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Abstract—Vehicle detection and classification are necessary 
components in a variety of useful applications related to traffic, 
security, and autonomous driving systems. Many studies have 
focused on recognizing vehicles from the point of view of a single 
perspective, such as the rear of other cars from the driving seat, 
but not from all possible perspectives, including the aerial view. 
In addition, they are usually given prior knowledge of a specific 
kind of vehicle, such as the fact that it is a car, as opposed to 
being a bus, before deducing other information about it. One of 
the popular classification techniques used is boosting, where 
weak classifiers are combined to form a strong classifier. 
However, most boosting applications consider complex 
classification problems to be a combination of binary problems. 
This paper explores in detail the development of a multi-class 
classifier that recognizes vehicles of any type, from any view, 
without prior information, and without breaking the task into 
binary problems. Instead, a single multi-class application of the 
GentleBoost algorithm is used. This system is compared to a 
similar system built from a combination of separate classifiers 
that each classifies a single vehicle. The results show that a single, 
multi-class classifier clearly outperforms a combination of 
separate classifiers, and proves that a simple boosting classifier is 
sufficient for vehicle recognition, given any type of vehicle from 
any perspective of viewing, without the need of representing the 
problem as a complex 3D model. 

Keywords—Vehicle detection; vehicle recognition; multiclass 
learning; boosting; GentleBoost 

I. INTRODUCTION 
The detection and classification of vehicles are essential 

steps in many important applications, including autonomous 
driving systems, traffic flow prediction for transport 
management, vehicular safety, criminal tracking, and 
intelligent transportation systems with implementations that 
range from security surveillance to traffic monitoring during 
the Hajj season, impacting millions of pilgrims at a time. 
Coupled with the fact that cameras and imaging technology 
have seen massive improvements in recent years, on-road 
vehicle detection has become an active research area with 
valuable progress for close to a decade. 

A large number of vehicle detection studies concentrate on 
vehicles seen from a specific view or perspective, such as the 
rear view of vehicles as they appear from the ego vehicle’s 
driving seat, or from a camera mounted on the ego vehicle. 
There are different forms of classification that can be used to 
detect vehicles: multi-view classification, which recognizes the 
same vehicle from different viewing perspectives or poses; and 

multi-class classification, which recognizes vehicles in spite of 
variations in their shapes and sizes, based on belonging to 
different classes, such as buses and cars. There are systems that 
have been designed to recognize objects from different views, 
but they are often generalized object detectors [1], or else they 
focus either on vehicle detection through multi-view 
classification [2], or else through multiclass classification [3], 
[4]. But so far there have not been many serious studies on 
vehicle detection that support both multi-view and multi-class 
applications. 

This paper will explore the development of a system that 
recognizes vehicles both across views as well as across classes, 
using cascaded boosting. 

First introduced by Viola and Jones [5] to detect human 
faces, the cascaded boosted classification is one of the popular 
techniques in use for vehicle detection and recognition. It 
reaches high levels of classification accuracy by using weak 
classifiers which individually have low accuracy, but which are 
combined together to produce a strong classifier. 

Studies in the concept of boosted classification began in the 
1990s [6], and have since been picked up by researchers and 
applied to a rich variety of problems across different fields. 
Breiman, an expert in machine learning, claimed that 
“Boosting is the best off-the-shelf classifier in the world.” [7]. 

Many vehicle detection systems have been built using 
boosted classification as well. These are often developed with 
different variations in the features used for classification, the 
exact boosting algorithm implemented, or an efficient 
combination of the features and the boosting classifier. 
However, the vast majority of these systems remain confined 
to binary classification; hence they often address simple 
questions as well. Two such questions would be: “is this 
vehicle a so-and-so model?”, or “is this object a car from the 
rear view?” Note that questions like these are either (a) 
answered with a-priori information, or (b) limited in scope. For 
example, the first question was already provided with 
information that the object was a vehicle, and the second asked 
whether an object was the rear-view of a car, but not whether it 
was a car given any view of it. 

This paper will attempt to recognize vehicles in a real-
world scenario, using multi-class boosted classification, with 
no a-priori knowledge. That is, our system must be able to 
answer the complex question of whether an object is a vehicle, 
irrespective of (a) what type of vehicle it is (car, truck, bus), 
and (b) what perspective it is viewed from. In order to do this, 
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we will extend the binary classification problem to m-ary 
classification. 

The rest of this work is organized as follows. Related 
literature is presented in Section II, starting from an overview 
of the field of object detection, then focusing on vehicle 
detection in particular, and then briefly covering work on 
mutli-class classification. Section III highlights the 
contribution of this paper. The approach and system modeling 
of our study are described in detail in Section IV. The Boosting 
algorithm will first be introduced, followed by the formal 
modeling of our system, and then the two approaches that we 
take towards achieving Vehicle Classification. Section V 
describes the experimental setup, the tools, the data and the 
method in detail; and Section VI presents the experimental 
results and discussion. Section VII concludes this paper. 

II. RELATED WORK 

A. Background 
Object detection is a vast field within computer vision. 

With wide applications across robotics, control systems, 
security systems and automation, much research has been 
conducted in order to develop systems that can recognize vast 
arrays of objects from a single image. The problem is 
challenging, but progress has been made towards systems that 
can recognize limited numbers of objects. 

Vehicle detection is one specific application of object 
detection that has seen notable progress in the past decade. 

Methods of detecting vehicles in computer vision broadly 
fall under two categories: motion-based and appearance-based. 
Motion-based methods require an input of a stream of images, 
and they recognize the movement of vehicles against a 
stationary background. Whatever does not change – or changes 
slowly – over the image stream is taken to be the background, 
with the remaining objects being considered as moving objects. 
Motion-based methods are useful for applications such as 
driving assistance systems, where the vehicle is running live on 
the road and has access to a stream of input images, or for 
automated driving [8], [9], [33]. 

However, the drawback of motion-based methods is that 
they can work only given a stream of images, but not with 
individual, static images. This limits their application since 
there are many instances in traffic surveillance or crime 
tracking when a stream of images is not available as input. In 
addition, the majority of the motion-based approaches in the 
literature are useful from the point of view of the ego vehicle or 
a fixed camera. 

Appearance-based methods are able to detect objects based 
on their appearance in a single, static image. Given efficient 
algorithms, they can also be used in real-time applications in 
the same way that motion-based methods can be used, utilizing 
continuity of motion to further enhance performance. While the 
literature has explored appearance-based methods also from the 
point of view of the ego vehicle, it has also been used 
extensively to detect vehicles from other angles. 

In addition to traffic surveillance, criminal detection 
requires vehicle recognition too, and not only from the ground 
but often from high altitudes, and over different environments. 

While aerial view vehicle detection exists [10], it is specific to 
that application and not focused on accurate detection from the 
ground view. 

This paper describes a system that is capable of recognizing 
different classes of vehicle, across different environments, and 
from different views -– aerial or ground. 

B. Vehicle Detection 
Under the appearance-based paradigm, different methods 

have been adopted for vehicle detection.  We mention a few 
prominent ones below. 

Behley et al [11] used a mixture model of bag-of-words 
representation of segments to classify segments from given 
input images. The system was specific for laser-based images 
and was particularly applicable to driving assistance for cars 
equipped for laser scan images. 

Part-based models have also been used in vehicle detection, 
where the individual parts of a vehicle are used to detect the 
whole. This idea was used by Felzenszwalb et al [2] and Ye Li 
et al [12]. Felzenszwalb et al used latent Support Vector 
Machines to train mixtures of multi-scale, star-structured part-
based models, relative to the “root” of the object. The parts 
were determined at a higher resolution using finer filters, while 
the root was detected using a coarse resolution. Scores were 
calculated to measure the relative distance of the parts from the 
root, using a feature pyramid representing the input image at 
different scales. While this method is capable of detecting 
vehicles despite variations including pose, it is limited to a 
range of angles, since deformable parts are not visible at all 
angles of a vehicle. For instance, the top or the side pose of a 
car are very different from the front view, and the detection of 
these views was not explored. 

Similarly, Ye Li et al [12] used part-based models as well, 
using two-part vehicle models with a focus on tackling the 
occlusion challenge. The study focuses on urban environments 
and on vehicles in limited poses, while our work focuses on 
vehicles in multiple poses and across multiple environments. 

Several other approaches have been used [13], [14], [15], 
[16], but one of the prominent approaches remains the boosted 
classification approach [6]. 

Boosted classification emerged as a powerful method of 
object detection after the instrumental work on face detection 
by Viola and Jones [5]. The Viola-Jones classifier gained its 
power and popularity by using classifiers which were 
individually only slightly more accurate than 50%, and hence 
did not require complex computations, but which together 
created a robust classifier when combined. Various boosting 
mechanisms have been used in vehicle detection as well, such 
as [17] and [18] that used online boosting, [19] and [34] which 
employed Adaboost including for active learning, and the 
various boosting studies in [20]. 

However, most of these methods have been focused on the 
detection of vehicles in limited poses and from limited 
perspectives, with the most common being vehicle rear-view 
detection from the perspective of the ego vehicle. 
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C. Boosted Classification for Object Detection 
Aside from vehicle detection in particular, multi-class 

classification in the context of general object detection has 
been studied earlier. Torralba et al [21] trained images using 
JointBoost, which employs GentleBoost for training but with 
shared stumps among classes. The shared feature-learning was 
introduced to take advantage of the similarity of object features 
during multi-view classification, which reduces the space and 
time complexity for learning individual binary classifiers. On 
the other hand, using shared regression stumps reduced the 
precision of intra-class classification. 

Shalev-Shwartz et al [22] followed a similar approach, but 
used different heuristics per boosting round in order to improve 
intra-class classification. 

However, in both cases, the multi-class classification 
problem was still fundamentally treated as a combination of 
binary classifiers. 

III. CONTRIBUTION 
This work explores the development of a comprehensive 

vehicle classification system. Its contributions are three-fold. 

First, multi-view vehicle classification will be attempted for 
the first time using multi-class Gentle Boosting, where most 
other studies on vehicle detection have traditionally 
implemented boosted classification by dividing the problem 
into binary problems, rather than treating it as an m-ary 
problem. 

Secondly, the system will detect vehicles across two major 
dimensions: vehicle class, where the classes consist of (i) cars, 
and (ii) big vehicles; and vehicle perspective, or view. This 
system considers 25 likely perspectives for each vehicle, 
starting with the horizontal rear view of the vehicle, and 
moving around the vehicle with different angles of inclination, 
until the final top view. Most other studies focus on classifying 
the view of cars only, or they focus on different vehicle classes 
but from a single viewpoint. 

Thirdly, since the literature tends to study techniques 
intended to tackle the individual issues related to vehicle 
detection, such as detection in spite of occlusions, a paper that 
comprehensively describes the implementation of a vehicle 
classification system will be a valuable contribution to the field 
of vehicle detection at this point. 

IV. APPROACH AND SYSTEM MODEL 

A. Boosting 
This paper describes the implementation of a multi-class 

boosting classifier for vehicle detection that treats the problem 
as inherently multi-class, rather than breaking it down into 
binary problems. 

Boosting algorithms have been used for multi-class 
classification before. But before addressing multi-class 
classification, let us make a quick review of the basic boosting 
algorithm for binary problems. 

Adaboost is one of the most basic boosting algorithms and 
was proposed by Freund and Schapire [6]. 

The crux of the algorithm is to use many weak learners, or 
classifiers with accuracy slightly better than 50%, and to 
combine them to build a strong classifier. The performance of 
weak classifiers are improved over a number of rounds on a 
given dataset, by noting which classifiers generated errors in 
previous rounds, and adjusting weights on misclassified 
training samples in order for the weak classifiers to “improve” 
classification in subsequent rounds. 

AdaBoost, for a binary problem, is presented below as 
Algorithm 1 [23]. 

Algorithm 1 Discrete AdaBoost 

1. Start with weights wi = 1/N, i=1,...,N 

2. Repeat for m = 1,2,...,M: 

(a) Fit the classifier fm(x)∈ {-1,1}, using weights wi on the 
training data. 

(b) Compute errm = Ew[1(y≠ fm(x))], cm=log((1-errm)/errm) 

(c) Set wi← wi exp[cm1(y≠ fm(xi))], i=1,2,...,N, and renormalize 
so that Σ i  wi=1.  
3. Output the classifier sign [ΣMm=1 cm fm(x)]. 

In this algorithm, N represents the number of training 
samples, which are pairs of data points xi and its corresponding 
true class yi, which can be either -1 or 1. Training data is input 
as (x1, y1), ..., (xN, yN). M is the number of weak classifiers, 
f1(x), ..., fm(x), each of which can output either 1 or -1. Ew is 
the expectation of training data of weights w=(w1, ..., wN), and 
1{(S)} indicates the set S. 

At the beginning of the algorithm, all training samples are 
given equal weights. Then, for each weak classifier fm(x), a 
constant, cm, is computed to generate a weight for each data 
point, based on the error of the classifier. New weights are then 
calculated for each training sample in such a way that those 
samples that were misclassified have their weights increased 
by a factor that depends on the weighted training error. 

The strong classifier, F(x) is defined as the sum of the 
products of cm and fm, a linear combination of all the weak 
classifiers. The final prediction is sign(F(x)). 

However, because Adaboost concentrates weight 
exponentially on misclassified samples, it becomes sensitive to 
noise. In order to address this problem, GentleBoost was 
proposed [23]. It successfully overcomes the noise-sensitivity 
issue by updating the weak classifiers in bounded steps, rather 
than unbounded steps. GentleBoost classifiers are regression 
functions that return class probability estimates, which are then 
used in a factor for computing new weights to update the 
functions. 

683 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 3, 2021 

The GentleBoost algorithm is reproduced below in 
Algorithm 2. 

Algorithm 2  Gentle AdaBoost 
1. Start with weights wi = 1/N, i=1,...,N, F(x) = 0. 

2. Repeat for m = 1,2,...,M: 

(a) Fit the regression function fm(x) by weighted least-squares 
of yi  to xi  with weights wi. 

(b) Update F(x) ←  F(x) + fm(x). 

(c) Update wi← wi exp[-yi fm(xi)), and renormalize.  

3. Output the classifier sign[F(x)] = sign[ΣMm=1 fm(x)]. 

Multi-class classification using boosting algorithms was 
traditionally implemented by breaking a single problem down 
into binary classifications of many problems. Then final class 
selection was then made using comparisons among the 
selections of all the different binary classifiers. 

This could be done using three techniques: 

1) One-versus-all appraoch. [24] This approach takes a 
single class as the base class which each of the other classes is 
paired up against to form a binary problem. After all the 
binary problems have made predictions, the prediction with 
the highest score is chosen. 

2) All-versus-all appraoch. [24] In this case, given N 
classes, N(N-1) classifiers are built, with one classifier for 
each combination of binary pairs that the problem can be 
decomposed into. Note that classifiers need to be trained to 
distinguish the object they are built to classify, separately from 
objects not of that class. Therefore they are generally trained 
on sets of positive samples of data, and negative samples. In 
the case of a car-classifier, positive samples would comprise 
data or images that represent cars, while negative samples 
might comprise data related to bicycles, people, or animals. In 
the All-versus-All approach, if fij is taken as the classifier 
where class i consists of positive examples and class j samples 
are negative, then the final classified result is: 

f(x) = argmaxi(Σi fij(x)) 

3) Error-correcting codes. [25] This approach looks at the 
task as a decoding problem, where the correct output class is 
transmitted over a channel. A matrix representing the true 
prediction of each for each binary classifier is used as a 
reference of codewords against which the true class of the 
problem is then decoded. 

Among the notable boosting algorithms for multiclass 
classification are: 

1) Adaboost.MH. [26] – This is an implementation of the 
One-versus-All approach among several binary classifiers. 

2) SAMME. [27] – This too is based on the original 
AdaBoost algorithm. However, it improves on Adaboost.MH 
by generically extending the algorithm to a multiclass problem 
without breaking down into binary problems. 

3) GAMBLE [28] – “Gentle Adaptive Multiclass Boosting 
Learning''. In the same way that SAMME generalizes 
AdaBoost.MH to the multiclass problem, GAMBLE is the 
generalization of GentleBoost.MH. It uses Quasi-Newton 
smoothing on the loss function. 

4) GentleBoost.C. – This  is also a natural multiclass 
extension to GentleBoost, but offers an improvement over 
GAMBLE because of the introduction of a new, smooth loss 
function, C-loss, which also incorporates conditional class 
probabilities. [29] Because of its greater robustness and 
insensitivity to noise, we use Gentleboost as our boosting 
framework, and in particular we implement Gentleboost.C. 

B. Problem Formulation 
We start by defining some important terms used in the rest 

of this paper: 

• Class: The type of vehicle Car or Big Vehicle, such as a 
bus or truck. 

• View: The view/perspective of vehicle. The total 
possible views explored in this paper are presented in 
Table I. 

• Environment: The physical environment of the vehicle, 
i.e. “city” or “desert/mountain”. 

• HoG: “Histogram of Oriented Gradients” (HoGs); these 
are the features that our system uses to represent the 
vehicles, based on the changes in color intensity in the 
image. The HoG features of an image are computed by 
first dividing the image into equal blocks, and then 
computing the orientation of the gradients in each. This 
shows how color levels change in different locations 
within the image. The information from each block is 
then concatenated to form a feature vector of oriented 
gradients. HoG descriptors were introduced by Dalal 
and Triggs [30] for the detection of humans in images, 
and have since become one of the standard and oft-used 
features for object detection and classification. 

From [29], we model our problem as a multiclass extension 
to the binary GentleBoost algorithm. 

Let training data X consist of xi...xn observations, where n is 
the number of training data samples. X represents the feature 
vectors of the observations. While any set of features could be 
used, in our implementation, we use HoG features. Each 
observation, xi, is provided with its response y, indicating its 
true class, which is a combination of what kind of vehicle it is, 
and from which view is it being seen. Two possible examples 
of what a true class might represent are: 

• (vehicle: car, azimuth: 000, angle of inclination: 00) 

• (vehicle: bus, azimuth: 045, angle of inclination: 30) 

Let m be the total number of classes that the data can be 
classified into. 

The multi-class classification task is modeled as a 
combination of linear, weighted regression problems, where 
each class represents one regression function. The regression 
parameters represent the features in each observation. The 
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regression weights are calculated using a multiclass C-loss, 
which is a smooth coherence loss function described in [31]. C-
loss is superior to regular hinge loss or logit loss not only 
because of its statistically desirable properties but because it 
encapsulates conditional class probabilities. 

In the spirit of boosting algorithms, the regression 
parameters are fine-tuned over a number of boosting rounds. 
Each round generates a weak classifier, which additively 
influences the classifiers of the next round, until we have 
completed H boosting rounds of our choice, to arrive at the 
final strong classifier. 

The algorithm, GentleBoost.C, is listed at the end of 
Section V. 

We implement GentleBoost.C for each of the two 
classification approaches that we adopt, explained below. 

C. Two Approaches 
Based on previous work by Viola and Jones [5], each view 

will require its own separate classifier. Training a single 
classifier with samples of all views of one object is likely to 
result in poor recognition [32]. 

Given our problem, we would like to see which level of 
detail is required to distinguish between views for accurate 
vehicle detection. We start with 25 views of the vehicle, and 
reduce the number of views until we reach the number that 
produces optimal results. We refer to this number as V. 

The problem of complete detection can then be approached 
in two ways, illustrated in Fig. 1 and described below: 

• Combine |C| vehicle class classifiers. Given an image, 
the system runs separate classifiers to identify the class 
of a vehicle, c ∈ C, which independently vote on the 
view of the assumed class. Take for instance the case of 
C = {car, bus, truck}, (so that |C| = 3) and V=25, so that 
there are 25 views per vehicle class. First the 25-view 
car classifier will generate confidence scores for each 
view given an image, followed by the bus classifier and 
then the truck classifier. With each classifier providing 
its own confidence measure of the possible view of the 
given vehicle, we normalize the scores from each 
classifier in order to make a final decision based on all 
the scores combined, and we select the view and class 
with the highest score. 

• Build a single V × |C| multi-class classifier. In this case, 
a single V × |C|-class classifier is used to classify 
objects in a single step. So in the case of 3 vehicle 
classes and 25 views, this classifier would be built to 
distinguish between 25×3 = 75 possibilities, each 
possibility being a combination of vehicle class and 
view, plus one more possibility: not-a-vehicle. This 
particular case would therefore call for a 76-class 
classifier. 

A third approach was considered, which first classifies the 
view of an image given |V| views, and then determines which 
of the |C| classes it belongs to. This approach was found not to 
be a viable option based on the HoG-based method employed 
(Section D: Method), which necessitates that objects of interest 

across different images must be somewhat similar in size and 
position, relative to each image’s center. Because large 
vehicles such as trucks and buses occupy images very 
differently from cars, then a classifier trained on images of cars 
and trucks would perform poorly, despite all vehicles being of 
the same view. 

 
Fig. 1. Two Approaches to Multi-Class Vehicle Classification. 

V. CONTRIBUTION 

A. Experimental Setup 
Our training data consisted of equally sized images of cars, 

buses and trucks, in different environments, in all their 
different views. The testing dataset comprised of similar data 
not present in the training samples. (Details are presented in 
Section C: Data Used). 

In the first phase of our work, we determined the number 
V, i.e. how many views would be optimal for the classifier. 
Different sets of views were proposed (such as all 25 views of 
a vehicle, or only 11 views, and so on). These were proposed 
based on eyeballing the similarity among different sets of the 
25 views: in spite of different azimuths and angles of 
inclination, some different views appeared somewhat similar 
and could potentially be collapsed into a single view. A 
randomly chosen subset of the training data was used to train a 
different classifier for each set of views proposed. 

The accuracy for each classifier was recorded in order to 
determine which set of views yielded the best results. This final 
number of views was then used to train the full system in both 
of its approaches. 
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The full system was then evaluated against the test dataset 
(details in Section C: Data Used), and its results were 
compared against a baseline system, built using AdaBoost. 
This baseline and the results of the comparison are discussed 
further in Section VI: Results. 

B. Tools Used 
Given that training data would be difficult to obtain from 

the real world, owing to our specific requirements of vehicle 
models and classes, we opted to create 3D simulations. 
Sketchup, a 3D modeling software from Trimble, was used to 
create several models of vehicles in city and desert 
environments. Vehicle models were obtained either from the 
3D Sketchup Warehouse or the Podium Browser. Sketchup 
was extended using SU Podium to render photorealistic images 
of the vehicle models. 

The multiclass classification algorithm was written in 
Python, using the following libraries: Numpy (for all array 
manipulation), statsmodels (for weighted least squares 
regression), scikit-image (for extracting HoG features), and 
scikit- learn and OpenCV (for some utility functions). 

C. Data Used 
As mentioned above in Section B: Tools Used, 

photorealistic 3D images were generated for our experiments. 
However, any dataset of real-world images could be used as 
well, if it covered as comprehensive a range of views, vehicles 
models and classes, as we propose in this paper. The raw 
images simulated for this paper were 1300×600 pixels each, of 
single vehicles. Vehicle models were randomly assigned three 
possible backgrounds: City1, City2, Desert1. There were 
initially three classes of vehicles (car, bus, truck), nine models 
per class (such as Honda Civic or Ford Fiesta for car models), 
and 25 views per model.  

The 25 views are shown in Table I, where each image has 
its azimuth labeled below it. 

This produced 675 images of vehicles. In addition, some 
images with vehicles that had low contrast against the 
background were duplicated on monochrome or transparent 
backgrounds. With duplicates included, the total of raw vehicle 
images for training was 707.  

326 negative samples were created from various city streets 
and desert scenes taken from the internet. 

Once obtained, all samples were sheared and rotated to 
create further samples in order to simulate more data. This 
resulted in approximately 1000 samples per view. Table II 
below lists the complete training data used. 

For testing data, an additional car model was simulated 
through the seen 25 views to create 25 raw images, and was 
further sheared and rotated to form a total of 90 images. For 
trucks, buses and negative samples, however, some images 
were simulated in unseen views from existing models and 
some were taken from the internet, due to time limitations. 
This combination of simulated and real-world images proved 
important: we note, in Section VI, that there is a difference in 
the classification results on simulated images as opposed to the 
results on a combination of images that are simulated or taken 
from the internet. This difference gives us an insight into the 
performance of our system on testing data that is similar to the 
training data versus data that is not. 

In total, 90 test images were produced for each vehicle 
class, resulting in a training to testing ratio of 1: 0.3 in terms of 
raw images. 

Table III lists the number of unseen samples of cars, buses, 
trucks, and negatives in the test dataset. 

TABLE I. 25 VEHICLE VIEWS: ANGLES OF INCLINATIONS AND AZIMUTHS 

Inclination: 00 

 
000 

 
045 

 
090 

 
135 

 
180 

 
225 

 
270 

 
315 

Inclination: 30 

 
000 

 
045 

 
090 

 
135 

 
180 

 
225 

 
270 

 
315 

Inclination:60 

 
000 

 
045 

 
090 

 
135 

 
180 

 
225 

 
270 

 
315 

Inclination: 90 

 
000 
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TABLE II. TRAINING DATASET 

 Class Raw Images Processed Totals 

Positives Car 243 25277 

 Bus 239 24877 

 Truck 225 23466 

Negatives City/Desert 326 979 

TABLE III. TESTING DATASET 

Cars Buses Trucks Negatives 

90 90 90 48 

D. Method 
The classification depends on extracting HoG features, 

which may produce feature vectors of different sizes depending 
on different HoG configurations, such as number of blocks that 
images were divided into, number of orientation bins, and so 
on. For calculation purposes, it was necessary to ensure that 
each feature vector extracted from an image was the same size. 
Hence, all training samples were cropped to an aspect ratio of 
2:1 and were resized to 100×50 pixels. As suggested by 
Felzenszwalb and et al. [2], HoGs of 9 orientation bins, 8×8 
pixels per cell with one cell per block were extracted. This 
generated a total of 648 features per image. 

In order to build our classifiers, it was necessary to 
determine V, the optimal number of views to model. For this, a 
subset of the training data was used, with 2187 samples for 
cars, 2025 for trucks, 2151 for buses, and 978 negative 
samples. 

A number of sets of views were proposed, shown in Table 
IV, and the classification accuracy on the 90-image test dataset 
for cars was recorded for each. The results, in Table V, showed 
that the selection of 15 views produced the highest accuracy. 

The classification accuracy of trucks did not change, but 
the improvement for buses implied that 15 views was in fact a 
suitable choice. Hence, V was set to 15. Views were labeled 
from 0 to 15 in the order matching the angles and azimuths 
shown above in Section C: Data Used. 

To ensure that this number improved accuracy across 
different types of vehicles, a subset of buses and trucks were 
also trained and classified on Sets 1 and 2. 

Having concluded that the optimal number of views, V, 
was 15, three 15-view classifiers were trained, and one for each 
class of vehicle (car, bus, truck). This was for Approach 1, 
where separate classifiers were trained and then their combined 
scores compared. Each of these classifiers comprised 16 
classes: 1 class to represent not-a-vehicle, and 15 to represent 
each of the different views of a vehicle. 

For Approach 2, a single, 46-view classifier was trained. 
Again, one class was left for not-a-vehicle, and 45 classes were 
used for each of the different vehicles and their views. Table 
VI lists the results. 

Classification accuracy refers to the classification of view 
(angle and azimuth). The Vehicle recognition accuracy refers 
to the classifier’s ability to recognize the class of the vehicle, 
(i.e. that it was a car). The confusion matrices are in Table VII. 

These results showed a clear trend in the accuracy of the 
classifiers. The cars’ classifier performed best, followed by the 
buses’ classifier, while the trucks’ classifier had the poorest 
performance. 

An analysis of the confusions revealed that the views of 
buses, to a certain extent, and trucks to a larger extent, were 
difficult to distinguish when the vehicles stood pointing to the 
left or to the right. Both classifiers had trouble in distinguishing 
the front of the big vehicle from its back. 

The full test dataset was used to test Approach 1 (of 
separate classifiers) and compare it with Approach 2 (of a 
single classifier). 

TABLE IV. CLASSIFICATION ACCURACY FOR DIFFERENT SETS OF VIEWS  
OF CARS 

Views Details Accuracy 

All 25 Views None 91.1% 

15 Views 

0 degree inclination views 045, 090, 135 
were collapsed into one view, “left”. 
Corresponding views for the “right” 
direction were collapsed. Additionally, no 
distinction was made between angles of 
inclinations 30 and 60 for views 45, 90, 
135, 225, 270 and 315. 

97.3% 

13 Views (1) 

0 degree inclination views 045, 090, 135 
were collapsed into one view, “left”. 
Corresponding views for the “right” 
direction were collapsed. 

93.3% 

13 Views (2) 

No distinction was made in a single view 
between angles of inclination 30 and 60. 
But for view 045, angles of inclination at 
30 and 60 were collapsed into one view, 
and so on. 

96.4% 

11 Views 

Views 045, 090, 135 were collapsed into 
one view, “left” for each angle of 
inclination (0, 30 and 60). Corresponding 
views for the “right” direction were 
collapsed. 

95.6% 

TABLE V. CLASSIFICATION ACCURACY FOR DIFFERENT SETS OF VIEWS 
OF BUSES AND TRUCKS 

 Buses Trucks 

25 views 68.8% 80.3% 

15 views 82.7% 80.3% 

TABLE VI. PERCENTAGE ACCURACY OF INDIVIDUAL, 15-VIEW 
CLASSIFIERS 

 View Classification 
Accuracy 

Vehicle Recognition 
Accuracy 

Cars classifier 92.2 100.0 

Buses classifier 71.1 93.3 

Trucks classifier 46.7 71.1 
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TABLE VII. CONFUSION MATRICES OF INDIVIDUAL, 15-VIEW 

 

Cars model 
(on cars’ data) 

 

Buses model 
(on buses’ data) 

 

Trucks model (on trucks’ data) 

For Approach 1, each classifier was given a vehicle image 
for which it generated confidence scores per view. Min-max 
normalization was then used to allow these scores to be 
compared across classifiers, and the highest score was selected 
to represent the final chosen class. The accuracy of this 
combined model was then compared with that of a single, 46-
class classifier. 

Tables VIII and IX compares the results of each approach, 
followed by the confusion matrix of the 46-class classifier in 
Fig. 2. 

TABLE VIII. VEHICLE RECONGITION ACCURACY 

 Cars Buses Trucks 

46-class model 93.3 71.1 40.0 

Combined models 85.6 42.2 42.2 

TABLE IX. VIEW CLASSIFICATION ACCURACY. N-V REPRESENTS THE 
CLASS NOT-A-VEHICLE 

 Cars Buses Trucks N-V Overall 

46-class 
model 91.1 55.6 24.4 64.4 58.2 

Combined 
models 81.1 34.4 66.7 68.8 51.6 

 
Fig. 2. 46-Class Model (on Full Test Data). 

The accuracy drop of the classifiers when dealing with big 
vehicles was not only because of the trouble in distinguishing 
the front of a truck or bus from its back, but it was found that 
33% of the errors in identifying trucks was caused by a 
confusion with identifying trucks as buses, and that 44% of the 
errors in identifying buses was caused by the converse. 
Examples of the confusions are shown in Fig. 3 and 4. 

The greatest number of common confusions for both buses 
and trucks were in distinguishing whether they were facing 
towards the left or the right, i.e. at azimuths of 90 or 270. 

  
Fig. 3. Confusion between Trucks in Similar Positions based on Difficulty in 

Distinguishing the Front of the Vehicle from the Back. 

  
Fig. 4. Confusion between Trucks and Buses in Similar Positions. 

Given the above results, buses and trucks would best be 
compressed into one class, Big Vehicles. Therefore the training 
data for buses and trucks was re-processed to produce the data 
displayed in Table X. The individual Cars’ classifier retained 
15 views, which were labeled from 1 to 15, with the 0 label 
used to refer to not-a-vehicle. 

However, for the big vehicles, the views of vehicles 
standing facing left and right were compressed into one view. 
Therefore the Big Vehicles classifier was trained on 14 views, 
and one class for negatives. 

For Approach 2, the single classifier was trained on 29 
views. In this classifier, view 0 represented not-a-vehicle; 
views 1 to 15 represented the different views of a car, starting 
from a zero-angle of inclination and zero-azimuth; likewise, 
views 16 to 29 represented the views of a big vehicle. All the 
classifiers were tested on the same test data as before. The 
results are shown in Section VI. 
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TABLE X. UPDATED TRAINING SET 

 Class Raw Images Processed Totals 

Positives Car 243 25277 

 Big Vehicles 232 24177 

Negatives City/Desert 326 979 

E. Limitations 
A limitation of the method chosen is based on the selection 

of HoG features, which are dependent on image dimensions. 
Therefore, the results are most reliable when the testing data 
consists of vehicles of a similar size and position relative the 
center as those present in the training data. 

A strength of the system is the use of GentleBoost as 
opposed to the more oft-used AdaBoost. This is because 
GentleBoost is not as easily affected by outliers. 

VI. RESULTS AND DISCUSSION 
The results of our system were compared against a baseline 

built using AdaBoost, in particular the SAMME.R version 
[27]. AdaBoost was chosen as a suitable comparison with our 
method because of its popularity in the object and vehicle 
detection fields [20]. The SAMME.R version is a real number-
based multiclass classifier that, like our choice of 
GentleBoost.C, is based on cascaded boosting and does not 
break the classification problem into binary decisions. 
SAMME.R also generates sound confidence scores for each 
class during classification, which was useful when comparing 
the main system against Approach 1. 

A. Individual Vehicle Models: Cars, Big Vehicles 
Table XI compares the view classification and vehicle 

recognition accuracy of the individual car and big-vehicle 
models, which were trained on images of cars and big vehicles 
respectively. Except in the vehicle recognition of big vehicles, 
the GentleBoost version has a higher accuracy than the 
Adaboost baseline. 

Tables XII to XIV compare the vehicle recognition and 
view classification accuracies of Approach 1 (combined 
classifiers) and Approach 2 (single classifier) respectively. 
Once again, the Gentleboost system outperforms the baseline. 
While the performance of the two approaches is somewhat 
similar with respect to cars, the single classifier was accurate 
72.2% of the time and outperformed the first approach 
significantly in the case of big vehicles. This difference may be 
attributed to the difference between testing data for big 
vehicles and that for cars. Recall that part of the big vehicles' 
testing data was taken from photographs on the internet, unlike 
the cars' data, which was generated entirely using a 3D 
simulator. The results suggest that the single classifier is well-
suited to situations where testing data includes samples that are 
significantly different from those in the training data, in turn 
suggesting a wider application than what the combined-
classifiers model is capable of Tables XIII and XIV show that 
all classifiers performed less accurately at View Classification. 

The GentleBoost single classifier of Approach 2 performs 
best on cars, and the baseline system, albeit with lower 
numbers, had a similar trend. 

The Gentleboost combined classifiers of Approach 1 
performed best on cars again, and lowest on big vehicles. 
However, the combined baseline models do not maintain the 
same trend as the Gentleboost classifiers. 

Table XV presents the precision of recall of both two 
approaches. Approach 2 (the single classifier approach) yields 
0.92, an improvement over Approach 1. 

Overall, Approach 2 using Gentleboost outperformed other 
classifiers in all experiments. 

TABLE XI. PERFORMANCE OF INDIVIDUAL VEHICLE MODELS (%) 

 Vehicle classification Vehicle Recognition 

 GentleBoost Baseline GentleBoost Baseline 

Cars 91.1 46.7 98.9 96.7 

Big V 72.2 58.3 89.4 94.4 

TABLE XII. VEHICLE RECOGNITION ACCURACY: SINGLE VERSUS 
COMBINED MODELS (%) 

 Cars Big Vehicles 

 GentleBoost Baseline GentleBoost Baseline 

29-class 
model 95.6 73.3 72.2 48.9 

Combined 
models 91.1 41.1 55.0 46.1 

TABLE XIII. VIEW CLASSIFICATION ACCURACY (%): SINGLE 29-CLASS 
MODEL 

 GentleBoost Baseline 

Cars 91.1 44.4 

Big Vehicles 61.1 13.3 

N-V 75.0 29.2 

Overall 71.7 24.5 

TABLE XIV. VIEW CLASSIFICATION ACCURACY (%): COMBINED MODELS 

 GentleBoost Baseline 

Cars 85.6 21.1 

Big Vehicles 48.3 26.7 

N-V 70.8 83.3 

Overall 62.3 22.3 

TABLE XV. PRECISION/RECALL 

 Precision Recall 

 GentleBoost Baseline GentleBoost Baseline 

29-class 
model 0.96 0.89 0.91 0.85 

Combined 
models 0.96 0.86 0.93 0.99 
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However, the big vehicles did not fare as well. Big vehicles 
were likely misclassified when seen in the initial views listed in 
Table I, starting with an inclination angle of 0 and azimuth of 
000. Over 10% of the errors, it was found, were confusions 
between the side views of cars versus of big vehicles, and 
likewise with front views. This suggests a trade-off between 
accurate classification of views and of vehicles. 

Although many systems explore vehicle detection in spite 
of occlusions, or from aerial views, and so on, at the time of 
writing, we do not know of other classification systems which 
recognize vehicles irrespective of view as well as vehicle class. 
No immediate comparisons could be made with the current 
state-of-the-art, since current systems often use datasets such as 
KITTI, Caltech, Pascal, or Toyota, which lack a 
comprehensive range of views. 

VII. CONCLUSION 
This paper explored the development of a vehicle classifier 

that can distinguish vehicles regardless of class or view. The 
classifier was built using a multiclass GentleBoost boosting 
algorithm trained on 648-length arrays of image HoG features. 

While 25 different views of vehicles were initially 
suggested, so many views were found unnecessary for accurate 
classification, and in fact likely to reduce accuracy. Therefore 
an optimal choice of 14-15 views was selected for training. 

Another system was built with the same data and choice of 
views, but with independent classifiers that focused on each 
type of vehicle. The classifiers’ votes were combined to choose 
the most likely class and view of a test vehicle. 

The results showed a single classifier trained over many 
classes performing significantly better than the results from a 
combination of individual classifiers trained over subsets of all 
the training data. The single classifier's performance also 
showed that this is a better choice in the event that testing data 
consists of environments and views that are very different from 
that of the training data. This is because the testing data for big 
vehicles was different from its training data, and the 
improvement of performance of the single classifier over the 
combined classifiers was most pronounced over big vehicles. 

The results also showed that large vehicles are more likely 
to be confused amongst each other than are cars, probably due 
to the dilution of dissimilar components by similar 
components. 

The experiments in this paper conclude that, without using 
complex 3D models, a simple multiclass classifier can detect 
with high precision, various types of vehicles across different 
environments, and different views of the vehicle, including the 
top, aerial view. 
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