i:—"

Reducer N

Data Partitioning Prune unpromising items
Construct UMs update UMs
Discover unpromising item Find local HUSP-Ns
Initialization Local HUSP-N mining
e A L e e T E e e R EES 1 :':'_'_'_'_'_'_'_'_'_'_'."""""""""""
E || ; i i
' | Mapger 1 |~ Reducer 1 —rﬁ E: Mapper 1 [‘+ Mapper 1
' ¥ 1 i il
I ' i) |
i FY Tt
| ' '+ | Mapper 2 [- Mapper 2
¥ : Cloe | :
& : - | 2
Datapase /1 - Ll E i _ 5
e | = [5
Il H =] H
: N :
P i h
i H i
: - 'N}—‘II'
1 Vo | Mappes i
- i !
______ :
RDD=UM= RDD=UM=

Apache spark |

IBM PLATFORM CONDUCTOR

Overview of DHUSP-N

Fig. 1. Workflow of DHUSP-N.

HUSP. Thus, there is no loss of GHUSP while L-HUSP-N
mining.

Map Transformation 1: In this map transformation the
original UM’s which is obtained from the previous stage
results us the unpromising items. All the unpromising items in
each utility matrix is pruned by mappers. The mappers output
the updated utility matrix which will be stored in resilient
distributed dataset.

Map Transformation 2: From the given input we have
minimum utility threshold §, partition D;, updated Utility
matrix and total utility, DHUSP-N applies HUSP-NIV [21]
algorithm to find the local High Utility Sequential patterns
with negative item values whose utility is greater than min-
imum utility threshold. Each mapper outputs the LHUSP’s
< Patt, < D;,utility >>, where D; is the id of partitioned
database and utility is the utility of pattern patt in D;. These
are stored in resilient distributed dataset.

3. Discovering potential globally distributed HUSP-N: To
find the potential global patterns, global utility of each lo-
cal HUSP obtained from the L-HUSP-N phase needs to be
determined. As the number of local High utility patterns are
very large, we only consider potentially global patterns and
prune all local HUSP’s which are not PG-HUSP-N’s. In this
stage for whose maximum utility values is less than a certain
threshold will be pruned resulting in potential GHUSP-N.
Since maximum utility represents the upper bound of utility of
pattern, for those patterns where the utility value is less than
the threshold limit will be pruned. Continuously pruning with
a threshold of maximum utility will not miss any high utility
patterns.

Reduce stage: Every L-HUSP-N with same key is collected
into same reducer. The reducers in this stage return PG-HUSP-
N’s whose utility exceeds the user supplied minimum utility
threshold.

4. DHUSP-N Mining: The DHUSP-N mining process finds
each patterns global utility in the given set. Given the set of
PG-HUSP-N, it discovers GHUSP-N’s. The reducer finds the
sum of each patterns utility in the set after all possible GHUSP-
N’s are read. All patterns with a total utility greater than the
threshold defined are returned as GHUSP-N’s.

Map Stage: Given PG-HUSP-N’s, each mapper finds the
local utility of the patterns as follows: If certain pattern among
PG-HUSP-N is local high utility sequential pattern in the
given partition D;, as we already obtained utility from the
previous phase, the mapper outputs < o, < D;,utility >>.
The mapper otherwise calculates the utility of «. To find a’s
utility in a partition, we build a pattern-growth approach that
passes through the reduced search space. It undergoes both
I-concatenate sequence and S-concatenate sequence.

Reduce stage: From the given set of PG-HUSP-N’s, utility
values are directed to the same reducer which has the same
key. The reducer’s input is a pattern, an utility in which the
utility is the local utility resulting from map stage. Later, after
reading each PG-HUSP-N, each pattern utility is added by the
reducer. Finally, the patterns whose total utility exceeds the
threshold are returned as Global DHUSP-N.

V. EXPERIMENTAL RESULTS

To assess the efficiency of DHUSP-N, experiments have
been run on two synthetic datasets and three real-world
datasets. As this is the first of this kind there is no suitable
algorithm to compare with DHUSP-N. The generic algorithm
such as USPAN [23] is not appropriate to compare with
DHUSP-N because it does not use negative values and it
is a centralized approach. Even we cannot compare it with
BIGHUSP [25] as it does not consider the negative values.
Hence these algorithms are not suitable to compare with
respect to run time or any other parameters.

www.ijacsa.thesai.org

595|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE IV. REAL DATASETS

Dataset Sequence count Item count Average sequence length

Kosarak 990002 41270 8.099
BMSWebview?2 77512 3340 4.62

MSNBC 989818 17 5.7

TABLE V. SYNTHETIC DATASET PARAMETERS

Parameter Name Description
C Average number of itemsets in each sequence
T Average number of items in each itemset
D Number of sequences (in millions)
N Total number of items

TABLE VI. SYNTHETIC DATASETS

Dataset C T D N
C10T2.5D5N1000 10 2.5 5 1000
C15T3D10N10000 15 3 10 10000

The Distributed environment is equipped with 1 master
node and 6 worker nodes. All the nodes are designated with
Intel Xeon 2.6 GHz and 128Gb of RAM and the spark 3.0.0
is employed on the IBM platform conductor. A distributed
platform is required for implementation. For this, we use
apache spark distributed framework. This runs in a variety
of platforms like the IBM platform for Spark [10], Hadoop,
and Mesos clusters. We choose IBM Platform Conductor as it
permits organizations to execute multiple instances of spark
frameworks at the same time on a single infrastructure. It
results in best usage of resources along with its efficient
resource planning.

In DHUSP-N, we used the following parameters as per-
formance measure: a) Run time: total time to mine DHUSP-
N from the data set b) Number of candidates generated with
varying utility c) scalability

A. Datasets

For this experiment, we used two synthetic datasets gen-
erated by IBM data generator and three real-time data sets,
namely, Kosarak, BMSWebView2 and MSNBC. The real
datasets are acquired from SPMF data mining libray.! The
parameters of real datasets are given in Table IV. Table V
depicts the parameters of synthetic data and the datasets are
given in Table VI

B. Effect of Minimum Utility

The performance of DHUSP-N is tested on real as well as
synthetic datasets. Each experiment is conducted for distinct
values of minimum utility threshold and the outcomes are
reported in Fig. 2 and Fig. 3. Fig. 2 depicts the results on
real datasets, whereas Fig. 3 describes the results on synthetic
datasets. From the figures, it is clear that the execution time
required for the completion of DHUSP-N is high at low
values of minimum utility and tends to fall off with a rise
in minimum utility. On Kosarak dataset, the execution time is

Uhttps://www.philippe-fournier-viger.com/spmf/

Vol. 12, No. 3, 2021

500 T T T
m 450 ; —=— Kosarak 1
-] ~— —e— BMSWebview2
S 400 \j\ A~ MSNBC]
o
8 3s0f T~ -
S 300} T
E I
= 250) B
s
S 200 F R
3 — ¢ " i
% 150} o E
w

100 1 1 1

0.10 0.15 0.20 0.25 0.30

Minimum utility threshold (%)

Fig. 2. Run Time Performance of DHUSP-N on Real Datasets.

4000 T T T

[C10-T2.5-D5-N1000 i
C50-T3-D10-N10000

- - N N w w
o (3] (=3 o (=3 o
(=3 [=3 (=3 (=3 o o
o o o o o =]
T
L

Execution Time (in seconds)

500 1 1 1
0.10 0.15 0.20 0.25 0.30

Minimum utility threshold (%)

Fig. 3. Run Time Performance of DHUSP-N on Synthetic Datasets.

600 T T T
‘© 500 —a— Kosarak
; —e— BMSWebview2
< 400 A— MSNBC |
2
<
2 300 -
c
]
d 200
5] |
=
2
£ 100 1
2 /»,,,,r/
0 R N P
0.30 0.25 0.20 0.15 0.10

Minimum utility threshold (%)

Fig. 4. Number of Candidates Generated on Real Datasets.

420 seconds for 0.1% threshold and it is 265 seconds for 0.3%
threshold. Similarly on BMSWebview?2 dataset, the execution
time is 250 seconds for 0.1% threshold and it is 131 seconds
for 0.3% thresholds, and it is 210 seconds and 164 seconds
for 0.1% and 0.3% utility respectively on MSNBC dataset.

www.ijacsa.thesai.org

596 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

40t 4
g :
8 35- ®— C15-T3-D10-N10000 p 7
X 301 1
3
“-'j 25}] -
T
T 20t 1
3
w 151 . 4
o
& 10F J
Qo
E sf]
4 —
0 e, N A]
0.30 0.25 0.20 0.15 0.10

Minimum utility threshold (%)

Fig. 5. Number of Candidates Generated on Synthetic Datasets.

T
1400 - Minimum utility 1
",T —=—0.1%
© 1200 | o 0.15%
5 A 0.2%
$ 1000+ | v 0.25% 1
» - 0.3% — e
/
£ 800l . R 4
Q .
§ 600 / . : _
: A v *
o S v
2 4 . |
= 00 .
]
Iﬁ 200 ¢ B
0 1 1 1
1 2 3 4 5

Number of sequences (in millions)

Fig. 6. Scalability Test on C10T2.5D5N1000.

To know the performance on large datasets, we conducted
the experiment on two synthetic datasets having 5 million
and 10 million sequences respectively. The former dataset
require 1190 seconds for completion, whereas later dataset
completed its execution in 3090 seconds. This is for 0.1%
threshold and the execution times for the remaining thresholds
are shown in Fig. 3. The number of candidates generated is
also reported in Fig. 4 and Fig. 5. It is clearly noticed in
Fig.5 that the candidates generated is high for larger dataset
i.e. C15T3D10N10000. The reason is due to the increase in
the sequence count from 5 to 10 and increase in the itemsets
count per sequence from 10 to 15. Moreover, the difference in
the execution time is high for lower values of minimum utility
compared to higher values of minimum utility.

C. Scalability

To assess the scalability of DHUSP-N, we conducted
the experiments on both the synthetic datasets. In case of
C10T2.5D5N1000 dataset, initially we considered the first
1 million sequences and noted the execution time of the
algorithm. Later, the database is scaled by 1 million se-
quences and repeated until 5 million sequences. Similarly,
for C15T3DION10000 dataset, the process is repeated from

Vol. 12, No. 3, 2021

3500 T T T
—~ 3000 -
g 015%
®-0.15%
S 2500 - . 02%
b v 0.25%
£ 2000 + ¢ 0.3%
@
£ 1500
s —
S 1000 /t/
S A
o 9 3
¢ 500f 1
w
o 1 1 1
2 4 6 8 10

Number of sequences (in millions)

Fig. 7. Scalability Test on C15T3D10N10000.

2 to 10 million sequences in steps of 2 million sequences.
The experiment is conducted for varying minimum utility. The
results reported in Fig. 6 and Fig. 7 depicts the scalability of
DHUSP-N. It is observed that the time for execution increase
with the increase in the sequence count. The processing time
increased significantly after 6 million sequences for 0.1%
utility as shown in Fig. 7.

VI. CONCLUSION

This paper introduced a novel algorithm called DHUSP-N
for mining high utility sequential patterns with negative values
in a distributed environment. To our understanding, no methods
were introduced in the utility mining literature to mine high
utility sequential patterns with negative values in distributed
environment. The performance of DHUSP-N is assessed on
real as well as synthetic datasets. As this is the initial step
of distributed approach to HUSP-N mining problem, there
is a lot for the improvement as future work. More efficient
data structures and techniques for pruning can be studied in
the future. The current problem can be further extended to
incremental mining of high utility negative sequential patterns
[18]. Also, time intervals can be included in addition to the
order of items purchased which leads to time interval high
utility sequential pattern mining [19] with negative values.

ACKNOWLEDGMENT

The authors would like to thank the parent institute for the
enormous support.

REFERENCES

[1] Agrawal.R and Srikant.R, Mining sequential patterns, Mining Sequential
Patterns. In: Proceedings of the Eleventh international conference on data
engineering, 1995, pp. 3-14.

[2] Ahmed.C.F, Tanbeer.S.K, and Jeong.B, A novel approach for mining

high-utility sequential patterns in sequence databases, ETRI Journal, vol.
32, 2010, pp. 676-686.

[3] Alkan.O.K and Karagoz.P, CRoM and HuspExt: Improving Efficiency
of High Utility Sequential Pattern Extraction, IEEE Transactions on
Knowledge and Data Engineering, vol. 27 (10), 2015, pp. 2645-2657.

[4] Aloysius, G. and Binu, D. An approach to products placement in super-
markets using PrefixSpan algorithm. Journal of King Saud University -
Computer and Information Sciences, vol. 25 (1), 2013, pp.77-87.

www.ijacsa.thesai.org

597 |Page

(51

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Ayres J., Flannick J., Gehrke J., and T. Yiu, Sequential pattern mining
using a bitmap representation, In Proceedings of Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2002, pp. 429-435.

Cao Y,. Zhao H,. Zhang D,. Luo C. Zhang, and E. Park, Flexible
frameworks for actionable knowledge discovery, IEEE Transactions on
Knowledge and Data Engineering, vol. 22 (9), 2010, pp. 1299-1312.

Chen Jinlin, An UpDown Directed Acyclic Graph Approach for Se-
quential Pattern Mining. IEEE Transactions on Knowledge and Data
Engineering, vol. 22 (7), 2010, 913-928.

Chi-Truong, T. and Fournier-Viger, P. A Survey of High Utility Sequen-
tial Pattern Mining. Lecture Notes in Computer Science, 2019, 97-129.

Dean J., and Ghemawat S. MapReduce: simplified data processing on

large clusters. ACM Communications, vol. 51(1), 2008, pp. 107-113.
FuJ., Sun J., and Wang K., SPARK — A Big Data Processing Platform

for Machine Learning, In 2016 International Conference on Industrial

Informatics - Computing Technology, Intelligent Technology, Industrial
Information Integration (ICIICII), Wuhan, 2016, pp. 48-51.

Guha, S., Rastogi, R. and Shim, K. Rock: A robust clustering algorithm
for categorical attributes. Information Systems, vol. 25 (5), 2000, pp.
345-366.

Kitchin R., Big Data. John Wiley and Sons, Ltd, 2016. [On-
line].Available:http://dx.doi.org/10.1002/9781118786352.wbieg0145.

Lin Y. C., Wu, C.-W. and Tseng, V. S. Mining High Utility Itemsets in
Big Data. Lecture Notes in Computer Science, 2015, pp. 649-661.

Mabroukeh N.R., and Ezeife.C.I, A taxonomy of sequential pattern
mining algorithms, ACM Computing Surveys, vol. 43 (1), 2010, pp.
3:1-3:41.

Mooney C.H., and Roddick J.E., Sequential pattern mining approaches
and algorithms, ACM Computing Surveys, vol. 45 (2), 2013, pp.
19:1-19:39.

Vol. 12, No. 3, 2021

[16] Pei J., Han J.W., Mortazavi-Asl B., and Pinto H., PrefixSpan: Mining
sequential patterns efficiently by prefix-projected pattern growth, In
Proceedings of International Confernece on Data Engineering, 2001, pp.

215-224.

Saleti S., and Subramanyam R.B.V. A novel mapreduce algorithm for
distributed mining of sequential patterns using co-occurrence informa-
tion. Applied Intelligence, vol. 49, 2019, pp. 150-171.

Saleti S., and Subramanyam R.B.V. A MapReduce solution for incre-
mental mining of sequential patterns from big data. Expert systems with
applications, vol. 133, 2019, pp.109-125.

Saleti S., and Subramanyam R.B.V. Distributed mining of high utility
time interval sequential patterns using mapreduce approach. Expert
systems with applications, vol. 141, 2020.

Wang J.Z., Yang Z.H., and Huang J.L., An efficient algorithm for high
utility sequential pattern mining, Frontier and Innovation in Future Com-
puting and Communications, Lecture Notes in Electrical Engineering,
vol. 301(2014).

Xu T., Dong X., Xu J., and Dong X. Mining High Utility Sequential
Patterns with Negative Item Values. International Journal of Pattern
Recognition and Artificial Intelligence, vol. 31 (10), 2017, 1750035.

Xu T, Li T, and Dong X. Efficient High Utility Negative Sequen-
tial Patterns Mining in Smart Campus. IEEE Access, vol. 6, 2018,
23839-23847.

Yin J., Zheng Z., and Cao L., Uspan: An efficient algorithm for mining
high utility sequential patterns, In Proceedings of ACM SIGKDD, 2012,
pp. 660-668.

Zaki M.J., SPADE: An efficient algorithm for mining frequent se-
quences, Machine Learning, vol. 42 (1), 2001, pp. 31-60.

Zihayat M., Hut Z. Z., An, A., and Hut, Y. Distributed and parallel high
utility sequential pattern mining. In 2016 IEEE International Conference
on Big Data, 2016, pp. 853-862.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

www.ijacsa.thesai.org

598 |Page

