
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Deep Attention on Measurable and Behavioral-driven
Complete Service Composition Design Process

Ilyass El Kassmi1, Radia Belkeziz2, Zahi Jarir3
LISI Laboratory, Computer Science Department

Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco

Abstract—The web service technology has still proved its
effectiveness in the digital revolution we are facing. This success
unfortunately raises more and more complex obstacles,
particularly related to the service composition. The integration of
Non-Functional Requirements (NFRs) in each step of service
composition process, starting with abstract service composition
specification to the generation of the verified and concrete
composed services, represents one of them. Furthermore, this
complexity remains more difficult when NFRs are addressed in
both quantifiable (i.e. Quality of Service) and behavioral aspects.
Despite the relevant contributions present in the literature, this
challenge still remains an open issue when considering NFRs
modeling, publishing, integrating with each other, and handling
conflicts and dependencies in the whole composition’s lifecycle.
As a consequence, we suggest this contribution that aims to
propose an approach showing how to weave efficiently required
NFRs with functional requirements in a complete lifecycle
composition supporting specification, formalization, model
checking verification and integration steps of desired concrete
composite service. Patient Health Records in Regional and
University Health Centers in Morocco is used as a case study to
experiment our approach.

Keywords—Non-Functional requirements composition;
behavioral non-functional requirements; quantifiable non-
functional requirements; model checking; web service composition
formalization

I. INTRODUCTION
In the digital revolution we are facing, Web Service (WS)

technology still proved its effectiveness. This technology is
widely used to build highly advanced applications that support
digital transformation, including artificial intelligence, big data,
the Internet of Things, cloud computing, and other emerging
technologies. Web Services are defined as loosely-coupled,
distributed processes that communicate over a network to
perform a specific task and to facilitate interoperability among
heterogeneous systems. They can be autonomously developed,
decentralized and independently deployable, built and
integrated by composition processes to fulfill complex
requirements. These requirements, known in software
engineering by properties or concerns, are classified mainly
into two main classes: Functional requirements (FRs) and Non-
Functional Requirements (NFRs). Functional Requirements
specify what business-related goals the service composition
should achieve. Whereas Non-Functional Requirements define
how these services are supposed to fulfill their goals in term of
performance and other quality constraints, mainly known as
quantifiable QoS properties (e.g. availability, reliability, etc.).

In the software engineering literature, specifically in the
service-oriented architectures (SOA), different definitions and
classifications of NFRs can be found [1]. We can notice that
most of contributions addressing NFRs are focusing on QoS
attributes. These attributes describe mainly quality aspects of
published services such as availability, cost, response time,
reliability, performance, etc. An interesting work classified and
analyzed each of 530 studied attributes extracted from 11
industrial requirements specification [2]. The aim of this work
is to determine if the NFRs can be really considered as non-
functional requirements, or simply be approached as behavioral
aspects that can be treated in the same way as the functional
requirements. Until now, less efforts are deployed to address
unquantifiable requirements in web service composition
process. In fact, providing a complete service composition
process that details NFR quality-oriented and behavioral
integration from specification, modeling, and verification to the
composition is always a fastidious task and still an open issue.
This difficulty comes from the fact that the web service
composition is closely linked to other challenges such as
discovery and selection of the most appropriate services,
implementing FRs or NFRs, the verification of feature
interactions between the non-functional properties of a specific
functional service, etc.

Before integrating NFRs with each concerned FR, there is a
clear need to specify and formalize them correctly. Some
interesting surveys outlined the most used formalization
method including Automata, Process Algebra, Petri Nets, etc.
[3]. Once NFRs are formalized, some algorithms and
techniques are then required to combine them seamlessly with
associated FRs to avoid any feature interaction.

To enable our approach to meet the majority of needs in
terms of modeling and implementing a complete service
composition design process, we are convinced that the use of
automata is a better method due to the advantages and the
simplicity they offer and also satisfactory results obtained
during our previous contributions [4][5]. Therefore, in this
contribution we propose an automata modelling approach for
Functional and Non-Functional Requirements aimed at
providing expert users with increased flexibility to design and
integrate numerous complex behavioral NFRs, such as security
attributes (e.g. authentication, access-control methods,
encryption, etc.), to others custom business-related behavioral
NFRs. A varied choice of QoS oriented properties is also
integrated in our approach to help selecting the optimal service
composition based on attributed weights for each property.

657 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

In this perspective, we suggest in this paper a contribution
having the advantage of:

• Handling quantifiable and behavioral NFRs using
automata-based modeling.

• Publishing, discovering and selecting services
implementing behavioral NFR.

• Providing support for composing NFRs with FRs.

• Performing a QoS-driven selection for quantifiable
NFRs to generate the best matching service
composition.

• Proposing a model checking verification to validate the
proposed composition.

The remainder of the paper is organized as follows.
Section 2 exposes some interesting contributions tackling
service composition integration with NFRs. In Section 3 we
present an analysis of QoS-oriented NFR integration to the
service composition. In Section 4 we project our contribution
to integrate behavioral NFRs to the composition process. In
Section 5 we present a novel approach handling integration of
both quantifiable and behavioral NFRs to the service
composition, whereas Section 6 presents a case study to
demonstrate the behavior of this approach. Finally, we
conclude by summarizing suggested approach and highlighting
future works and upcoming perspectives on Section 7.

II. RELATED WORKS AND MOTIVATION
The service composition is a widely explored topic. A

considerable amount of literature has been published tackling
different aspects, problems and perspectives from design time
to execution including and not limited to modeling,
formalization, discovery, NFR integration, selection,
optimization, verification and code generation. In this section
we present some interesting contributions addressing this
challenge, their limits and similarities with our approach.

In order to conduct and classify the main contributions and
provide their motivations in more details, we define a list of
research guidelines (RG) as follows:

• RG1 – Are both FR and NFR modeling included in the
service composition process?

• RG2 – Does the service composition integrate
quantifiable NFRs?

• RG3 – Does the service composition integrate
behavioral NFRs?

• RG4 – Is there any validation of the overall behavior of
the composed service?

• RG5 – Does the service composition process allow the
service publication and discovery based on behavioral
NFRs?

• RG6 – Does the service composition provide the
optimal service selection based on quantifiable NFRs?

• RG7 – Does the service composition support multiple
behavioral NFRs integration applied to the same
autonomous service?

Chen et al. proposed in [6] an approach allowing to
compose services addressing QoS attributes and dependencies.
This work consists of performing a goal softening to reduce the
candidate using Pareto techniques combined with Vector
Ordinal Optimization in order to find Pareto Optimal Solutions,
by considering multiple QoS dependencies criteria to prune
uninteresting candidates. Deng et al. proposed in [7] a
Correlation-Aware Service Pruning method that improves the
QoS of the generated sequential service composition by taking
QoS correlations into account in the service selection process.
This proposed method is based on a preprocessing algorithm
for candidate services to remove irrelevant services. Then a
service selection with correlation in adjacent or not adjacent
tasks is performed step by step for each task in the service plan
to compose the optimal composite services and prune services
that are concluded not optimal. In [8], authors proposed a
contribution performing exploration of cloud services and
returning the optimal solution based on QoS parameters using
Eagle Strategy with Whale Optimization Algorithm (ESWOA).
According to presented experimentation, the proposed
approach got better results compared to other optimization
algorithms such as Genetic Algorithm (GA), Hybrid Genetic
Algorithm (HGA), Whale Optimization Algorithm (WOA). Y.
Liang et al. proposed in [9] a QoS-aware automatic service
composition based on QoS correlations between services. They
proposed a preprocessing algorithm to address the available
services on the pool and generate a service dependency graph.
The experimental results are compared to the approach in [10]
proposed by Feng et al., which used a method that dynamically
refines the composed workflow considering the QoS
dependencies, user-provided constraints and QoS constraints.
These two approaches offer significant improvements in
performance dealing with QoS dependencies. The work in [11]
presented by Jatoth et al. proposed a MapReduce-based
Evolutionary Algorithm with Guided Mutation MR-EA/G in
order to compose Big services with better performance,
considering five QoS attributes: price, throughput, availability,
reliability and response-time. Jin et al. proposed in [12] a
service description modeling associated with a service
correlation mapping allowing to get the QoS values of
described services automatically. They highlighted the result of
comparing results obtained by their proposed approach for
candidate service search for the selected QoS parameters: time,
cost, availability and reliability against the traditional Genetic
Algorithms. Liang et al. proposed another approach in [13]
which aims to handle QoS inter-service correlation using
Double Information based Cooperative Coevolutionary
Algorithm. They use Potter’s cooperative coevolutionary
framework and provide both local and global knowledge for
the dynamic service selection optimization. Wang et al.
proposed a Q-Graphplan approach in [14] to solve the QoS-
aware automatic service composition problem with multiple
QoS criteria constraints. The optimal solution is extracted from
the path generation graph using a backward A* algorithm with
the heuristics of the planning graph. The experiment is
conducted according to six QoS criteria (response time, price,
latency, availability, successful rate, and reliability).

658 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

As presented above most cited contributions tackling the
integration of NFRs into the service composition focus only on
measurable QoS NFRs. Behavioral NFRs are not widely
explored, and are commonly restricted to specific security
attributes. Also, a verification phase to validate the
conformance of constructed composition is often omitted.

Since our objective in this article is to focus on both
measurable and behavioral NFRs in a complete service
composition process, the rest of this section will be dedicated
to present some interesting and similar contributions
addressing the same objective.

Lu et al. proposed a model-checking based approach in [15]
to verify the satisfaction of behavior-aware privacy
requirements in services composition. They used extended
interface automata for modeling BPEL process, including a
support for privacy semantics. The proposed approach consists
on extracting Linear Temporal Logic (LTL) specification from
behavioral constraints, but limited to privacy requirements.
These specifications are transformed to Promela description in
order to allow a model-checking based verification using SPIN.
Dou et al. presented in [16] an enhanced version of their
proposed method implementing k-means algorithm to ensure
privacy-aware cross-cloud service composition based on QoS
history records. Souri et al. proposed in [17] a formal
verification approach to tackle cloud service composition
problem in the multi-cloud environment in order to decrease
the number of cloud providers and obtain optimal results
according to QoS parameters. The presented approach
proposed a behavioral modeling using a Multi-Labeled
Transition Systems (MLTS)-based model checking and Pi-
Calculus-based process algebra methods for monitoring
functional and non-functional requirements.

Most of proposed approaches are focusing their
contribution on adding a specific security layer to the
composite service, and consequently ensuring the satisfaction
of some security attributes additionally to commonly explored
QoS properties. In other hand, Brucker et al. proposed in [18] a
framework for modeling, validating and composing secure
services. The approach uses a BPMN based modeling to design
the user’s functional need and implement the desired security
properties based on ConSpec formalization. The overall

framework allows different actors to collaborate starting from
requirements definition, modeling, security planning, security
validation then generating the secure service composition. The
framework supports three non-functional properties which are
encryption, cost and availability in order to rank discovered
services based on attributed weights.

Table I presents a summary of the above cited contributions
according to raised research guidelines. We notice that the
focus is mainly conducted to the integration of quantifiable
quality-oriented NFRs. Behavioral NFRs (e.g. security
attributes) are either neglected, or conducted separately for
each security property (e.g. privacy, integrity, encryption, etc.).

This survey incorporated our previous contribution to the
proposed classification which consisted of a verification
module to validate the correctness of the composition of the
designed service. This prompted us to improve the validation
of the service composition obtained and to enrich it with
appropriate formalization and algorithms, taking into account
the specifications of quality and behavioral NFR integrations.
This survey incorporated our previous contribution to the
proposed classification which consisted of a verification
module to validate the correctness of the composition of the
designed service. This prompted us to improve the validation
of the service composition obtained and to enrich it with
appropriate formalization and algorithms, taking into account
the specifications of quality and behavioral NFR integrations.
Thus, the integration of both behavioral NFRs and quantifiable
quality-oriented NFRs in more fine-grained analysis is still an
open challenging issue. This motivated us to suggest an
approach to tackle the issue of integrating both behavioral and
quality-oriented NFRs in the service composition context.
Another motivation comes from the work of Rai and
Gangadharan that presented a survey consisting on classifying
approaches tackling the model checking based verification of
web service composition [19]. This survey incorporated our
previous contribution to the proposed classification which
consisted of a verification module to validate the correctness of
the composition of the designed service. This prompted us to
improve the validation of the service composition obtained and
to enrich it with appropriate formalization and algorithms,
taking into account the specifications of quality and behavioral
NFR integrations.

TABLE I. CATEGORIZATION OF CITED CONTRIBUTIONS ACCORDING TO RESEARCH GUIDELINES

[6
] C

he
n

et

al
.

[7
] D

en
g

et

al
.

[8
]

G
av

va
la

 e
t

al
.

[9
] L

ia
ng

et

 a
l.

[1
0]

 F
en

g
et

 a
l.

[1
1]

 Ja
to

th

et
 a

l.

[1
2]

 Ji
n

et

al
.

[1
3]

 L
ia

ng

an
d

D
u

[1
4]

 W
an

g
et

 a
l.

[1
5]

 L
u

et

al
.

[1
6]

 D
ou

 e
t

al
.

[1
8]

B

ru
ck

er
 e

t
al

.

RG1 - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RG2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓

RG3 - - - - - - - - - ✓ ✓ ✓

RG4 - - ✓ - - - - ✓ - ✓ - ✓

RG5 - - - - - - - - - - - ✓

RG6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓

RG7 - - - - - - - - - - - -

659 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

III. DEEP ANALYSIS ON SERVICE-ORIENTED BEHAVIORAL
NON-FUNCTIONAL REQUIREMENTS

The literature reveals an increasing attention to quality
properties when dealing with NFRs in web service context.
However, there are some quality properties that cannot be
quantifiable using QoS metrics, e.g. security-oriented
properties. Additionally, these properties are not fulfilled with
a common behavior, but instead, it may differ from a use case
to another. These properties are denoted as “Behavioral
NFRs”. Behavioral NFRs are defined as rules, policies or
restrictions applied to an abstract service. They aim to integrate
specific behaviors before or after the execution of the services
they are associated to. Behavioral NFRs integration change
depending on the use case. For instance, authentication and
access control attributes can be implemented using different
methods and schemes, depending on the user’s perspectives
and goals. Consequently, unlike quantifiable quality attributes
behavioral NFRs integration need a complete understanding of
the context, and require a detailed modeling to express in an
accurate way the behavioral interactions with collaborative
services.

In the literature, studies have suggested different methods
to tackle modeling and formalization of NFRs in the context of
web service composition such as Process Algebra, Finite State
Automata and Petri Nets [20]. Other contributions opted for
BPMN as a modeling method for aspect-oriented service
composition [21] due to its exhaustivity and expressiveness. In
our approach and in order to help ensuring a rigorous
composition fulfilling the designer’s requirements, we aim to
use a Finite State Automata (FSA) based modeling. Using FSA
allows us to extend its formalization to meet our requirements
and to proceed to a model checking phase to verify the
correctness of designed models according to user’s properties.
In the service composition context, FSA allows a rich
description of services and their interactions. The modeling
phase consists on describing three different sets of
requirements: (1) Functional requirements, which are the main
business-oriented goals required by the end user. They are
translated into an abstract functional automaton (AFA)
defining the main functional process describing the interactions
between contributing abstract services, (2) Behavioral NFRs
representing the desired constraints, policies or restrictions
applied to contributing services, and (3) Measurable quality-
oriented NFRs dealing with QoS preferences to fit, in order to
build the optimal composition. Designing all these NFRs
together produces an Abstract Service Composition Automaton
(ASCA), which groups all behavioral and quality-oriented
scopes applied to the primary AFA.

Definition 1: An Abstract Service (AS) is a service mold,
allowing to group a set of desired functionalities (goals) as
functional queries. These functional goals need to be fulfilled
by some potentially adapted concrete services.

Definition 2: Abstract Functional Automaton (AFA) is a
septuple AFA = (S, s0, Sf, T, RF, RB, RQ), where:

• S is a set of states, s0 ∈ S is the initial state, Sf ⊆ S is a
set of final states.

• T is a set of transitions where S × T × S is the transition
relation, graphically denoted as ssrc →t star, which means
that the transition t changes the state from the source
AS state ssrc to the target AS state star.

• RF, RB and RQ express respectively the sets of
Functional Requirements frj, Behavioral Requirements
and Quality Requirements associated to abstract
services. To get the set of functional, behavioral NFRs
and quality NFRs for a defined abstract service we use
respectively the functions functionalReq(as),
behavioralReq(as) and qualityReq(as) as follow:

functionalReq (si) = {fri1, …, frin | fr ∈ Q, si ∈ S and n ≥ 1}.

behavioralReq(asi)={bri | br ∈ RB and si ∈ S}.

qualityReq(asi)={qri1, …, qrim | qr ∈ RQ, si ∈ S and m ≥ 1}.

In order to complete the modeling of the AFA, the designer
proceeds to describe the NFR preferences. We use scope
notations to associate NF attributes to a service or a subset of
services. Behavioral NFRs are integrated to the AFA using
behavioral scopes, illustrated using dotted lines surrounding the
service subset.

Since behavioral NFRs constitute an additional restriction
over the functional automaton, they are dealt with as a
particular workflow having its own description and modeled
separately as Behavioral Requirement Automata (BRA). This
workflow illustrates the desired NFR behavior with respect to
the same automata formalization. Each behavioral NFR is
indexed using a behavioral signature [22]. A behavioral
signature is a regular expression notation describing the
translation of the associated BRA in summarized and verbally
understandable way. BRAs are published in a Non-Functional
Registry represented by a database indexed using the
behavioral signatures. This registry groups all the BRAs with
their associated URIs corresponding to associated published
concrete services. In Fig. 1, “UHCAuthentication.
UHCAccessControl” is an example of a behavioral signature
outlining the behavioral scope associated to the abstract service
AS2’. This regular expression is summarizing the desired
behavior including both Authentication and Access Control.
Each behavioral scope in the modeling phase corresponds to an
atomic or composite service that needs to be integrated to the
current functional composition.

Definition 3: Behavioral Requirement Automaton (BRA) is
a quadruple BRA = (S, s0, Sf, T, BS), where:

• S is a set of states, s0 ∈ S is the initial state, Sf ⊆ S is a
set of final states.

• T is a set of transitions where S × T × S is the transition
relation, graphically denoted as ssrc →t star, which means
that the transition t changes the state from the source
AS state ssrc to the target AS state star.

660 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 1. An Abstract Service Composition Automaton based on the

Illustrative Scenario.

In our approach, we distinguish between two types of
behavioral NFRs: the pre-execution and the post-execution
behavioral requirements. The pre-execution behavioral
requirement is illustrated by an arrow in backward direction
over the behavioral scope. It aims to be handled before the
execution of the associated concrete service, whereas the post-
execution behavioral requirement, illustrated by an arrow in
forward direction over the behavioral scope, defines the
required behavioral process to be performed after the execution
of the associated concrete service. For both cases, we proceed
to an automata composition allowing to merge the BRAs with
the AFA. This composition process for each case is defined
below.

Definition 4: Prior Execution Behavioral Automata
Composition is the merging operation between the Abstract
Functional Automaton AFA = (S, s0, Sf, T, RF, RB, RQ)AFA
and a Behavioral Requirement Automaton BRA = (S, s0, Sf,
T)BRA to fulfill the prior execution behavioral requirement
associated to the state sb (i.e. having a pre-execution
behavioral scope). The product is a Composition Automaton
CA = (S, s0, Sf, T)CA, a quadruple described as following:

• SCA is a set of states, such that SCA = SAFA∪ SBRA and
Sf ⊆ SCA.

• s0 ∈ SCA, and s0(CA) = s0(AFA) when sb ≠ s0(AFA)

• TCA is a set of transitions where TCA = TAFA ∪ TBRA ∪
TAFA→BRA ∪ TBRA→AFA such that:

• TAFA→BRA is a set of transitions where t1 ∈ SAFA ×
TAFA→BRA × S BRA is the transition relation from the
state sb-1 directly before sb with the initial state s0(BRA),
graphically denoted as sb-1 →t1 s0(BRA).

• T BRA→AFA is a set of transitions where t2 ∈ SBRA × T

BRA→AFA × SAFA is the transition relation from the final
states sfi(BRA) with the scoped state sb, graphically

denoted as sfi(BRA) →t2 sb such that sfi ∈ Sf(BRA) and i ≥
1.

Definition 5: Post Execution Behavioral Automata
Composition is the merging operation between the Abstract
Functional Automaton AFA = (S, s0, Sf, T, RF, RB, RQ)AFA
and a Behavioral Requirement Automaton BRA = (S, s0, Sf,
T)BRA to fulfill the post execution behavioral requirement
associated to the state sb (i.e. having a post-execution
behavioral scope). The product is a Composition Automaton
CA = (S, s0, Sf, T)CA, a quadruple described as following:

• SCA is a set of states, such that SCA = SAFA ∪ SBRA,

• s0(CA) = s0(AFA), and Sf ⊆ SCA.

• TCA is a set of transitions where TCA = TAFA ∪ TBRA ∪
TAFA→BRA ∪ TBRA→AFA such that:

• TAFA→BRA is a set of transitions where t1 ∈ SAFA ×
TAFA→BRA × S BRA is the transition relation from the
scoped state sb with the initial state s0(BRA), graphically
denoted as sb →t1 s0(BRA).

• T BRA→AFA is a set of transitions where t2 ∈ SBRA × T

BRA→AFA × SAFA is the transition relation from the final
states sfi(BRA) with the state sb+1 directly after the scoped
state sb, graphically denoted as sfi(BRA) →t2 sb+1 such
that sfi ∈ Sf(BRA) and i ≥ 1.

IV. DEEP ANALYSIS ON QUALITY-OF-SERVICE NON-
FUNCTIONAL REQUIREMENTS IN THE SERVICE COMPOSITION

In the literature, Non-Functional Requirements can be
defined and classified in various ways depending on the
context of use. Chung and do Prado Leite [23] presented
different representations and classifications of NFRs. FURPS+
model is an example of classifications for software quality
attributes, which illustrates a software quality tree and aims to
address concerns for key types of NFRs and importantly
possible correlations among them. Another model is proposed
by the international standard for the evaluation of software
quality ISO/IEC [24] which is a quality-oriented scheme. Its
revised version in 2011 [25] proposed two main models:
(1) software product quality model that groups attributes such
as reliability, performance, operability, security,
maintainability, etc., and (2) Quality in use model, defined
using three main attributes: a) Usability in use describing the
effectiveness, efficiency and satisfaction in use, b) Flexibility
in use dealing with the context conformity, and c) Safety for
operator, public and environment. In other hand, Galster and
Bucherer [26] proposed a service-oriented taxonomy to classify
NFRs. They introduced the quantifiability factor allowing to
define how each attribute can be measured. This classification
consists on dividing NFRs into three main classes: a) Process
requirements, which are properties dealing with service design,
discovery, composition and runtime, b) Service requirements,
centered on the service and can be derived directly from user
needs, and c) External requirements, defining the external
economic or legal constraints on the development or
deployment process. Authors in [27] proposed a literature
review highlighting the most frequently used NFRs in service-
oriented context, such as performance, reliability, usability,
security, and maintainability. It aims to propose a classification

661 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

based on definitions, typologies, types of systems and
application domains of NFRs. Another contribution [28]
proposes a detailed review classifying the NFR approaches
according to different criteria, then providing a qualitative
analysis of their scopes and characteristics. This work focuses
on the three main classes of NFR approaches which are the
Goal-oriented approaches, the Aspect-oriented approaches and
the Pattern-based approaches. The work on NFRs integration to
service composition has been the subject of various
contributions. However, most of proposed works surrounding
this topic are limited to quantifiable quality-oriented NFRs,
commonly known as Quality-of-Service (QoS) attributes.

In our approach, each quality attribute is defined by a set of
metrics (cf. Table II). The designer selects the appropriate
quality metrics to apply to a set of abstract service. The
measurement correlation expresses whether the best results are
associated to higher metric value (Positive: +), or lower metric
value otherwise (Negative: -).

In order to select the best matching quality-aware concrete
service for a specific abstract service, we apply a weight
coefficient to each desired quality metric. This coefficient
helps to select the most appropriate services according to user’s
preferences, when dealing with multiple quality conditions
associated to a common set of abstract services. The Web
Service Popularity Score [29] (WSPS) was previously
introduced to compute the quality measures by introducing a
more appropriate and decisive factor to distinguish functionally
similar services using an algorithm based on multiple criteria
for multiple candidates. In our approach, this allows us to
reduce the pool of candidate services by guaranteeing the
satisfaction of the multiple criteria quality requirements
defined by the designer. In this paper we enhance the
Popularity Score metric coverage by integrating some relevant
QoS metrics. The covered QoS attributes with their associated
metrics and their calculation formulas are depicted in Table II.

TABLE II. TABLE OF QUALITY OF SERVICE ATTRIBUTES AND THEIR APPROPRIATE METRICS

QoS Attribute QoS Metric Calculation Formulae

Availability

+ The Availability metric (Av) is the percentage of time, in a specific
time interval, during which the service can be reachable and functional.
The commonly used formula uses uptime and downtime values.

𝐴𝑣(𝑠) = 𝑈𝑝𝑡𝑖𝑚𝑒(𝑠)/(𝑈𝑝𝑡𝑖𝑚𝑒(𝑠) + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒(𝑠))
𝐴𝑣(𝑠) = 𝑀𝑇𝐵𝐹(𝑠)/(𝑀𝑇𝐵𝐹(𝑠) + 𝑀𝑇𝑇𝑅(𝑠))
MTBF is the Mean Time Between Failure, and MTTR is the Mean
Time To Repair.

- The Mean Time To Repair (MTTR) refers to the amount of time
required to repair the service and restore it to full functionality.

𝑀𝑇𝑇𝑅(𝑠) = ∑ 𝑀𝑇(𝑠) /𝑀𝑁(𝑠)
MT represents the maintenance time for a specific service, and MN
defines the number of Maintenance actions for that service.

Reliability

+ The Mean Time Between Failure (MTBF) refers to the amount of
time a service is up before it fails. It is the average (expected) time
between two successive failures to reach the service.

𝑀𝑇𝐵𝐹(𝑠) = ∑ 𝑂𝑝𝑇(𝑠) / 𝐹𝑁(𝑠)
OpT represents the operational time for the service, where FN defines
the number of failures actions for that service.

- The Failure Rate metric (FR) is the frequency with which the service
fails, expressed in failures per unit of time.

𝐹𝑅(𝑤𝑠) = 𝐹𝑁(𝑤𝑠)/ 𝑇
FN defines the number of failures actions for the service, while T
defines the amount of time.

- The Defects per Million factor (DPM) refers to the number of defects
for each million attempts of user’s requests. It is defined as the ratio of
the number of defects in the service to the total number of defect
opportunities multiplied by 1 million.

𝐷𝑃𝑀(𝑤𝑠) = 𝐹𝑅𝑒𝑞(𝑤𝑠) ∗ 1000000/𝑇𝑅𝑒𝑞(𝑤𝑠)
FReq defines the number of unsuccessful (Failed) Requests, while
TReq defines Total Requests performed.

+ Reliability (Re) refers to the service ability to function according to the
agreed upon performance requirements in SLA.

𝑅𝑒(𝑤𝑠) = [(1000000 − 𝐷𝑃𝑀(𝑤𝑠))/1000000] ∗ 100%
DPM is the Defects Per Million metric.

Response
Time

- The Processing Time (Proc) is the amount of time consumed for
fulfilling the request by executing the corresponding functions.

 Proc(ws) = ∑ ExT(ws) / N(ws)
ExT defines the elapsed time during the execution of the service, while
N is the total number of calls.

- The Transmission Time (Trans) is the total time for communication
between the client and the provider’s hosting server.

𝑇𝑟𝑎𝑛𝑠(𝑤𝑠) = ∑ (𝑆𝑒𝑛𝑑𝑇(𝑤𝑠) + 𝑅𝑒𝑝𝑙𝑦𝑇(𝑤𝑠))/𝑁(𝑤𝑠)
SendT defines the transmission time during the request sending to the
server, while ReplyT is the consumed time during the transmission of
the reply from the server. N is the total number of calls.

- The Response Time (RT) is the amount of time elapsed between
sending a request and receiving a response. It is including both
transmission and execution time.

𝑅𝑇(𝑤𝑠) = 𝑇𝑟𝑎𝑛𝑠(𝑤𝑠) + 𝑃𝑟𝑜𝑐(𝑤𝑠)
Trans is the Transmission Time and Proc is the Processing Time.

Reputation

+ Usability (Us) is describing the service characteristic of being easy to
use. To measure the usability, we consider the users’ feedback to rate the
services based on their ease of use.

𝑈𝑠(𝑤𝑠) = ∑ 𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑛𝑔(𝑤𝑠) / 𝑁𝑏𝑈𝑠𝑒(𝑤𝑠)

- The Age (Age) is measured by using the number of days between the
last dates of invoke or discover interaction and the current date. We
estimate that the best WS is the one that is also recently used.

𝐴𝑔𝑒(𝑤𝑠) = 𝑛𝑜𝑤() − 𝐿𝑎𝑠𝑡𝐶𝑎𝑙𝑙𝐷𝑎𝑡𝑒(𝑤𝑠)
LastCallDate refers to the last date concerning the WS invocation or
WS discovering operation.

+ The Frequency (Frq) metric represents the number of uses of the
service by duration (day, week, month or year), and it’s presented by the
number of use and its duration.

𝐹𝑟𝑞(𝑤𝑠) = ∑ 𝑁𝑏𝑈𝑠𝑒(𝑤𝑠) / 𝑁𝑏𝑀𝑜𝑛𝑡ℎ(𝑤𝑠)
NbUse is the total of WS called by each duration and the NbMonth is
the number of months where the WS was consumed.

Cost - Cost (Co) metric represents the incurred fees by service invocation.

662 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

All aforementioned metrics constitute a more fine-grained

service metrics taxonomy. The combination of these metrics
will help surely to get eligibility (Popularity) of services. In
this score, each quality metric is associated to a coefficient
represented by an integer from 0 to 5. This coefficient reflects
its importance among other proposed metrics when searching
user appropriate services. The one which is more important has
higher value.

𝑊𝑆𝑃𝑆(𝑤𝑠) = [∑ (𝑀𝑒𝑡𝑟𝑖𝑐 (𝑤𝑠) ∗ 𝐶𝑜𝑒𝑓(𝑀𝑒𝑡𝑟𝑖𝑐))] /
 ∑ (𝐶𝑜𝑒𝑓(𝑀𝑒𝑡𝑟𝑖𝑐)

Metric in {“Av”, “MTTR”, “MTBF”, “FR”, “DPM”, “Re”,
“Trans”, “Proc”, “RT”, “Us”, “Age”, “Frq”, “Co”}.

To evaluate the performance of popularity score,
Elfirdoussi et al. developed a framework [30] called DIVISE
(DIscovery and VIsual Search Engine). DIVISE is a web
service search engine that has the advantage to discover simple,
composite or semantic services based on the user’s functional
needs and quality metrics in order to select the most
appropriate service from a generated list of potentially
candidate services. We enhance the DIVISE framework for our
QoS based selection module in order to automatically select the
best matching service using the popularity score computation.

V. PROPOSED APPROACH
In this paper, our contribution aims to propose a

comprehensive approach where the designer has a multitude of
options for modeling a reliable service composition including
both functional goals and NFRs. The workflow designer gains
a total control of which services are meant to be implemented,
according to the primary goals (FRs). Then he/she adjusts non-
functional customizations by refining how these services are
meant to be implemented (NFRs). In fact, we distinguish
between two disjoint types of NFRs. Each of these types is
fulfilled and treated differently: a) The quantifiable NFRs,
commonly qualified as measurable NFRs or Quality-of-Service
(QoS) requirements, such as availability, reliability, response-
time, cost, etc., and b) the Behavioral requirements, as
considered as non-quantifiable requirements, such as security
requirements [31]. These NFRs cannot be measured using

common quality metrics. The proposed approach is based on
four main phases. For each phase, a dedicated module is
implemented. An overview of the composition process with
associated modules is illustrated in the Fig. 2.

A. Modeling Phase
The modeling module is the first interaction point between

the designer and the system. It consists on a modeling tool
allowing to draw adapted and easy to understand composition
automata. It allows to describe desired functional and non-
functional requirements by designing an Abstract Functional
Automaton. Below we present the four key components used in
the automata modeling module:

1) States: Each state is composed of a label which is a
non-unique string attribute, and a type to describe whether it is
a start, intermediate or final state.

2) Transitions: Each transition is identified by two key
elements: the source state and the target state. The source state
is the state launching the transition, while the target state is the
reached state using that transition. Three more attributes can
describe transitions which are: The inputs, the guard conditions
and the outputs.

3) Behavioral scopes: The behavioral scopes are used to
specify the states concerned by the behavioral requirement to
integrate. They are identified using a string attribute in the
form of a regular expression to describe the behavioral
signature, in addition to a time indicator to specify whether the
associated service will be performed before or after the scoped
state’s concrete service.

4) Quality scopes: The quality scopes are used to define
quality restrictions over discovered concrete services. They are
identified using three key elements: a) the quality metrics
which are the supported quality properties depicted in Table II,
b) the metric weight which constitutes the coefficient attributed
to the chosen quality metric, c) the quality condition which is
an expression describing the desired restrictions over the
chosen quality metric.

Fig. 2. The Service Composition Process Workflow.

663 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

The proposed modeling module is a web-based graphical
interface allowing to draw an automata models using four
aforementioned key components. It automatically generates a
ready-to-use JSON representation of the composition.
Additionally, the composition is saved in dedicated database to
allow reuse and future improvement. The class diagram we
proposed to build the modeling tool is illustrated in Fig. 3(a).
The Fig. 3(b) shows an example of an AFA designed using the
modeling tool module.

(a)

(b)

Fig. 3. (a). The Class Diagram Related to the Modeling Module. (b). An
Example of Designing an AFA using the Modeling Tool.

B. Behavioral Requirements Integration Phase
The aim of this phase consists on the integration of

behavioral NFRs defined in the scopes at the modeling phase.
The integration of behavioral NFRs is based on lookup
operation into the behavioral NF-registry to find adequate
concrete services able to fulfill the behavioral NFRs. A
response is returned to the designer depending on the lookup
results. If the process finds an atomic or composite service
indexed by the required behavioral signature, it is
automatically integrated to the AFA. Otherwise, the designer is
redirected to the modeling tool in order to design an automata-
based representation of the needed behavioral requirement.
Then he/she develops and publishes the associated concrete
services in the behavioral NF-registry. The behavioral
requirements’ records published are indexed using their
behavioral signatures in order to facilitate their discovery and
integration for further uses. The Algorithm 1 illustrates the
process of integrating the behavioral NFRs into the Abstract
Service Composition Automaton.

Algorithm 1: Behavioral NFRs Integration

Input:
 Set(State) states // A set of abstract states.
 Registry nfrRegistry // A non-functional registry.

Output:
 Map(State, BehavioralSignature) validStateMap
 //A map of abstract states with valid signatures.
 Map(State, BehavioralSignature) incompleteStateMap
 //A map of incomplete states: unfound behavioral signatures.

for each state in states do

 signature  state.getBehavioralRequirement()
 .getBehavioralSignature()

 foundSignature  nfrRegistry.lookup(signature)

 if foundSignature is NOT NULL

 validStateMap.addElement(state, foundSignature)

 else

 incompleteStateMap.addElement(state, signature)

 end if

end for

return {incompleteStateMap, validStateMap}

--

C. Verification Phase
This phase consists of verifying the composition between

the AFA and all behavioral NF automata models obtained from
the Behavioral Requirements Integration Module. The resulted
Non-Functional Composition Automaton represents a
workflow process gathering the user’s functional and non-
functional requirements combined. In order to validate its
conformity, we use Uppsala-Aalborg verification tool
(UPPAAL). UPPAAL is a toolbox for verification of real-time
systems. In order to automate the model checking verification
using UPPAAL, we implement an intermediate adapter
allowing to translate automatically our automata models to
understandable UPPAAL templates. The composition
automaton is reproduced in UPPAAL’s formalization using a
composition of multiple templates. A template is an automata-
based modeling describing a specific system and illustrating
interactions between its states.

The automata adapter presented in our approach performs a
translation between two different schemes: (1) the first is a
JSON-based representation scheme of the proposed modeling,
supporting integration of quantifiable and behavioral NFRs
with the initial AFA, (2) the second scheme is adapted to
UPPAAL’s XML description. In verification phase,
quantifiable quality attributes associated to the AFA are
omitted, as they intervene mainly in the service selection phase
and do not affect the composition workflow.

The UPPAAL model checking tool allows also to verify the
conformance of native properties such as deadlock freeness,
reachability, or custom logical properties defined by the
designer. It supports various properties verification [32]
such as:

664 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

• Reachability properties denoted as E<> φ, which allows
to check whether it exists a path starting from the initial
state such that φ is eventually satisfied along that path.

• Safety properties, commonly known in the form
“Something bad will possibly never happen”, are
denoted either with the formulae A[] φ to describe that
φ should be true in all reachable states, or using the
formulae E[] φ to state that there should exist a
maximal path such that φ is always true.

• Liveness properties, commonly known in the form
“Something will eventually happen”, and denoted either
using the formulae A<> φ meaning that φ is eventually
satisfied, or using the formulae φ --> ψ to state that
whenever φ is satisfied, then eventually ψ will be
satisfied.

The verification module consists on translating the
automata scheme of the Service Composition Automaton into
an automata scheme understandable by UPPAAL model
checking tool. This verification can be a fully automated
verification or a semi-automatic verification to validate the
overall modeling. The fully automated verification consists on
performing a direct verification of the translated UPPAAL
automata model with the designer’s desired properties.
Whereas the semi-automatic verification consists on adding
some adjustments into the generated UPPAAL’s automata
modeling then running the verification of designer’s properties.
The main automaton and associated behavioral automata are
translated into UPPAAL templates. In our approach, the
formalization of SCA is comparable to UPPAAL’s
formalization. The modeling of SCA using the modeling tool
module omits defining synchronization in the transitions, as
this information can be automatically concluded from the
automata modeling. In other words, parallel and synchronous
executions are defined directly from the modeling. A parallel
execution is performed when a source state has more than one
outgoing transitions with no guard condition. In UPPAAL, we
are modeling the main automaton as a main template connected
to all concurrent automata using synchronization channels.

The automata adapter is introduced to transform the JSON
format corresponding to the modeled AFA with integrated
behavioral services into an XML-based representation adapted
to UPPAAL templating format. Table III shows the main
transformation rules ensuring this transition. The coordinates x
and y of all elements composing the modeled automaton are
forwarded to fill the attributes of associated elements in
UPPAAL’s XML file.

TABLE III. TRANSFORMATION RULES FROM JSON SCHEME TO UPPAAL
XML SCHEME

Elements JSON Modeling Tool
Scheme

UPPAAL XML Description
Sheme

Composition
Automaton

{
 "name": "Funct.
Automaton",
 "elements": [...]
}

<template>
 <name>Funct.
Automaton</name>
 ...
</template>

States

{
 “class”: “State”,
 “id”: 1,
 “label”: “Service 1”,
 “type”: “Intermediate”
}

<location id="1" x=”” y=””>
 <name> Service 1 </name>
</location>

Start state

{
 “class”: “State”,
 “id”: 1,
 “type”: “Start”
}

<location id="1" x=”” y=””>
 <name>Service 1</name>
</location>
<init ref="1"/>

Final state

{
 “class”: “State”,
 “id”: 8,
 “label”: “Service 8”,
 “type”: “Final”
}

<init ref="1"/>
<location id="8" x=”” y=””>
 <name>Service 8</name>
</location>
<transition>
 <source ref="8"/>
 <target ref="1"/>
</transition>

Transitions

{
 "class": "Transition",
 "id": 4,
 "sourceState": 1,
 "targetState": 3,
 "description": "Transition
 4 From 1 To 3",
 "guard": "age < 18",
 "input": "age"
}

<transition>
 <source ref="1"/>
 <target ref="3"/>
 <label kind="select">
 age
 </label>
 <label kind="guard">
 age < 18
 </label>
</transition>

D. The QoS-oriented Service Selection Phase
The last phase consists on building a QoS-aware concrete

service composition. It is called when all designer’s properties
are verified. The associated module stores in a pool for each
abstract service in the AFA all functionally-equivalent concrete
services. Then, for each pool a QoS-based computation is
performed to select the best matching service according to its
popularity score. The quality requirements are initially defined
in the quality scopes associated to the abstract services in the
ASCA. The best matching service is the concrete service with
the highest score. We describe in the algorithm below the
Quality NFRs integration process.

665 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Algorithm 2: Quality-oriented NFRs Integration

Input:
 Set(State) states //A set of abstract states.

Output:
 Map(State, Service) validServicesMap. /*A map of
 abstract services with appropriate validated concrete
 services.*/

for each state in states do
 stateQualityNFRs  state.getQualityRequirements()

 for each qualityNFR in stateQualityNFRs do
 // Fetching the state’s quality NFRs

 condition  qualityNFR.getQualityCondition()

 weight qualityNFR.getMetricWeight()

 criteriaMap.addElement(condition, weight)

 endfor

 servicePool state
 .selectServicesByQualityNFRs(criteriaMap)
 /* Selecting the services fulfilling the state’s main functional
 requirements in addition to the Quality conditions */

 for each candidateService in servicePool do

 popularityScore =
 computePopularityScore(candidateService, criteriaMap)

 scoreMap.addElement(candidateService, popularityScore)

 endfor

 bestService = scoreMap.getBestMatchingService()
 /* Selection of the best matching candidate service according
 to its score */

 validServicesMap.addElement(state, bestService)

endfor

return validServicesMap
--

VI. ILLUSTRATIVE SCENARIO
To illustrate the proposed approach, a collaborative

scenario related to the Healthcare domain is studied, due to the
diverse NF needs in this field. The aim is to create a service
composition allowing to get all patient’s history: health
records, medical diagnosis, taken medicines, etc., then to
generate a folder grouping these data. This collaborative
system engages multiple Healthcare centers. We focus mainly
on Regional Health Centers (RHC) and University Health
Centers (UHC) in Morocco, due to the advanced information
system implemented allowing a web service-based
interoperability.

To initiate the modeling phase, we elaborate the Abstract
Functional Automaton (AFA). In our example, the main goal
consists on generating a patient health folder grouping the
patient’s medical history including diagnosis, medical
prescriptions and analysis results. Fig. 1 illustrates the
proposed AFA for the demonstrative scenario. In this AFA the
states constitute the desired abstract services, and the

transitions describe the intended interactions between states’
corresponding concrete services.

The designed process described in this example requires as
input the identification of the patient. The role of the first
abstract service “Patient Identification” is to return the patient’s
Unique Healthcare Identifier (UHI) recognized by all
Healthcare systems. The following step consists on providing,
according to the patient’s UHI, all patient data grouped from
both RHCs and UHCs. To return all patient's health history we
propose a parallel invocation of corresponding services for
both types: “RHC Data Collector” and “UHC Data Collector”
for regional and university healthcare centers respectively.
Then, the abstract services defined as “Medicine Data
Extractor” and “Diagnosis Data Extractor” aim to extract
respectively the diagnosis information and the medicine
information from the collected medical data history. The final
step consists on searching for exhaustive information about
returned medicines and diagnosis from third-party services
using respectively “Medicine Data Provider” and “Diagnosis
Data Provider”. Finally, the abstract service “Patient Health
Data Generator” will construct the patient folder with all
collected information to allow returning a deep analysis based
on the patient’s medical history.

The proposed collaboration system involves manipulating
sensitive and confidential information (medical history,
diagnosis, prescription, medicine, etc.). Since this information
is qualified to be very critical, we find necessary to protect the
collaboration system by implementing some security policies.
These security requirements are considered as Behavioral
NFRs, as they define the behavioral aspect of the current
process. Thus, the integration of these security-oriented
behavioral NFRs should guarantee a result similar to the initial
functional process but also acts on improving how this process
should behave by adding security restrictions. In order to
implement these behavioral NFRs to the current modeling, we
integrate behavioral scopes to the Abstract Functional
Automaton.

In our example, we integrate four security constraints to the
functional process. They are all pre-execution behavioral
requirements illustrated by the backward direction arrows on
the behavioral scopes. It means that the security requirements
should be implemented and executed before invoking the
associated services. The behavioral signatures are defined
using regular expressions labeling the behavioral scopes. The
system will further lookup in the NF-Registry for associated
atomic or composite services indexed by the provided
behavioral signatures. In case the signature is not found in the
NF-Registry, the designer proceeds to model the desired
behavior as an automaton, to conceive and to publish the
associated service in the NF-Registry indexed with its related
behavioral signature. This process allows implementing and
reusing specific services with customized behavioral needs.

The automata modeling proposed in our approach supports
two possible execution paths. The success path corresponds to
all possible executions leading to the valid final state. The
second case concerns the executions that doesn’t reach the final
state, and instead, are reaching the trap state. A trap state,
illustrated using the “π” symbol, is an error output. This error

666 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

output can be enhanced by adding an output message
describing the violated constraint in order to keep the user
informed about the failure cause. The automata modeling of
desired NFRs is illustrated and described below:

• The first applied behavioral NFR using the behavioral
signature “RHCAuthentication” associated to the AS
“RHC Data Collector” aims to integrate an
Authentication system to secure and limit access to the
service for registered users only.

• The second behavioral NFR labeled using the
behavioral signature
“UHCAuthentication.UHCAccessControl” associated
to the AS labeled “UHC Data Collector” aims to
integrate a Role-based Access-Control (RBAC) to the
service allowing to verify the authenticated users’ role
before performing the related service.

• The third and fourth applied constraints labeled using
the behavioral signatures “TokenAuthentication” are
associated respectively to the abstract services labeled
“Medicine Data Extractor” and “Diagnosis Data
Extractor”. They aim to restrict access to the service by
integrating a Token-based Authentication system.

Finally, we can generate the Service Composition
Automaton (SCA) by composing all the behavioral automata
with their appropriate abstract services. This automaton allows
to illustrate in an exhaustive way the interactions of all
components. Once the SCA is generated, the following step
consists on performing the model checking verification using
UPPAAL.

Transitions in UPPAAL are defined as follow: The
selection information, the guard conditions labelled in green
color, the synchronization labelled in light blue color, and the
update information labeled in dark blue color.

Fig. 4 shows the modeling of the SCA automaton using
UPPAAL. The automaton illustrated in Fig. 4(b) shows the
main process, gathering atomic and composite components
together, using sequential and synchronous communication
channels. The parallel executions are launched using broadcast
channels, allowing to push a synchronization from the
composition process using the exclamation mark “!” near the
synch expression, and receive it on the other components using
question mark “?”. The first example of synchronous execution
is the invocation of DataCollector services. We use
“DataCollectorSynch!” in the composition process (Fig. 4(b)),
which is a broadcast channel allowing to start a parallel
execution of both UHCDataCollector and RHCDataCollector
using “DataCollectorSynch?” in both concurrent target
processes (Fig. 4(c)). In the same way the synchronous
execution of “Diagnosis Data Extractor” and “Medicine Data
Extractor” illustrated in the Fig. 4(d) are launched using the
broadcast channel “DataExtractorSynch!” from the main
process, and towards “DataExtractorSynch?” in both
concurrent processes. Finally, the “Diagnosis Data Provider”
and “Medicine Data Provider” are launched using
“DataProviderSynch!” broadcast channel from the main

process towards “DataProviderSynch?” in both concurrent
processes. UPPAAL’s model checking allows us to validate the
correctness of designed models by verifying safety and
liveness properties, in addition to user’s custom logical
properties related to the deployed service-oriented process. As
shown in Fig. 4(e) illustrating the verified properties, the first
checked property verifies whether the generated system is
deadlock-free as follow “A[] not deadlock”. A deadlock is an
unmarked state where no events are possible. The automaton
jams in a state that we have not specified as a possible final
state. In our approach, we use trap states to define undesired
events, happening when some predefined conditions are not
met. We keep track of successful and error executions using
incremental variables. It also allows to control the concurrent
components executed. Table IV shows the verified properties
with corresponding descriptions.

According to provided modeling we notice that all desired
properties are satisfied, which means that the associated
automata modeling is valid considering final state reachability,
deadlock-freeness and user’s custom logical preferences. The
next step consists on selecting the best matching service to
meet the abstract services having quality scopes. In Fig. 1 we
notice that the “Medicine Data Provider” and “Diagnosis Data
Provider” abstract services have quality scopes with different
criteria: Response-Time and Availability for the Medicine Data
Provider service and Usability for the Diagnosis Data Provider.
The popularity score computation will be performed on the
pool of concrete services associated to the AS “Medicine Data
Provider”, as they require more than one quality criterion to be
fulfilled by the scoped subset. While the AS “Diagnosis Data
Provider” needs only one criterion to be met, and then, no
weight is required to compute the popularity score.

In Table V, we provide the computed popularity score for
concurrent concrete services fulfilling the Medicine Data
Provider and Diagnosis Data Provider abstract services. The
service Medicine Data Provider requires two quality
conditions: Response-Time < 250ms with a weight of 5, and
Availability > 90% with a weight of 3. We proceed to the
metric normalization in order to compute uniformly the
popularity score. For rate-based metrics i.e. metrics calculated
in a percentage basis, the score constitutes the value of the
measured quality metric when the measurement correlation is
positive. Otherwise, when the correlation is negative, the score
is the subtraction of the measured value from a basis of 100. In
other hand, for non-rate-based quality metrics, we use the
proportional computation of the service metric value according
to the maximal value for the target metric. The maximal value
for a non-rate-based quality metric is concluded by using the
desired value as a median. For instance, for the desired value of
Response-Time less than 250ms we use this value as a median
to conclude that the maximal value for the Response-Time is
500ms. The second method consists on providing the maximal
values for each quality metric by the expert rather than
concluding it using the reversed median calculation. A deeper
explanation of the proposed popularity score computation
methods is provided in a previous work [5].

667 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

Fig. 4. The Service Composition Automaton and its Appropriate UPPAAL Modelling and Verification.

668 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

TABLE IV. UPPAAL’S VERIFIED PROPERTIES WITH CORRESPONDING DESCRIPTIONS

Verified properties Descriptions

E<> Composition.Final
AND NOT (Composition.Error) There exists eventually a path leading to the final state without reaching any error state.

E<> UHCDataCollector.UHCDataCollector
AND RHCDataCollector.RHCDataCollector

There is eventually a parallel execution of the Data Collectors in both UHC and RHC. It assumes that the
associated security services are preliminarily performed, i.e. UHCAuthenticator and
UHCAccessController before UHCDataCollector, and RHCAuthenticator before RHCDataCollector.

E<> MedDataExtractor.MedicineDataExtractor
AND DiagDataExtractor.DiagnosisDataExtractor There is eventually a parallel execution of Medicine Data Extractors and Diagnosis Data Extractor.

(UHCDataCollector.UHCDataCollector
OR RHCDataCollector.RHCDataCollector)
AND (MedDataExtractor.MedicineDataExtractor
AND DiagDataExtractor.DiagnosisDataExtractor)
 Composition.Final

A successful composition is conditioned by an execution of at least one Data Collector of either UHC or
RHC (OR), additionally to an execution of both Medicine Data Extractor and Diagnosis Data Extractor
(AND)

UHCDataCollector.UHCDataCollector
AND RHCDataCollector.RHCDataCollector
AND MedDataExtractor.MedicineDataExtractor
AND DiagDataExtractor.DiagnosisDataExtractor
 Composition.Final

An execution of all restricted services which are UHCs’ and RHCs’ Data Collectors in addition to
Diagnosis and Medicine Data Extractors will lead to a successful execution of the composition

TABLE V. CONCRETE SERVICE COMPARISON BASED ON POPULARITY
SCORE

Abstract Service Associated Concrete Services Popularity Score

Medicine Data
Provider

WS11 (Response-Time: 150ms,
Availability: 94%) 90.28

WS12 (Response-Time: 200ms,
Availability: 98%) 84.85

Diagnosis Data
Provider

WS21 (Usability:8.2) 82

WS23 (Usability:6.9) 69

WS24 (Usability:8.8) 88

The final step consists on generating a ready-to-execute
BPEL code using the engine provided by the previously
developed framework, i.e., Discovery and Visual Interactive
Web Service Engine (DIVISE) [30]. The produced code of the
composite service assembles all selected concrete services with
their appropriate interactions according the validated process.
In this contribution we aim to enhance the engine by providing
design and verification-oriented modules allowing an
exhaustive modeling taking into account functional
requirements in addition to both behavioral and measurable
non-functional requirements.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
Our current contribution consists on defining a more fine-

grained composition process workflow and its implementation
and handling the main phases from the design time to code
generation. This workflow integrates both behavioral and
measurable quality-oriented NFRs into service composition
process. An Automata-based modeling of the functional
requirements (FRs) and non-functional requirements (NFRs) is
suggested with an explicit distinction between measurable
quality-oriented NFRs and the newly introduced behavioral
NFRs. These NFRs are integrated into the abstract functional
automaton using scopes. The needed behavioral NFRs are
modeled separately then merged to the functional abstract
automaton in order to perform a model checking verification
using UPPAAL. In addition, the desired measurable quality-
oriented NFRs have no impact on the behavioral workflow of

the composition automaton, and are explored in the selection
phase using Popularity score enabling to return the best
matching concrete services for each associated abstract service.
A use case process using Patient Health Records in Regional
and University Health Centers in Morocco is used to
experiment our approach.

Although this approach handles the overall process of
service composition from design to execution phases, it can be
considered as limited to the current state of evaluated QoS
properties of services, as we did not integrate the tracking
module in the current contribution. Thus, the service selection
based on Popularity Score is using provided values for each
quality metric. These values are provided mainly by the
provider. However, for an accurate classification, we are
orienting our research to perform a new computation based on
service tracking of service quality over time using Machine
Learning techniques and technologies. It will allow us to have
a clear idea regarding variation of service quality in a wide
timeline, and compute the Popularity Score either using
average function for the whole time or partially for a recent
limited period of time.

REFERENCES
[1] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, “Non-Functional

Requirements in Software Engineering”, 2000, DOI: 10.1007/978-1-
4615-5269-7.

[2] J. Eckhardt, A. Vogelsang, D. Méndez Fernandez, “Are Non-functional
Requirements really Non-functional? An Investigation of Non-
functional Requirements in Practice”, in 38th IEEE International
Conference on Software Engineering (ICSE '16), pp. 832–842, 2016.
DOI: https://doi.org/10.1145/2884781.2884788.

[3] M. H. Beek, A. Bucchiarome, S. Gnesi, “Formal Methods for Service
Composition”, in Annals of Mathematics, Computing &
Teleinformatics, vol. 1, pp 1-10, 2007.

[4] I. El Kassmi, Z. Jarir, “Security Requirements in Web Service
Composition: Formalization, Integration, and Verification”, in 25th
International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Paris, France, 2016. DOI:
10.1109/WETICE.2016.47.

[5] I. El Kassmi, Z. Jarir, “Toward a Smart Cloud Service Composition:
Popularity-Driven Approach”, in The 14th International Conference on
Signal-Image Technology & Internet-Based Systems (SITIS), pp. 522-
528, 2018. DOI: 10.1109/SITIS.2018.00085.

669 | P a g e
www.ijacsa.thesai.org

https://doi.org/10.1145/2884781.2884788

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 3, 2021

[6] Y. Chen, J. Huang, C. Lin, X. Shen, “Multi-Objective Service
Composition with QoS Dependencies”, in IEEE Transactions on Cloud
Computing, vol. 7, pp. 537-552, 2019. DOI: 10.1109/TCC.2016.
2607750.

[7] S. Deng, H. Wu, H. Hu, J. Leon Zhao, “Service Selection for
Composition with QoS Correlations”, in IEEE Transactions on Services
Computing, vol. 9, pp. 291-303, 2016. DOI: 10.1109/TSC.2014.
2361138.

[8] S. K. Gavvala, C. Jatoth, G. R. Gangadharan, and R. Buyya, “QoS-
aware cloud service composition using eagle strategy,” in Future
Generation Computer Systems, vol. 90, pp. 273–290, Jan. 2019.

[9] Y. Liang, H. Hu, W. Song, J. Ge, “QoS-aware Automatic Web Service
Composition Considering QoS Correlations”, in Proc. of the 7th Asia-
Pacific Symposium on Internetware, pp. 39-42, 2015. DOI:
https://doi.org/10.1145/2875913.2875940.

[10] Y. Feng, L. Ngan, R. Kanagasabai, “Dynamic Service Composition with
Service-Dependent QoS Attributes”, in IEEE 20th International
Conference on Web Services, pp. 10-17, 2013. DOI: 10.1109/ICWS
.2013.12.

[11] C. Jatoth, G.R. Gangadharan, U. Fiore, R. Buyya, “QoS-aware Big
service composition using MapReduce based evolutionary algorithm
with guided mutation”, in Future Generation Computer Systems, vol. 86,
pp. 1008-1018, 2018. DOI:http://dx.doi.org/10.1016/j.future.2017.07.
042.

[12] H. Jin, X. Yao, Y. Chen, “Correlation-aware QoS modeling and
manufacturing cloud service composition”, in Journal of Intelligent
Manufacturing, vol. 28, pp. 1947-1960, 2017. DOI:https://doi.org/10.
1007/s10845-015-1080-2.

[13] H. Liang, Y. Du, “Dynamic service selection with QoS constraints and
inter-service correlations using cooperative coevolution”, in Future
Generation Computer Systems, vol. 76, pp. 119-135, 2017.
DOI:https://doi.org/10.1016/j.future.2017.05.019.

[14] H. Wang, D. Yang, Q. Yu, Y. Tao, “Integrating Modified Cuckoo
Algorithm and Creditability Evaluation for QoS-Aware Service
Composition”, in Knowledge-Based Systems, vol. 140, pp. 64-81, 2017.
DOI: 10.1016/j.knosys.2017.10.027.

[15] J. Lu, Z. Huang, C. Ke, “Verification of Behavioral-aware Privacy
Requirements in Web Service Composition”, in Journal of Software,
vol. 9, pp. 944-951, 2014. DOI:10.4304/jsw.9.4.944-951.

[16] W. Dou, X. Zhang, J. Liu, J. Chen, “HireSome-II: Towards Privacy-
Aware Cross-Cloud Service Composition for Big Data Applications”, in
IEEE Transactions on Parallel and Distributed Systems, vol. 26, pp. 455-
466, 2015. DOI: 10.1109/TPDS.2013.246.

[17] Xx5 A. Souri, A.M. Rahmani, N.J. Navimipour, “A hybrid formal
verification approach for QoS-aware multi-cloud service composition”.
Cluster Computing vol. 23, pp. 2453–2470, 2020. DOI:
https://doi.org/10.1007/s10586-019-03018-9.

[18] A.D. Brucker, B. Zhou, F. Malmignati, Q. Shi, M. Merabti., “Modelling,
validating, and ranking of secure service compositions”, in Journal of

Software: Practice and Experience, vol. 47, pp. 1923–1943, 2017. DOI:
https://doi.org/10.1002/spe.2513.

[19] G.N. Rai, G.R. Gangadharan, “Model Checking Based Web Service
Verification: A Systematic Literature Review”, in IEEE Transactions on
Services Computing. DOI: 10.1109/TSC.2018.2845401.

[20] M. H. Beek, A. Bucchiarome, S. Gnesi, “A Survey on Service
Composition Approaches: From Industrial Standards to Formal
Methods”, in Technical Report, 2006.

[21] A. Charfi, M. Mezini, “Aspect-Oriented Web Service Composition with
AO4BPEL”, in Web Services, ECOWS 2004, vol. 3250, pp. 168-182.
DOI: https://doi.org/10.1007/978-3-540-30209-4_13.

[22] Z. Shen, J. Su, “Web service discovery based on behavior signatures”, in
2005 IEEE International Conference on Services Computing, vol. 1, pp.
279-286, 2005. DOI: 10.1109/SCC.2005.107.

[23] L. Chung, J.C.S. do Prado Leite, “On Non-Functional Requirements in
Software Engineering” in Conceptual Modeling: Foundations and
Applications, pp. 363-379, 2009.

[24] ISO/IEC9126-1:2001, “Software Engineering – Product Quality-Part1:
Quality Model”, 2001.

[25] ISO/IEC25010:2011, “System and Software – System and Software
Quality Requirements and Evaluation Engineering: System and
Software Quality Model”, 2011.

[26] M. Galster, E. Bucherer, “A Taxonomy for Identifying and Specifying
Non-functional Requirements in Service-oriented Development”, in
IEEE Congress on services, pp. 345-352, 2008. DOI:
10.1109/SERVICES-1.2008.51.

[27] D. Mairiza, D. Zowghi, N. Nurmuliani, “An investigation into the notion
of non-functional requirements”, in ACM Symposium on Applied
Computing, pp. 311-318, 2010. DOI:https://doi.org/10.1145/1774088.
1774153.

[28] M.M. Hasan, P. Loucopoulos, M. Nikolaidou, “Classification and
Qualitative Analysis of Non-Functional Requirements Approaches”, in
Enterprise, Business-Process and Information Systems Modeling, vol.
175, pp. 348-362, 2014.

[29] S. Elfirdoussi, Z. Jarir, M. Quafafou, “Ranking Web Services using Web
Service Popularity Score” in International Journal of Information
Technology and Web Engineering, vol. 9, pp. 78-89, 2014. DOI:
10.4018/ijitwe.2014040105.

[30] S. Elfirdoussi, Z. Jarir, M. Quafafou, “Discovery and Visual Interactive
WS Engine based on popularity: Architecture and Implementation”, in
International Journal of Software Engineering and Its Applications, vol.
8, pp. 213-228, 2014. DOI: 10.14257/ijseia.2014.8.2.21.

[31] D.G. Firesmith. “Engineering Security Requirements” in Journal of
Object Technology, vol. 2, 2003. DOI: 10.5381/jot.2003.2.1.c6.

[32] G. Behrmann, A. David, K.G. Larsen, “A Tutorial on UPPAAL”, in
Formal Methods for the Design of Real-Time Systems, pp. 200-236,
2004. DOI: 10.1007/978-3-540-30080-9_7.

670 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Works and Motivation
	III. Deep Analysis on Service-Oriented Behavioral Non-Functional Requirements
	IV. Deep Analysis on Quality-of-Service Non-Functional Requirements in the Service Composition
	V. Proposed Approach
	A. Modeling Phase
	1) States: Each state is composed of a label which is a non-unique string attribute, and a type to describe whether it is a start, intermediate or final state.
	2) Transitions: Each transition is identified by two key elements: the source state and the target state. The source state is the state launching the transition, while the target state is the reached state using that transition. Three more attributes can d�
	3) Behavioral scopes: The behavioral scopes are used to specify the states concerned by the behavioral requirement to integrate. They are identified using a string attribute in the form of a regular expression to describe the behavioral signature, in addit�
	4) Quality scopes: The quality scopes are used to define quality restrictions over discovered concrete services. They are identified using three key elements: a) the quality metrics which are the supported quality properties depicted in Table II, b) the me�

	B. Behavioral Requirements Integration Phase
	C. Verification Phase
	D. The QoS-oriented Service Selection Phase

	VI. Illustrative Scenario
	VII. Conclusion and Future Research Directions
	References

