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Abstract—The voluminous data produced and consumed by
digitalization, need resources that offer compute, storage, and
communication facility. To withstand such demands, Cloud and
Fog computing architectures are the viable solutions, due to their
utility kind and accessibility nature. The success of any
computing architecture depends on how efficiently its resources
are allocated to the service requests. Among the existing survey
articles on Cloud and Fog, issues like scalability and time-critical
requirements of the Internet of Things (1oT) are rarely focused
on. The proliferation of loT leads to energy crises too. The
proposed survey is aimed to build a Resource Allocation and
Service Placement (RASP) strategy that addresses these issues.
The survey recommends techniques like Reinforcement Learning
(RL) and Energy Efficient Computing (EEC) in Fog and Cloud
to escalate the efficacy of RASP. While RL meets the time-critical
requirements of 10T with high scalability, EEC empowers RASP
by saving cost and energy. As most of the early works are carried
out using reactive policy, it paves the way to build RASP
solutions using alternate policies. The findings of the survey help
the researchers, to focus their attention on the research gaps and
devise a robust RASP strategy in Fog and Cloud environment.
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l. INTRODUCTION

Digitalization has revolutionized anything as a service
(XaaS) on pay per usage basis [1]. With the increase in smart
handheld devices, online business, transportation, health care,
education, and food court which were once a commodity, are
delivered as a service at the doorstep of the individual. These
digital services produce and consume a variety of voluminous
data, at a rapid speed that needs to be stored for big data
analytics [2]. Consequently, enterprises depend on cloud Data
Centers (DC) to store, process, and manage their data [3], [4].

A large number of commercial Cloud Service Providers
(CSP) deliver compute, storage, and communication resources
in the form of Infrastructure as a Service (laaS) [5]. Estimating
the required amount of laaS resources and assigning the service
(tasks) for execution is termed as Resource Allocation and
Service Placement (RASP) [6][7]. Service is defined as the
actual software instance that executes a task. The terms service
and tasks are often used interchangeably [8].

A RASP framework abides by the Service Level
Agreement (SLA) made between consumer and service
provider [9][10]. SLA is the mutual agreement cum negotiation
made between the service consumer and the CSP. Providing
guaranteed resources to the consumers/applications on time

aggravates many challenges. Inaccurate estimation of available
resources, wrong forecast of workload, incorrect prediction of
required resources, deadline violation, uncontrolled energy
consumption, unexpected failures of hardware/software, SLA
Violation (SLAV) are some of the other problems encountered
by a RASP framework. Hence, a robust RASP that benefits the
consumer and the service provider in terms of their
requirements and revenue is needed.

Resources are allocated to the requesting services by either
of the three policies viz., Reactive, Predictive, or Hybrid. In
reactive policy, the initial allocation of resources is subject to
change, only after the system enters an undesirable state. The
reactive policy follows a predefined set of rules for scaling the
resources. On the other hand, the predictive (also known as a
proactive) policy, anticipates the forthcoming disruptions in
advance, and updates the resources, well before the system
enters the undesirable state [11]. It forecasts the workload and
scales the resources in advance to meet future needs. The
hybrid approach is an amalgamation of both the reactive and
proactive policy [5].

Each policy bears its own cost in satisfying the SLA. The
choice of policy purely depends upon the application and the
RASP strategy adopted. Out of the works considered from the
period 2011 to 2020, Table | shows that most of the works
were carried out in the reactive policy, which opens the
research gap in other policies to model RASP.

A. Significance of RASP in Cloud Computing

Cloud computing is an Information Technology service
model that provides on-demand computing resources over the
Internet independent of device and location [12]. The need for
online services has made the enterprises move their data and
applications to the DC, from where they are provisioned as
services to the end-user. With the proliferation of loT,
communications, among smart devices are made possible
through the cloud-assisted 10T, called a Cloud of Things (CoT)
[13]. Consequently, RA in the cloud has become inevitable to
serve 10T requests.

B. Significance of RASP in Fog Computing

Despite its huge processing capacity, the cloud suffers
latency problems when it comes to delay-sensitive loT
applications. By the time the data are sent to the cloud for
processing, the necessity to act on it might be gone, which
costs lives. Hence, a computing model like Fog, which delivers
services of the Cloud near the edge network is a better choice
for time-sensitive applications.
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TABLE I. PoLicy DISTRIBUTION OF RASP WORKsS
Reactive | Proactive | Hybrid | Total

Cloud Computing 7 5 12
Reinforcement Learning 2 5 1 8
Energy-Efficient Computing 6 4 - 10
Fog Computing 17 1 - 18
Total 32 15 1 48
Percentage 67% 31% 2%

Fog Computing (FC) is a computing paradigm where a
huge number of ubiquitous, decentralized, heterogeneous, geo-
distributed devices provide computation, storage, and
communication facility at the edge of the local network from
where the devices/objects generate and consume data [13]. It
accelerates awareness cum response to events by eliminating
RTT (Round Trip Time) to the cloud and avoids failures during
peak period. As such, not all requests are serviced in Fog.
Some of the delay-tolerant applications that involve huge
computation are processed in the cloud [14] [15]. In fact, Fog
complements Cloud to realize its potential with loT
applications.

C. Relevance of Reinforcement Learning (RL) in RASP

The design and implementation of RASP for the growing
scale of 10T, require intelligence that is far beyond the capacity
of the case-driven programming style [16]. Such programs
depend on predefined rules which is hard to change
instantaneously for the stochastic needs of 10T [17]. A robust
RASP requires an approach like Reinforcement Learning
which learns the environment (requirement and availability of
resources) and maps the appropriate action on the fly.

RL is an Artificial Intelligence-based technique that
automatically learns to make decisions under a dynamic
environment without prior domain knowledge[18]. When
service providers suffer to handle the complexity of stochastic
requests in real-time, RL-assisted RASP, delivers better service
in both Cloud and Fog.

D. Energy-Efficient Computing (EEC) in RASP for Green
Environment

The rapid growth of DC has become the highest consumer
of power that leads to the dissipation of Green House Gas
(GHG) [5]. Compute and non-compute resources incur
abundant energy waste [17],[19]. Measures taken to control the
speed of processors, frequency/voltage, and switch-off/sleep
modes, are not sufficient to reduce the effect of GHG emission
[20]. Hence, an EEC-based RASP that enables sustainability of
the Green Environment with minimal operational expenses is
required.

An illustration of the coordinating computing models is
shown in Fig. 1. It portraits the association of the Edge-Fog-
Cloud computing paradigm in association with the application
requests. The Fog Controller embeds the Reinforcement
Learning and Energy-Efficient Computing components to
achieve an efficient RASP system.
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Fig. 1. Fog-Cloud Framework.

The rest of the paper is organized as follows. Section 2
reviews the existing literature works in RASP. Section 3
analyzes the RASP works in cloud datacenters. Section 4
discusses the approaches made in RASP using RL techniques
while Section 5 presents EEC-based RASP.  Section 6
discusses the efficacy of FC in addressing loT applications and
elaborates on the existing Fog based RASP works. Then the
proposed survey concludes with a discussion on identified
research gaps that could be useful to the research and
development community in the future.

Il.  OVERVIEW OF EXISTING SURVEYS

This section analyzes the existing survey papers of RA, in
Cloud Computing, RL, EEC, loT, and Fog Computing.
Resource provisioning and application management often
exclude issues like unpredictable workload, poor utilization of
resources, and unexpected Hardware (HW)-Software (SW)
failures. The brownout paradigm that addresses such issues by
enabling/disabling the optional parts of the application was
presented in [21].

In [22] the author reviewed energy efficiency in four
dimensions: (i) Virtual Machine (VM) placement, (ii) VM
migration, (iii) Server consolidation, and (iv) Dynamic Voltage
Frequency Scaling (DVFS). In [23] the author explored energy
management techniques at the HW level, Resource
Management (RM) level, and application level. While Static
Power Management (SPM) technique was used at the HW
level, Dynamic Power Management (DPM) was tackled at the
RM level. Green Computing with renewable energy was
recommended at the application level.

Maximization of resource utilization and minimizing the
cost were the main goal of Resource Allocation (RA) in the
10T environment [24]. Scarce processing-storage capacity, low
battery level, less bandwidth, and, poor implementation of
resource management protocol were shortlisted as limitations
of 1oT. Lightweight container-based virtualization was
suggested to process and store 10T applications. Though Cloud
supports 10T, Fog computing resolves the time-sensitive-issues
of loT more diligently.

Application  placement, resource scheduling, task
offloading, and load balancing, were explored in [25].
distinguished Fog, from Multi-Access Edge Computing (MEC)
and cloud, in terms of operation mode and application
addressed [4]. In [15], the author identified the challenges
faced by Fog computing to process context-aware applications
of 1oT. In[3], RA and task scheduling were considered as one
of the key challenges in 10T. The survey suggested CloudSim,
MATLAB, and iFogSim to implement RA in Cloud and Fog.
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The author recommended container-enabled micro-services to
resolve the resource limitation problem.

I1l.  ANALYSIS OF RASP IN CLOUD COMPUTING

Cloud is a ubiquitous technology that offers infrastructure,
software, and platform as service on-demand with the least
interaction and management effort of the service provider
[26],[27]. Despite its control over the laaS management, CSP
lacks knowledge about the application hosted in their
machines. VMs of different applications overlap on physical
servers leading to catastrophic failure which is not recognized
by the CSP instantly.

Deployment of multi-tier applications is yet another
complexity, as the configuration of VMs in one tier differs
from the other causing interoperability problems [28] [29].
This section analyzes the existing RASP works in Cloud.
While certain works adapt their own architecture, others follow
the specific algorithm for the existing RASP. Table Il shows
the distribution of existing RASP articles under various
criteria.
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A. Uncertainty in Resource Availability

Unexpected HW failures, SW faults like overflow
conditions, malware, DoS (Denial of Service) attacks, and
changes in the number of objectives during execution are some
of the uncertain behavior projected in [30]. Power consumption
cost and overestimation of resources hinder the profit of the
CSP due to which certain objectives like deadline and make-
span are ignored/altered while deliberating RASP. As HW/SW
failure is unavoidable, the Neural Network based Dynamic
Non-dominated Sorting Genetic Algorithm (NN-DNSGA-II)
converges before the occurrence of the next failure. Change in
the number of objectives at runtime is tackled by a generalized
periodic change in the objective size.

B. Impact of SLA/Q0S in RASP

The applications that are hosted in DCs expect the utmost
performance in terms of low latency and high throughput
within budget and specified deadline. These performance
measures form the QoS requirements. The mutual negotiation
between the consumer and the CSP for a guaranteed QoS
results in SLA. With the growing number of laaS providers,
not only does it require expertise but is time-consuming for the
clients to select an efficient CSP.

TABLE Il.  CLASSIFICATION OF EXISTING RASP PAPERS IN CLOUD COMPUTING
Author RA Policy Problem Addressed
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Ismayilov & Topcuoglu,
C1 [30] 2020 4 v v
Cc2 [9] Soltani et al., 2018 v v v
C3 [10] Singh & Viniotis, 2017 v v v
C4 [12] Djebbar & Belalem, 2016 v v v
c5 [32] Ashraf, 2016 v v v/
C6 [29] RahimiZadeh et al., 2015 v v v
Cc7 [28] Kaur & Chana, 2014 v v 4
Cc8 [33] Agarwal & Jain, 2014 v v v
C9 [34] Espadas et al., 2013 v v v
Casalicchio & Silvestri,
C10 [35] 2013 v v v
Cl1 [36] Xu & Li, 2013 v v v
C12 [31] Islam et al., 2012 v v 4
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The RA framework in [9] follows the Technique for Order
of Preference by Similarity to ldeal Solution (TOPSIS) in
which the available laaS resources are ranked by their
similarity index concerning the application requirements. Then,
the top laaS resource was allocated to the corresponding
application.

Lack of CSP’s knowledge about the message arrival rate
and length of the Enforcement Period (EP) were the problems
encountered in satisfying SLA. To overcome the loss caused
by SLAV, a RA mechanism that allows an additional EP to
execute the unpredictable loT traffic is recommended by [10].
Execution speed and deadline were considered as primary QoS
constraints in [12].

C. Slashdot Prediction in RASP

Slashdot refers to the unpredictable flash crowd workload
on the Internet at any instant of time [31]. A sudden traffic
surge makes the RASP framework unstable. The Slashdot
effect if not addressed properly, leads to a cascade of problems
like unacceptable delay, long downtime, application
unavailability, revenue reduction, and losing the customer in
the worst case.

Conventional predictive policies turn failure as they
forecast the expected workload traffic, only a few steps ahead
during which the Slashdot effect remains invisible. The Long
Short Term Memory Recurrent Neural Network (LSTM-RNN)
technique that predicts the workload traffic/pattern a thousand
steps ahead was implemented in[32]. Based on the prediction
provided by LSTM-RNN, resource scaling was performed
without compromising SLA.

The performance of Virtualized Multi-Tier Application
(VMTA) for the unstable workload was analyzed using the
queuing network in [29]. Apache, Tomcat, and MySQL servers
were used for the front end, application, and database tiers,
respectively [33]. A Generalized Priority Algorithm (GPA) for
scheduling tasks in the cloud, consumed the least execution
time when compared to the First Come First Serve method.
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D. Need for Elasticity in RASP

Resource elasticity refers to the automatic acquisition and
release of resources at runtime to fulfill the QoS requirements
in response to the changing workload. Though the workload
traffic is predicted in advance, RA without an elasticity
component is a failure, as neither the resources are efficiently
scaled nor is the QoS met [34]. The QoS aware resource
elasticity framework for multi-tier application was modeled in
[28]. The framework employed MT-PerfMod (Multitier
Performance Module) to compute the overall response time
and resource utilization, based on which, the MT-ResElas
(Multi-Tier Resource Elasticity) module computed the SLAV
rate. Whenever the response time and the resource utilization
rate were violated, VMs were increased; otherwise, the number
of VMs was reduced by half.

E. RASP on ASP (Application Service Provider) Point of

View

The majority of RA is performed from the CSP point of
view, which reduces the preference for ASP. The ASP is
charged for the resources that were wasted due to
underutilization. Hence, an ASP (tenant) centric RA for scaling
the application was modeled in [31][34]. The knapsack
problem approach was implemented to predict the minimum
number of VMs required.

Though the maximum number of VMs required was
estimated in advance, it keeps changing depending upon the
number of active users who access the application. The
problem arises when the ASP (consumer) is charged for the
idle resources. An SLA-based RP mechanism in the ASP point
of view was presented in [35]. A framework where clients and
operators suggest their preference for RA policies was
presented in [36]. The technique described the allocation of
jobs to a machine, based on the stable matching algorithm.
Tables I1IA and 11IB tabulate the observations of the RASP
works in Cloud Computing.
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TABLE Ill.  A. ANALYSIS OF RASP WORKS IN CLOUD COMPUTING
Paper I - Performance metrics
ID Ref. | Problem addressed Objective Algorithm/Approach addressed
. Cost, energy, and resource
Unexpected Hardware- Formulate a scheduling strategy to . e
- P Neural network-based dynamic non- utility through Non-
C1 [30] ﬁ?&gfﬁrﬁglﬁf&nﬁ chgnge minimize cost, energy gnd dominating sorting genetic algorithm dominated solutions (NS),
jectives | maximize resource utility for (NN-DNSGA-I1) Schott's spacing (SS), and
at runtime periodical workflow pacing '
Hyper Volume (HV)
Architecture based- Hybridization of \
Time and cost difficulties in To build an automatic cloud service | case-based reasoning with Multi-criteria ;ﬁ?g?enedeﬂfn?;’ CSP's
Cc2 [9] cloud service selection selection framework that overcomes | decision making (MCDM) and TOPSIS storage )rlg i’on Pricg/Hr
time and cost problem (Technique for order of preferences by 0s ge, region, "
Similarity to Ideal Solutions)
Server over-provisioning approach, a,:lrlrjir\?s; /r ?; égg::ggesiA
c3 [10] Enforcement of 1oT SLA in | Conformance of SLA within policing, Weighted Round Robin (WRR) confirmgtion rate’number
the cloud environment enforcement period scheduling algorithm, rate-limiting of servers additic;nal
mechanism to enforce SLA enforcement period used
Space and Time-shared policy based on
High data management in - . deadline, length of the task, the .
c4 [12] scientific application Minimize response time execution speed of VM, and VM tree Total response time
method.
inaccuracy in thepredition | Zu 1S et | peephole connections i Mean | Response e, No.of Vs,
5 [32] gzgvﬁlgt’;is\/;ﬁleais; LA minimizes cost irrespective of Absolute Deviation (MAD) to set \’,\I\,ﬁhot];go drzgtlﬁitﬁg request
application traffic threshold '
Stochastic burst and non- Pmp?se an analytical model-based Analytical model-based queuing network | Response time, disk
C6 [29] queuing network to estimate S S
burst workload aggregated QoS metrics (M/G/1) utilization, CPU utilization.
_— . - - Architecture-based - QoS aware resource
The contradlct'lqn between M_appmg of the Q.OS gttrlbute with Elasticity framework for the multi-tier Response time < 5 secs,
c7 [28] | QoS and elasticity of minimum SLA violations thus web application. Control Theoretic based | Resource utilization > 80%
resources maximizing the overall profit scaling algorithm
Generalized Priority algorithm (GPA)
Cc8 [33] | Task scheduling Minimize execution time based on highest length cloudlet to Execution time
highest MIPS VMs
:r?dsg\ll\zle?’ E?i(ljiezra_tl:grlllf)inon tenant-based isolation, tenant-based CPU Utilization, memory
C9 [34] resources in cloud Ia(;?éicgtaid:nmlng, tenant-based VM Avrchitecture based utilization, Throughput
applications
SLA based resource Achieve SLA oriented resource Queuing model M/G/1 and M/M/m with | CPU utilization, response
C10 [35] rovisioning in cloud provision irrespective of workload autonomic QoS aware resource time, number of VMs
P 9 type provisioning required
Tasks to occupy a minimum | Develop a unified framework for . . .
Cc11 [36] | number of VMs to achieve resource management in the cloud, ﬁg?:r:r;tlonragbig%Machme stable Execution time, no of VMs
server consolidation where policies are decoupled. gp
c12 [31] Resource Prediction and Build an adaptive RM for Neural Network and Linear Regression CPU Utilization for each

Provisioning

applications hosted in the cloud.

to satisfy upcoming demands

technique
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IIDSper Ref. | Experiment Evaluation Workload Limitations
100 to 1000 tasks from Pegasus
- - - Evaluated with DNSGA-RI, workflow management that covers . .
cn | B9 if:;‘f';;('{:?cxzpe“me“t With | HMOPSO, DNSGA-II-HM. DNSGA | astronomy, physics, biology, I;‘swr‘;r(j'fc';\fg';’lpiﬁfhx';h
I1-A, and DNSGA-II-B geology, and bio-informatics P g '
dataset.
Validated with a sample application Service template of a sample Criteria for CSP selection,
C2 [9] Test bed that is to be deployed on one of the US \ce temp P resource provision, task
: application : -
regions scheduling are problem-specific
Discrete event simulator in Evaluated for a c'ilfferent'rate of traffic Two million messages per tenant Homogenous message size
C3 [10] request, change in capacity, S
C - per month limited to 512 bytes
enforcement period
ca 112 | Cloudsim Cor_npared with time/space shared Simulated with 10-50 cloudlets The reactive policy cann(_)t
policy. (tasks) scale and tolerate dynamism
CloudSim usin Compared with automatic scaling and E(;(rﬂla:fattli?;srec?fu:gzd()fr?sre time
C5 [32] ' using conventional threshold-based scaling NASA Clark net workload P P '
deeplearnig4j open source - number of the completed
techniques.
request.
Evaluate the performance of VMTA The trade-off between
c6 [29] Test bed constructed with 2 | (virtualized multi-tier applications) Rubis and Wikipedia tiers under assignments of cores to
servers, 6-VM/server through cache hit ratio, request arrival burst & non-burst workloads. domains, cache contention can
rate. be investigated.
QRE (QoS aware Resource
JMeter load tests-to measure response Elasticity) framework is
Cc7 [28] Amazon cloud watch (EC2 time & utilization, Amazon clourc)i 3-tier web applications considered a homogenous type
monitoring tool) Ll PP of VMs only. Resource
watch - % of utilization L
availability, fault tolerance can
be measured.
Cannot handle instantaneous
c8 [33] | Cloud Sim Compared with first come first serve, web service generated workload demand of resources, leads to
round-robin traces over-provisioning or under-
provisioning.
Test bed: eucalyptus cloud, Apache JMeter to create web E'al:r)]Cdv?/?ddtr? rs]::)r:'z t;ar;s;]a(;:tlons,
C9 [34] | Tomcat-based SaaS t-test statistical analysis service workloads to the Tomcat : ge.
platform deployed over it cluster transf_e r data, need to
' experiment
Amazon cloud watch (EC2 . - Wikibench- to generate workload The reactive approach cannot
C10 [35] | monitoring tool) with Mat (PAartI?ilcétsignaggr\ilicmelte?oagzr) from Wikipedia, Mediawiki for address stochastic
lab graph generation PP P backend database heterogeneous workload type
1) Test bed-prototype Correctness convergence, job-
implementation with a ontimality of muItisgta o &éferred RICC (RIKEN Integrated Cluster of
Cl1 [36] | cluster of 20 dual-core P Y g Clusters), explored for 200 tasks VM migration can be included
] acceptance are proved through .
machines and 2) Trace- with 1000 VMs
- . . theorems & lemma
driven simulation.
Evaluated with MAPE (Mean absolute :;rt]rt;tgergaitelgr\]/v(i)tfhparsg;ilc%rlling can
C12 [31] | Amazon EC2 instances Percentage), PRED (25) (Prediction TPC-W - interactive E-commerce enhance the effectiveness of the

accuracy within 25%), RMSE (Root
Mean Square Error)

application

adaptive resource allocation in
terms of performance and cost.
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IV. ANALYSIS OF REINFORCEMENT LEARNING ASSISTED
RASP

The  human-to-machine  and machine-to-machine
interaction-based loT applications demand a technique that
makes the optimal decision at high speed. The traditional rule-
based programming approach does not withstand the stochastic
requirements of loT. Hence, a machine learning programming
approach that observes and adapts to the environment is
required. Such requirement leads to the choice of
Reinforcement Learning (RL) which automatically learns to
take decisions by trial and error method under a dynamic
environment with prior domain knowledge. Fig. 2 depicts the
basic structure of RL.

In RL based RASP, service request and the resource pool
forms the environment. The values like the expected number of
service requests and the amount of available resource observed
at any instant of time form the state. At every time-step of
interaction, the state values form the input to the agent from the
environment. Action is the decision taken to place the service
request in the appropriate resource. The agent chooses its
action in such a way that the system achieves maximum

Vol. 12, No. 3, 2021

resource utilization with minimum cost. For every action taken,
the agent receives a suitable positive or negative reward as an
incentive. By trial and error, the agent tries to maximize its
reward by taking optimal decisions (actions) in the long run.

The agent is trained to take optimal action through either of
the RL algorithms like Q-learning, SARSA, E-SARSA, or
Deep RL. The choice of the RL algorithm depends on the type
of problem encountered and the feasibility of implementation.
This section analyzes the RL-assisted RASP works for the
categories given in Table I.

[l Agent: RASP Strategy ﬂ

Actio
Reward State

Environment:
Service request and Resource pool ‘

Fig. 2. RL Assisted RASP.

TABLE IV.  CLASSIFICATION OF RL AssISTED RASP WORKS
RA Policy Problem Addressed
o
2
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S s Author 2 £ 2 = 2 < = w =
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e <
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o
2
R1 [37] Nassar & Yilmaz, 2019 v v v
R2 [40] Gai & Qiu, 2018 v v v
R3 [6] Cheng et al., 2018 v v v
R4 [38] Bahrpeyma et al., 2015 v v v
R5 [41] Xiangping Bu et al., 2013 v v v
R6 [42] Xuetal., 2012 v 4 v
R7 [43] Dutreilh et al., 2011 v v v
R8 [26] Rao et al., 2011 v v v
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A. RL based RASP for F-RAN (Fog-Radio Access Network)

Fifth-generation wireless communication is an emerging
solution to the expectations of ultra-low latency, minimized
energy consumption, and high throughput [37]. Cloud-based
Radio Access Network (C-RAN) used base stations, remote
radio heads as resources to process IoT applications. But, the
unlimited loT traffic imposes a heavy burden, turning the C-
RAN less efficient for loT applications. Employing RL
assisted Fog nodes in the front-haul alleviated the cloud’s
burden, and elevated Fog-RAN (F-RAN) as a promising
solution to tackle time-critical applications of 10T [39]. RL-
enabled RASP in F-RAN has the advantage of local processing
and distributed storage capability at the vicinity of the end-user
resulting in high resource utilization [37].

B. Job Rejection Rate and Customer Retention in RL based
RASP

Enterprises look for CSPs to host their applications for
online business. A CSP is chosen based on the service quality
they provide. But, in the CSP viewpoint, a job is rejected under
certain circumstances: (i) If the job cannot be completed within
the deadline even after using a large number of resources, (ii) if
the estimated resource capacity is greater than the available
resource capacity (iii) frequent change of requirements from
the client-side. The increase in DCs has driven competition
among the CSPs to attract and retain customers. Though the
CSPs advertise a low price, consumers do not prefer them due
to the diminished QoS they offer. [38] Hence, to avoid
customer loss, CSPs adopt an optimal resource provisioning
policy like RL-DRP (Reinforcement Learning based Dynamic
Resource Provision).

C. Quality of Experience (QoE) in RL based RASP

In [40], the author addressed the issues of RA and achieved
QoE through Smart Content-Centric Services for loT
applications (SCCS-loT). The algorithm employs RL based
Mapping Table (RLMT) to update/maintain the cost mapping
table. Each 10T task is an n-tuple to represent m number of
costs (energy, latency, bandwidth, execution time). The
allocation path and the quality level represented the state of the
environment. Each update that was carried out on the table
represented the action. The sequence of costs formed the
feedback. The updated cost mapping table forms the input to
the second algorithm called, RL-based RA (RLRA) that
generated a policy to obtain an optimal RA for the incoming
tasks.

D. Auto Reconfiguration of VMs in RL Assisted RASP

Large-scale application deployment demands adaptive
techniques like RL-based RASP that dynamically
configure/reconfigure the VMs and the application
requirements, as needed. The RL-based framework called
CoTuner synchronizes the configuration of VMs and the
applications hosted in it [41]. VMs and applications in the
cloud were auto-reconfigured at an optimal range to improve
the resource utility and application performance in [42].
Dynamic resource configuration through RL was suggested in
[43]. The delayed learning process of RL was overcome by a
value-function that converged the optimal learning policy at a
fast rate.

Vol. 12, No. 3, 2021

A self-adaptive learning agent called iBalloon handled the
dynamic capacity management of each VM in [26]. iBalloon
was based on RL in which utilization of the CPU, memory, and
1/0 are considered as the state of the environment. The action
to be taken was of the form (no-operation, scale-up, scale-
down) on the VM’s resources. The Decision Maker (DM)
module computed the required resource capacity. The Host
Agent module monitored and reconfigured VM’s resources.
Any deviation from the SLA was reported back to the DM that
updated the capacity management. The observations of the
existing works on RL-assisted RASP are tabulated in Table V.

V. ANALYSIS OF ENERGY EFFICIENT COMPUTING (EEC)
AsSISTED RASP

With the proliferation of DCs, the CAGR (Cumulative
Annual Growth Rate) of carbon emission is expected to cross
11% worldwide, which is a serious threat to be handled
immediately [5]. Hence, an EEC-based RASP that minimizes
energy consumption and carbon emission is required [44]. The
EEC-assisted RASP is classified as thermal aware and power-
aware energy management as shown in Fig. 3. In general,
thermal aware energy depends on the number of resources
involved rather than the temperature density of those resources.
As power is directly proportionate to the temperature density of
the resources, the proposed survey focuses on power-aware
energy management [23].

Energy management through Load balancing tackles the
overload and underload aspects of resources, only after the
tasks are scheduled. Whereas, RA approach handles energy
management by predicting the power consumption in advance
and optimizes the resource utilization [22]. This section
discusses the works related to EEC-assisted RASP under
various criteria as shown in Table VI.

A. Minimization of Energy Cost and Latency

Energy consumption and latency reduction in Fog
computing were implemented in[16]. In the health care case
study, the Medium Access Control (MAC) scheduler allocated
the available time slots in Time Slotted Channel Hopping
(TSCH) frame to the requesting sensors, by an equally spaced
method. Cloudlet (an interface node between the mobile device
and cloud server) assisted with Dynamic Energy Cost
Minimization (DECM) technique was adopted to reduce the
energy cost in [19]. Whenever applications are invoked
through mobile, the DECM finds the cloudlets that reside near
to the CSP. Then, the mobile request is forwarded to the
recommended cloudlet.

Energy Efficient RASPin Clowd and Fog
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Fig. 3. Taxonomy of EEC.
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TABLE VI.  EEC AssisTED RASP WORKS
Author RA Policy Problem Addressed
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El [16] Laetal., 2019 v v v
E2 [18] Thein et al., 2018 v v v
E3 [17] Duan et al., 2017 v v v
E4 [45] Shelar et al., 2017 v v v
E5 [19] Gai et al., 2016 v v v
E6 [49] Wu et al., 2014 v v v
E7 [48] Fargo et al., 2014 v v v
E8 [20] Basmadjian et al., 2012 v v v
E9 [44] Beloglazov et al., 2012 v v v
E10 [49] Zhang et al., 2012 v v v

B. Energy Conservation through PUE and DCIiE

Power Usage Effectiveness (PUE) and DC infrastructure
Efficiency (DCIiE) were referred to in the RA framework to
compute the power consumption of a DC in [18]. PUE is the
ratio of the power consumed by IT equipment to the power
consumed by the total IT facility. But, DCIE is inversely
proportional to PUE [23]. The framework senses the state
(number of physical hosts) of the DC and takes actions
(allocate or not allocate), respectively.

C. Energy Conservation based on VM Placement, Migration,
and Server Consolidation

VM migration is the process of transferring the process of
the selected VMs from one host to another, to avoid
overutilization or under-utilization issues [22]. VM migration
enables server consolidation by utilizing only the optimal
number of servers thereby shutting down the unused servers in
[17]. To reduce energy consumption, the Modified Best Fit
Decreasing (MBFD) algorithm[44], arranged VMs in
decreasing order of CPU utilization and allocated them to the
highest power-efficient host. The algorithm aiCloud optimized
the total power consumption, by switching the idle and

underutilized physical machines to a power-saving state or
offline state (hibernate/ sleep/standby) in [45].

D. DVS/DVFS based Energy-Efficient Computing

The growth in the number of DCs has become a huge
consumer of power. Scaling down the frequency/voltage, at the
level of processor, memory, HDD, and NIC were the
techniques employed to save power consumption in general.
DVFS scaling that controls the frequency and voltage to
maintain optimal performance was employed in [46]. The
architecture specified the minimum and maximum frequency to
run a job as one of the requirements, based on which the DVFS
was programmed.

An Autonomic Workload and Resource Management
framework (AWRM) that reduced power consumption by
predicting the workload was employed in [47]. [20] [48]
presented an energy-saving and carbon footprint reduction
model where the processor frequency was reduced instantly,
once it turned idle. The author proved that with the right
combination of optimization policy and power prediction
model, energy consumption was reduced by 20%. Table VII,
tabulates the observations of the EEC-assisted RASP works.
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ANALYSIS OF ENERGY EFFICIENT COMPUTING ASSISTED RASP WORKS

TABLE VII.
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VI. ANALYSIS OF RASP IN FOG COMPUTING

The term Fog computing was proposed by cisco systems in
2012. Cisco defines Fog as a computing architecture that
extends the capabilities of the cloud closer to the things that
produce and act on data. The loT devices that produce and
consume data are located in the edge network. Fog computing
resides as a middle layer between the edge network and the
cloud as shown in Fig. 1. The proximity of fog nodes near the
edge network guarantees minimum bandwidth and latency for
time-critical applications. A well-defined RASP strategy in
Fog layer helps IoT realize its potential. The Fog computing-
based RASP works considered for the survey are categorized in
Table VIII.

A. Profit-Cost Oriented QoS in RASP

The profit-centric service provider saved their cost by
employing an optimized RA model that guaranteed less
response time in [8]. An empirical approach that maximized
Fog utilization and minimized cost was presented in [49]. A
RA strategy that maximized the profit of both the resource
provider and consumer was suggested in [50]. The
contradiction between price and time in completing a task was
resolved through Priced Timed Petri Nets (PTPN) in which the
required resources were chosen from a group of pre-allocated
resources.

Besides other requirements, the cost is a significant QoS
metric for both the service provider and the user [51]. A Cost
aware Fog RA for the medical cyber-physical system was
presented in [51]. While the base transceiver station was
employed as a fog node, the data transmission rate, delay, and
service rate were the QoS metrics used to compute the total
cost in allocating the resource.

B. RASP based on Resource Utilization Oriented QoS

Resource utilization is the allocation of available resources
among the competing tasks within the budget as specified in
the QoS. The price of a resource depends upon whether it is
over-demanded or under-demanded. A market equilibrium
framework that balanced the interests of both the service
(buyer) and the Fog resource (goods) was employed in [52].

A two-sided matching game problem that stabilized the
association of Fog and loT to maximize resource utilization
was presented in [53]. The higher resource utilization rate
indicated its optimal consumption which in turn reduces the
carbon emission. A proximal algorithm that assured utility-
oriented RA and reduced carbon disposal was suggested in
[54].

C. RASP based on Quality of Experience (QoE)

Quality of Experience (QoE) is the key factor to evaluate
the service satisfaction of the end-user. QoE varies with the
expectation of the end-user. While certain consumers are
satisfied with minimal latency and bandwidth, others prefer

Vol. 12, No. 3, 2021

saving the cost. An efficient RASP strategy that enhanced the
QoE of mobile users was described in [55]. A RA model that
enhanced the QoE of 10T users in terms of cost reduction
through the game theory approach was implemented in [56].

D. RASP based on Bandwidth Oriented QoS

The geographical distance and insufficient bandwidth
issues of the Cloud were overcome by the Fog enabled Cloud
architecture called ROUTER (ResOUrce management
TEchnique for smaRt homes) [57]. ROUTER ensured
minimum bandwidth and response time through the Particle
Swarm Optimization algorithm. The algorithm found the best
resource for a job (particle) through fitness value (sum of
weighted values of required energy, bandwidth, latency, and
response time).

Bandwidth aware Component Deployment Problem (CDP)
was presented in [58]. The backtrack search algorithm picked a
compatible Fog node to deploy a component (10T request). The
compatibility was verified in terms of the HW-SW
requirement, communication link, and bandwidth capacity.
When the requirement matched, the component was deployed
in the Fog node, otherwise, the search was repeated to find a
compatible Fog node. The author implemented a preprocessing
procedure to reduce the search time of the Fog node.

E. QoS of Latency, Round Trip Time (RTT), Delay and
Response Time

As far as Industrial 10T is concerned, a minimal delay is the
most expected QoS metric. Even Fog suffers the delay caused
by the VM boot time. Hence, virtual containers that consumed
less memory and instantiation time was suggested as Fog
resource in [7]. The Gaussian Process Regression for Fog-
Cloud Allocation (GPRFCA) was employed to decide, whether
a request is to be processed in Fog or Cloud in [59]. A QoS-
aware Fog Service Placement Problem (FSPP) that reduced
execution cost and response time was recommended by [60].

F. Fog Radio Access Network (Fog-RAN)

The scarcity of Fog resources was overcome by employing
the fronthaul devices of the cellular network as fog devices in
[39]. A loosely coupled architecture for emerging 5G networks
of Fog-RAN was recommended by [39]. The architecture
encouraged the participation of more Fog nodes to lessen the
burden of the fronthaul on cellular networks.

A RA scheme with the radio spectrum and Fog nodes as the
resource was implemented through the student project
matching algorithm in [61]. The service provider maintained
the list of radio spectrum and Fog resource pair to which the
request was matched as per the preference of the users. The
base transceiver stations, Wi-Fi access points, and femtocell
routers upgraded with CPU and memory capacity served as
Fog nodes to deliver ultra-high-speed latency for loT
applications in [61].
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TABLE VIII. CLASSIFICATION OF RASP PAPERS IN FOG COMPUTING

% 5 Policy Problem Addressed

a) 3 2 3 ®

- z S |58 2|28 8|8 3528
E < a S 5 a (g

F1 [8] Tran etal., 2019 v v v

F2 [52] Nguyen et al., 2019 v v v

F3 [55] Kim, 2019 v v v

F4 [57] Gill et al., 2019 v/ v v/

F5 [53] Abedin et al., 2019 v v v

6 [56] Shah-Man;gtig & Wong, v v v

F7 [59] da Silva & Fonseca, 2018 v v v

F8 7 Yin et al., 2018 v v v

F9 [61] Y. Guetal., 2018 v v v

F10 [39] Rahman et al., 2018 v v v

F11 [60] Skarlat et al., 2017 v v v

F12 [49] Mulla et al., 2017 v v v

F13 [58] Brogi & Forti, 2017 v v v

F14 [62] Sun & Zhang, 2017 v v v

F15 [50] Ni et al., 2017 v v v

F16 [51] L.Gu et al., 2017 v v v

F17 [63] Alsaffar et al., 2016 v v v

F18 [54] Do et al., 2015 v v v

G. Qo0S-SLA based RASP in Fog Computing

With scalability being a challenge to Fog, the author
suggested sharing computing resources from mobile users as
Fog nodes in [62]. Incentives were provided to the mobile
owners who contribute to the resource pool. A Fog-Cloud
federated loT RASP architecture that optimized resource
utilization and data distribution was presented in [63].
Table XA and IXB tabulate the analysis of Fog based RASP
works

VII. DiscussioN AND CONCLUSION

A. ldentified Research Gaps and Future Enhancements

The survey explores different strategies to solve the RASP
problem under various domains viz., Cloud, Fog, RL, and

EEC. In the effort to solve the RASP problem arises many sub
problems. Resource scalability, over-provision/under-provision
of resources, violation of cost, budget, and time constraints are
some of the subproblems that need to be addressed while
implementing an effective RASP system. Especially, in the
case of 10T applications where the requirements are stochastic
and delay-sensitive.

Most of the RASP works were carried out using reactive
policy. Though reactive policy incurs less cost, its case-driven
programming approach does not withstand the time-sensitive
requirements of loT applications. Hence, adapting machine
learning-based proactive and hybrid policies gives an effective.
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TABLE IX.  A. ANALYSIS OF RASP WORKS IN FOG COMPUTING
Paper | Ref, Problem addressed Objective Algorithm Performance metrics
ID addressed
Maximize task deployment in
F1 8] Optimization of 10T task fpg & minimize respon_se Empirical approach Latenc-y, energy, network load,
placement on fog time, energy consumption, operational cost.
and operational cost
Allocation of capacity limited Maximize resource utilization | Market equilibrium (ME) solution o
F2 [52] fog nodes to competing requests | of fog under budget with service requests as buyersand | Resource utilization.
with diverse preferences. constraint fog resources as goods.
Ineff_luent (_:oordlnatlon among M_a?<|m_|ze Qo_E_an_d resource 2 phase Gaussian model-based BVG Task fallurg _propablllty, QOE,
F3 [55] mobile devices and Fog utilization, minimize task . resource utilization at Fog
. - . and NBS resource allocation .
Controller in allocating failure rate. Access Point (FAP)
resources
F4 - Response time issue in Fog- Optimize performance Particle Swarm Optimization Response time, Bandwidth,
(571 Cloud federated resource parameters through a fitness algorithm latency, energy consumption
allocation for smart home function
Limited bandwidth in fog Maximize fog network Analytics hierarchy process (AHP) Resource utilization,
F5 (53] network resource allocation resource utilization for loT based QoS prioritization through throughput, bandwidth,
applications two-sided matching game best fit efficiency, job-delay
F6 [56] Pure Nash Equilibrium problem | Maximize QoE, minimize Near-optimal RA algorithm to Computation delay, average
in RA for IoT applications energy and delay tackle Pure Nash Equilibrium QoE, Number of loT users
benefited
7 [59] 10T service placement in Minimize energy Gaussian process regression fog- Energy consumption, request
Fog/cloud consumption, request cloud allocation (GPRFCA). block ratio, and latency.
blocking, and latency.
Delay due to limited resource o o A heuristic algorithm-based fixed
|0 | myorroginame | MO ORI | ol ) il | e s e
analysis of smart manufacturing y (DT) with fixed and reallocation Y
quota.
Instability in thfe allocation of Maximize user satisfaction in | g,dent Project matching algorithm Latency. Service provider's
F9 [61] channel b'andW|dth and terms of cost performan-ce- combined with user-oriented Y, ° p
f:omputatlonal resource for loT subj('ect to delay, transmission cooperation (UOC) revenue, data size, delay
in Fog quality, and power control
Restricted fronthaul capacity To achieve ultra-low latency Jointly distributed computing Delav. number of users served
F10 [39] and computing delay increases and optimized transmission algorithm and distributed content in foy'
the latency rate clustering algorithm 9
QoS violation and execution Maximize fog resource ) . ) Fog Utility, response time,
F11 [60] cost utilization with response time constraint based empirical algorithm make span
less than the deadline
Fault tolerance, o . . Response time, DC processing
F12 (49] overflow/underflow problem in Maximize Fog utilization Empirical approach time, total cost (VM cost + data
resource allocation transfer cost)
F13 [58] QoS aware loT task placement Mini_mum latency and Back tracking and heuristic search Latency and bandwidth
maximum task placement.
F14 [62] Integration of spare resources Maximize resource utilization | crowd funding algorithm approach Failure rate of SLA, Task
from end-users to fog resource | and income of fog broker refining Nash equilibrium Completion time
pool
Price cost and time cost issues Maximize resource Task completion cost. make
F15 [50] involved in allocating resources | utilization, profit of fog Priced Timed Petri Nets P '
. - - - span
to loT task in fog service providers and satisfy
QoS requirements
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Cost hike due to the unstable
and long delay communication

Minimize the cost of
communication, delay,

Mixed Integer Linear Programming
(MILP) through joint optimization

Total cost (cost of uplink

F16 [51] ) . : . . - comm., deployment,
link between the medical device | processing, and deployment using 2- phase LP-based heuristic processing)
and datacentre to ensure QoS algorithm
Assgrance of SLA/QS in !OT Imp_rO\_/e R.A and . Decision rules of Linear decision Response time, number of VMs
F17 [63] service placement and RA inthe | Optimization of Big data
. N tree approach used, Number of SLA met
fog-cloud federation distribution
Joint optimization of resource Maximize Fog utility and Alternative direction method of Foa Utility and carbon emission
F18 [54] allocation and carbon footprint minimize cost with reduced multipliers (ADMM) as the ratg y
issue carbon emission proximal algorithm
B. ANALYSIS OF RASP WORKS IN FOG COMPUTING
IIDSper Ref. Experiment Evaluation Workload Limitations
iFogSim with 28 NW
configurations for task Simulated data & 65 applications i .
h . . Lo ] Applications with
placement in fog Validated with IBM CPLEX optimization from the Intelligent Transport -
F1 [8] g - independent tasks alone are
landscape. 2)Test bed solver results System (ITS) with 28 scenarios -
: considered.
to emulate Intelligent tested.
transport system
Amazon EC2 instances Maximum resource capacity
F2 [52] test bed coded using evaluated with five allocation schemes Data set of fog nodes not mentioned
MATLAB, GEG, EG, PROP, SWM, MM benchmarks while max. resource
CVX/MOSEK demand used
Test bed with 25 FAP Mobile device generated service Due to reactive polic
F3 [55] | and 100 mobile evaluated with SDFC, SSEC, CFIC scheme d ) reactive policy
. request (data set) scalability issue arises.
devices.
Fa [57] CloudSim. iFoaSim Validated with 10T based Smart Home Real time- Small scale smart home | PSO do not address
+1Fog application (SHA) automation experiment case study | dynamic scalability
Enhanced Mobile Broadband
Test bed with 50 loT . - . (eMBB) services, Ultra Reliable
F5 [53] devices and 10 fog ;/Oar::/(lz:te: nizr stability, complexity and Low Latency Communication ?; rrfsoreTﬁ?gi eT\?i?:seL;red only
devices g (URLLC) services-delay & BER P
(Bit Error Rate) intensive
Numerical Experiment QOE at equilibrium with price of anarchy Number of user request and
F6 [56] a_nd Tes} bed compared with social optimal cost Simulated mobile request data set computing services
simulation considered constant
iFogSim, GPR A - .
. ' . . ) Remote VM application and Mobility of accessing
F7 [59] implemented with Fog only tasks compared with fog-cloud augmented reality application. device not considered
gptool of python
F8 7 Test bed set up Evaluated with f|>§ed and dynamic GNOME to simulate concurrent Scalability issue
threshold for varying resource quota request
. SPA, Random resource allocation, Energy . . .
F9 [61] Test bed set up with 45 Consumption and delay performance 10T device requests Reactlyg policy restricts
to 210 loT users scalability
(EDM)
I . The transmission delay
. . Compared with fixed power allocation 20 requests from 5 users for 20
F10 (39] Simulated experiment scheme and random fog clustering scheme fog access points betwgen fog noqe§
considered negligible
evaluated with IBM Cplex solver, . . . The reactive policy does not
F11 [60] iFogSim compared with first fit baseline & pure Motion, video, audio, scale and fails to address

cloud models

temperature-based applications

stochastic requirements
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Efficient resource allocation (ERA)
compared with existing Optimize response . Cannot address stochastic
F12 [49] Cloud analyst time (ORT) and Reconfigure dynamically Simulated data requirements
with load balancing (RDLB)
Fog torch prototype, a A Fire alarm loT application offered | A single application tested
F13 [58] proof of concept java E)vaLu:égg for expected QoS profile in 50 by an insurance company to its for task placement.
tool. Y customers. Scalability problem.
F14 [62] Test bed with 50 smart | Validated with Minimum Migration and Test data for pressure application The static approach does not
phones MBFD (Modified Best Fit Decreasing) generated by JMeter support scalability
Test bed set up with
dawn-3000 parallel MFR (Mapping Fog Resource to user ﬁ?e;esﬁzgciﬁg :/?/a?:?r? p(taidmtg
machine with ten . pping Fog . S Random function generated price, - g
F15 [50] Linux cluster to model directory scheme) compared with MinMin service requests for a resource, increases the
foa computin and MaxMin algorithm d delay of completing user
g computing tasks.
environment
Test bed set up of .
300x300 network size TOtf'il cost evaluated across several bf'ise The medical device-generated data VM' deploymgnt in the base
F16 [51] with 80 users and 50 stations and 2-phase LP compared with the traffic station is application-
Base stations. greedy algorithm specific
Internally compared amond shared and The workload of multimedia big Static number of requests
F17 [63] CloudSim reserve d):'alllocagion g data from fog-cloud broker to use and data considered for the
' smart devices experiment
Converaence rate of proximal algorithm Video streaming request from Only Theoretical proof of
F18 [54] Mathematical model and ADgMM P Y Akamai- the world’s largest mathematical model
content delivery network analyzed

Solution. In general, the existing works were from the
service provider’s point of view saving their cost. A RASP
strategy that prioritizes consumer’s profit, needs focus.
Deployment of multi-tier and parallel applications in fog nodes
is another issue that needs attention.

The unexpected network traffic and access rate of the
hosted applications were not foreseen during SLA. This leads
not only in the violation of QoS requirements but some
catastrophic failures of resource access. Hence dynamic
provision, to monitor and configure the resources automatically
with intelligence is the need for such a situation. Research on
autonomic computing that possesses self-management
capability will enhance the RASP strategy.

The proliferation of 10T requires unlimited bandwidth. The
huge number of heterogeneous geo-distributed devices
involved in the fog layer that handles 10T consumes enormous
energy. Instead of draining the available energy, fog nodes that
work on solar and green energy should be brought into usage.
Hence, a Fog-based RASP solution that supports green
environmental sustainability needs focus.

The manufacturing units in Industry, nowadays depend on
Fog services for instantaneous processing. But, the protocol
interoperability problem between the assembling units and Fog
devices causes a delay that is not tolerable in Industrial 10T.
With fewer works carried out in this area, it remains yet
another open challenge in Fog research.

Findings show that based on the delay constraint of the
applications, the arriving requests are segregated among the
Cloud and Fog for processing. But, the question arises how the
decision is made when the delay constraint is not explicitly
mentioned. One possible approach is that the Cloud/Fog center
can be decided based on the application type. Service requests

from critical health-care, disaster management, real-time
chemical reactors, and Industrial 10T can be considered as
emergent applications that need to be processed in the Fog
layer.

Further, the efficiency of the RASP system can be escalated
by clustering the fog nodes on application basis for processing.
Instead of making all fog nodes available for processing,
certain fog nodes can be employed for general purposes while
the rest of the fog nodes can be reserved exclusively for
emergent applications. Algorithms are to be devised that ensure
maximum utilization of the fog nodes. The idle fog cluster can
be employed either for the migrated emergent applications or
for the local non-emergent applications during peak hours. As
Fog computing is still in its infancy stage, standard protocols
are yet to be explored.

VIII. CONCLUSION

The survey elaborates various RASP strategies in Fog and
Cloud environments. The survey investigated the individual
work from the viewpoint of, the problem defined, objective set,
algorithm adopted, performance metrics addressed, experiment
and evaluation tools employed, and the workloads used for
testing. The tabulated information presents an exhaustive
analysis of the individual work with their limitations projected
as open challenges.

Although review articles exclusive to Cloud and Fog exists,
the proposed survey explores the RASP problem, in Cloud and
Fog for 10T applications. The survey stands unique to employ
techniques like Reinforcement Learning (RL) and Energy
Efficient Computing (EEC) to save cost and energy
respectively. Sure enough, the survey will motivate the
researchers to focus on the research gaps and helps them to
conceive innovative RASP solutions in the Fog-Cloud
federation.
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