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Abstract—The voluminous data produced and consumed by 
digitalization, need resources that offer compute, storage, and 
communication facility. To withstand such demands, Cloud and 
Fog computing architectures are the viable solutions, due to their 
utility kind and accessibility nature. The success of any 
computing architecture depends on how efficiently its resources 
are allocated to the service requests. Among the existing survey 
articles on Cloud and Fog, issues like scalability and time-critical 
requirements of the Internet of Things (IoT) are rarely focused 
on. The proliferation of IoT leads to energy crises too. The 
proposed survey is aimed to build a Resource Allocation and 
Service Placement (RASP) strategy that addresses these issues. 
The survey recommends techniques like Reinforcement Learning 
(RL) and Energy Efficient Computing (EEC) in Fog and Cloud 
to escalate the efficacy of RASP. While RL meets the time-critical 
requirements of IoT with high scalability, EEC empowers RASP 
by saving cost and energy. As most of the early works are carried 
out using reactive policy, it paves the way to build RASP 
solutions using alternate policies. The findings of the survey help 
the researchers, to focus their attention on the research gaps and 
devise a robust RASP strategy in Fog and Cloud environment. 

Keywords—Cloud; fog; reinforcement learning; energy-
efficient computing; resource allocation; service placement 

I. INTRODUCTION 
Digitalization has revolutionized anything as a service 

(XaaS) on pay per usage basis [1]. With the increase in smart 
handheld devices, online business, transportation, health care, 
education, and food court which were once a commodity, are 
delivered as a service at the doorstep of the individual. These 
digital services produce and consume a variety of voluminous 
data, at a rapid speed that needs to be stored for big data 
analytics [2]. Consequently, enterprises depend on cloud Data 
Centers (DC) to store, process, and manage their data [3], [4]. 

A large number of commercial Cloud Service Providers 
(CSP) deliver compute, storage, and communication resources 
in the form of Infrastructure as a Service (IaaS) [5]. Estimating 
the required amount of IaaS resources and assigning the service 
(tasks) for execution is termed as Resource Allocation and 
Service Placement (RASP) [6][7]. Service is defined as the 
actual software instance that executes a task. The terms service 
and tasks are often used interchangeably [8]. 

A RASP framework abides by the Service Level 
Agreement (SLA) made between consumer and service 
provider [9][10]. SLA is the mutual agreement cum negotiation 
made between the service consumer and the CSP. Providing 
guaranteed resources to the consumers/applications on time 

aggravates many challenges. Inaccurate estimation of available 
resources, wrong forecast of workload, incorrect prediction of 
required resources, deadline violation, uncontrolled energy 
consumption, unexpected failures of hardware/software, SLA 
Violation (SLAV) are some of the other problems encountered 
by a RASP framework.  Hence, a robust RASP that benefits the 
consumer and the service provider in terms of their 
requirements and revenue is needed. 

Resources are allocated to the requesting services by either 
of the three policies viz., Reactive, Predictive, or Hybrid. In 
reactive policy, the initial allocation of resources is subject to 
change, only after the system enters an undesirable state. The 
reactive policy follows a predefined set of rules for scaling the 
resources. On the other hand, the predictive (also known as a 
proactive) policy, anticipates the forthcoming disruptions in 
advance, and updates the resources, well before the system 
enters the undesirable state [11]. It forecasts the workload and 
scales the resources in advance to meet future needs. The 
hybrid approach is an amalgamation of both the reactive and 
proactive policy [5]. 

Each policy bears its own cost in satisfying the SLA. The 
choice of policy purely depends upon the application and the 
RASP strategy adopted. Out of the works considered from the 
period 2011 to 2020, Table I shows that most of the works 
were carried out in the reactive policy, which opens the 
research gap in other policies to model RASP. 

A. Significance of RASP in Cloud Computing 
Cloud computing is an Information Technology service 

model that provides on-demand computing resources over the 
Internet independent of device and location [12]. The need for 
online services has made the enterprises move their data and 
applications to the DC, from where they are provisioned as 
services to the end-user. With the proliferation of IoT, 
communications, among smart devices are made possible 
through the cloud-assisted IoT, called a Cloud of Things (CoT) 
[13]. Consequently, RA in the cloud has become inevitable to 
serve IoT requests. 

B. Significance of RASP in Fog Computing 
Despite its huge processing capacity, the cloud suffers 

latency problems when it comes to delay-sensitive IoT 
applications. By the time the data are sent to the cloud for 
processing, the necessity to act on it might be gone, which 
costs lives. Hence, a computing model like Fog, which delivers 
services of the Cloud near the edge network is a better choice 
for time-sensitive applications. 
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TABLE I. POLICY DISTRIBUTION OF RASP WORKS 

  Reactive Proactive Hybrid Total 

Cloud Computing 7 5   12 

Reinforcement Learning 2 5 1 8 

Energy-Efficient Computing 6 4 - 10 

Fog Computing 17 1 - 18 

Total 32 15 1 48 

Percentage 67% 31% 2%   

Fog Computing (FC) is a computing paradigm where a 
huge number of ubiquitous, decentralized, heterogeneous, geo-
distributed devices provide computation, storage, and 
communication facility at the edge of the local network from 
where the devices/objects generate and consume data [13]. It 
accelerates awareness cum response to events by eliminating 
RTT (Round Trip Time) to the cloud and avoids failures during 
peak period. As such, not all requests are serviced in Fog. 
Some of the delay-tolerant applications that involve huge 
computation are processed in the cloud [14] [15]. In fact, Fog 
complements Cloud to realize its potential with IoT 
applications. 

C. Relevance of Reinforcement Learning  (RL) in RASP 
The design and implementation of RASP for the growing 

scale of IoT, require intelligence that is far beyond the capacity 
of the case-driven programming style [16].  Such programs 
depend on predefined rules which is hard to change 
instantaneously for the stochastic needs of IoT [17]. A robust 
RASP requires an approach like Reinforcement Learning 
which learns the environment (requirement and availability of 
resources) and maps the appropriate action on the fly. 

RL is an Artificial Intelligence-based technique that 
automatically learns to make decisions under a dynamic 
environment without prior domain knowledge[18]. When 
service providers suffer to handle the complexity of stochastic 
requests in real-time, RL-assisted RASP, delivers better service 
in both Cloud and Fog. 

D. Energy-Efficient Computing (EEC) in RASP for Green 
Environment 
The rapid growth of DC has become the highest consumer 

of power that leads to the dissipation of Green House Gas 
(GHG) [5]. Compute and non-compute resources incur 
abundant energy waste [17],[19]. Measures taken to control the 
speed of processors, frequency/voltage,  and switch-off/sleep 
modes, are not sufficient to reduce the effect of GHG emission 
[20]. Hence, an EEC-based RASP that enables sustainability of 
the Green Environment with minimal operational expenses is 
required. 

An illustration of the coordinating computing models is 
shown in Fig. 1. It portraits the association of the Edge-Fog-
Cloud computing paradigm in association with the application 
requests. The Fog Controller embeds the Reinforcement 
Learning and Energy-Efficient Computing components to 
achieve an efficient RASP system. 

 
Fig. 1. Fog-Cloud Framework. 

The rest of the paper is organized as follows. Section 2 
reviews the existing literature works in RASP. Section 3 
analyzes the RASP works in cloud datacenters. Section 4 
discusses the approaches made in RASP using RL techniques 
while Section 5 presents EEC-based RASP.  Section 6 
discusses the efficacy of FC in addressing IoT applications and 
elaborates on the existing Fog based RASP works. Then the 
proposed survey concludes with a discussion on identified 
research gaps that could be useful to the research and 
development community in the future. 

II. OVERVIEW OF EXISTING SURVEYS 
This section analyzes the existing survey papers of RA, in 

Cloud Computing, RL, EEC, IoT, and Fog Computing. 
Resource provisioning and application management often 
exclude issues like unpredictable workload, poor utilization of 
resources, and unexpected Hardware (HW)-Software (SW) 
failures. The brownout paradigm that addresses such issues by 
enabling/disabling the optional parts of the application was 
presented in [21]. 

In [22]  the author reviewed energy efficiency in four 
dimensions: (i) Virtual Machine (VM) placement, (ii) VM 
migration, (iii) Server consolidation, and (iv) Dynamic Voltage 
Frequency Scaling (DVFS). In [23] the author explored energy 
management techniques at the HW level, Resource 
Management (RM) level, and application level. While Static 
Power Management (SPM) technique was used at the HW 
level, Dynamic Power Management (DPM) was tackled at the 
RM level. Green Computing with renewable energy was 
recommended at the application level. 

Maximization of resource utilization and minimizing the 
cost were the main goal of Resource Allocation (RA) in the 
IoT environment [24]. Scarce processing-storage capacity, low 
battery level, less bandwidth, and, poor implementation of 
resource management protocol were shortlisted as limitations 
of IoT. Lightweight container-based virtualization was 
suggested to process and store IoT applications. Though Cloud 
supports IoT, Fog computing resolves the time-sensitive-issues 
of IoT more diligently. 

Application placement, resource scheduling, task 
offloading, and load balancing, were explored in [25]. 
distinguished Fog, from Multi-Access Edge Computing (MEC) 
and cloud, in terms of operation mode and application 
addressed [4]. In [15], the author identified the challenges 
faced by Fog computing to process context-aware applications 
of IoT.  In [3], RA and task scheduling were considered as one 
of the key challenges in IoT. The survey suggested CloudSim, 
MATLAB, and iFogSim to implement RA in Cloud and Fog. 
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The author recommended container-enabled micro-services to 
resolve the resource limitation problem. 

III. ANALYSIS OF RASP IN CLOUD COMPUTING 
Cloud is a ubiquitous technology that offers infrastructure, 

software, and platform as service on-demand with the least 
interaction and management effort of the service provider 
[26],[27]. Despite its control over the IaaS management, CSP 
lacks knowledge about the application hosted in their 
machines. VMs of different applications overlap on physical 
servers leading to catastrophic failure which is not recognized 
by the CSP instantly. 

Deployment of multi-tier applications is yet another 
complexity, as the configuration of VMs in one tier differs 
from the other causing interoperability problems [28] [29]. 
This section analyzes the existing RASP works in Cloud. 
While certain works adapt their own architecture, others follow 
the specific algorithm for the existing RASP. Table II shows 
the distribution of existing RASP articles under various 
criteria. 

A. Uncertainty in Resource Availability 
Unexpected HW failures, SW faults like overflow 

conditions, malware, DoS (Denial of Service) attacks, and 
changes in the number of objectives during execution are some 
of the uncertain behavior projected in [30]. Power consumption 
cost and overestimation of resources hinder the profit of the 
CSP due to which certain objectives like deadline and make-
span are ignored/altered while deliberating RASP. As HW/SW 
failure is unavoidable, the Neural Network based Dynamic 
Non-dominated Sorting Genetic Algorithm (NN-DNSGA-II) 
converges before the occurrence of the next failure. Change in 
the number of objectives at runtime is tackled by a generalized 
periodic change in the objective size. 

B. Impact of SLA/QoS in RASP 
The applications that are hosted in DCs expect the utmost 

performance in terms of low latency and high throughput 
within budget and specified deadline. These performance 
measures form the QoS requirements. The mutual negotiation 
between the consumer and the CSP for a guaranteed QoS 
results in SLA. With the growing number of IaaS providers, 
not only does it require expertise but is time-consuming for the 
clients to select an efficient CSP. 

TABLE II. CLASSIFICATION OF EXISTING RASP PAPERS IN CLOUD COMPUTING 
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C1 [30] Ismayilov & Topcuoglu, 
2020  ✓  ✓  ✓     

C2 [9] Soltani et al., 2018 ✓  ✓    ✓    

C3 [10] Singh & Viniotis, 2017  ✓  ✓   ✓    

C4 [12] Djebbar & Belalem, 2016  ✓ ✓    ✓    

C5 [32] Ashraf, 2016  ✓  ✓    ✓   

C6 [29] RahimiZadeh et al., 2015 ✓  ✓     ✓   

C7 [28] Kaur & Chana, 2014 ✓   ✓     ✓  

C8 [33] Agarwal & Jain, 2014  ✓ ✓     ✓   

C9 [34] Espadas et al., 2013 ✓  ✓       ✓ 

C10 [35] Casalicchio & Silvestri, 
2013 ✓  ✓       ✓ 

C11 [36] Xu & Li, 2013 ✓  ✓       ✓ 

C12 [31] Islam et al., 2012 ✓   ✓      ✓ 
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The RA framework in [9] follows the Technique for Order 
of Preference by Similarity to Ideal Solution (TOPSIS) in 
which the available IaaS resources are ranked by their 
similarity index concerning the application requirements. Then, 
the top IaaS resource was allocated to the corresponding 
application. 

Lack of CSP’s knowledge about the message arrival rate 
and length of the Enforcement Period (EP) were the problems 
encountered in satisfying SLA. To overcome the loss caused 
by SLAV, a RA mechanism that allows an additional EP to 
execute the unpredictable IoT traffic is recommended by [10]. 
Execution speed and deadline were considered as primary QoS 
constraints in [12]. 

C. Slashdot Prediction in RASP 
Slashdot refers to the unpredictable flash crowd workload 

on the Internet at any instant of time [31]. A sudden traffic 
surge makes the RASP framework unstable. The Slashdot 
effect if not addressed properly, leads to a cascade of problems 
like unacceptable delay, long downtime, application 
unavailability, revenue reduction, and losing the customer in 
the worst case. 

Conventional predictive policies turn failure as they 
forecast the expected workload traffic, only a few steps ahead 
during which the Slashdot effect remains invisible. The Long 
Short Term Memory Recurrent Neural Network (LSTM-RNN) 
technique that predicts the workload traffic/pattern a thousand 
steps ahead was implemented in[32]. Based on the prediction 
provided by LSTM-RNN, resource scaling was performed 
without compromising SLA. 

The performance of  Virtualized Multi-Tier Application 
(VMTA) for the unstable workload was analyzed using the 
queuing network in [29]. Apache, Tomcat, and MySQL servers 
were used for the front end, application, and database tiers, 
respectively [33]. A Generalized Priority Algorithm (GPA) for 
scheduling tasks in the cloud, consumed the least execution 
time when compared to the First Come First Serve method. 

D. Need for Elasticity in RASP 
Resource elasticity refers to the automatic acquisition and 

release of resources at runtime to fulfill the QoS requirements 
in response to the changing workload.  Though the workload 
traffic is predicted in advance, RA without an elasticity 
component is a failure, as neither the resources are efficiently 
scaled nor is the QoS met [34]. The QoS aware resource 
elasticity framework for multi-tier application was modeled in 
[28]. The framework employed MT-PerfMod (Multitier 
Performance Module) to compute the overall response time 
and resource utilization, based on which, the MT-ResElas 
(Multi-Tier Resource Elasticity) module computed the SLAV 
rate. Whenever the response time and the resource utilization 
rate were violated, VMs were increased; otherwise, the number 
of VMs was reduced by half. 

E. RASP on ASP (Application Service Provider) Point of 
View 
The majority of RA is performed from the CSP point of 

view, which reduces the preference for ASP. The ASP is 
charged for the resources that were wasted due to 
underutilization. Hence, an ASP (tenant) centric RA for scaling 
the application was modeled in [31][34]. The knapsack 
problem approach was implemented to predict the minimum 
number of VMs required. 

Though the maximum number of VMs required was 
estimated in advance, it keeps changing depending upon the 
number of active users who access the application. The 
problem arises when the ASP (consumer) is charged for the 
idle resources. An SLA-based RP mechanism in the ASP point 
of view was presented in [35]. A framework where clients and 
operators suggest their preference for RA policies was 
presented in [36]. The technique described the allocation of 
jobs to a machine, based on the stable matching algorithm. 
Tables IIIA and IIIB tabulate the observations of the RASP 
works in Cloud Computing. 
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TABLE III. A. ANALYSIS OF RASP WORKS IN CLOUD COMPUTING 

Paper 
ID Ref. Problem addressed Objective Algorithm/Approach Performance metrics 

addressed 

C1 [30] 

Unexpected Hardware-
Software failure and change 
in the number of objectives 
at runtime  

Formulate a scheduling strategy to 
minimize cost, energy and 
maximize resource utility for 
periodical workflow 

Neural network-based dynamic non-
dominating sorting genetic algorithm 
(NN-DNSGA-II) 

Cost, energy, and resource 
utility through Non-
dominated solutions (NS), 
Schott's spacing (SS), and 
Hyper Volume (HV) 

C2 [9] Time and cost difficulties in 
cloud service selection 

To build an automatic cloud service 
selection framework that overcomes 
time and cost problem 

Architecture based- Hybridization of 
case-based reasoning with Multi-criteria 
decision making (MCDM) and TOPSIS 
(Technique for order of preferences by 
Similarity to Ideal Solutions) 

Recommended CSP, CSP's 
service type, memory 
storage, region, Price/Hr., 
OS 

C3 [10] Enforcement of IoT SLA in 
the cloud environment 

Conformance of SLA within 
enforcement period  

Server over-provisioning approach, 
policing, Weighted Round Robin (WRR) 
scheduling algorithm, rate-limiting 
mechanism to enforce SLA 

Number of messages 
arrived/processed, SLA 
confirmation rate, number 
of servers, additional 
enforcement period used 

C4 [12] High data management in 
scientific application Minimize response time 

Space and Time-shared policy based on 
deadline, length of the task, the 
execution speed of VM, and VM tree 
method. 

Total response time 

C5 [32] 
Inaccuracy in the prediction 
of workload violates SLA 
and increases the cost 

Prediction of resource demand and 
auto-scale them instantaneously that 
minimizes cost irrespective of 
application traffic 

Long short-term memory RNN with 
peephole connections with Mean 
Absolute Deviation (MAD) to set 
threshold 

Response time, No. of VMs, 
No. of completed request 
with the deadline. 

C6 [29] Stochastic burst and non-
burst workload 

Propose an analytical model-based 
queuing network to estimate 
aggregated QoS metrics 

Analytical model-based queuing network 
(M/G/1) 

Response time, disk 
utilization, CPU utilization. 

C7 [28] 
The contradiction between 
QoS and elasticity of 
resources 

Mapping of the QoS attribute with 
minimum SLA violations thus 
maximizing the overall profit 

Architecture-based - QoS aware resource 
Elasticity framework for the multi-tier 
web application. Control Theoretic based 
scaling algorithm 

Response time < 5 secs, 
Resource utilization > 80% 

C8 [33] Task scheduling   Minimize execution time 
Generalized Priority algorithm (GPA) 
based on highest length cloudlet to 
highest MIPS VMs 

Execution time 

C9 [34] 

To solve under-utilization 
and over utilization of 
resources in cloud 
applications 

tenant-based isolation, tenant-based 
load balancing, tenant-based VM 
allocation 

Architecture based CPU Utilization, memory 
utilization, Throughput 

C10 [35] SLA based resource 
provisioning in cloud 

Achieve SLA oriented resource 
provision irrespective of workload 
type 

Queuing model M/G/1 and M/M/m with 
autonomic QoS aware resource 
provisioning 

CPU utilization, response 
time, number of VMs 
required 

C11 [36] 
Tasks to occupy a minimum 
number of VMs to achieve 
server consolidation 

Develop a unified framework for 
resource management in the cloud, 
where policies are decoupled. 

Conventional Job-Machine stable 
matching problem Execution time, no of VMs 

C12 [31] Resource Prediction and 
Provisioning 

Build an adaptive RM for 
applications hosted in the cloud. 

Neural Network and Linear Regression 
to satisfy upcoming demands 

CPU Utilization for each 
technique 
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B. ANALYSIS OF RASP WORKS IN CLOUD COMPUTING 

Paper 
ID Ref. Experiment Evaluation Workload Limitations 

C1 [30] 
 

Real-time experiment with 
Amazon EC2 

Evaluated with DNSGA-RI, 
DMOPSO, DNSGA-II-HM, DNSGA 
II-A, and DNSGA-II-B 

100 to 1000 tasks from Pegasus 
workflow management that covers 
astronomy, physics, biology, 
geology, and bio-informatics 
dataset. 

The work is compared with 
non-predictive algorithms. 

C2 [9] Test bed 
Validated with a sample application 
that is to be deployed on one of the US 
regions 

Service template of a sample 
application 

Criteria for CSP selection, 
resource provision, task 
scheduling are problem-specific 

C3 [10] Discrete event simulator in 
C 

Evaluated for a different rate of traffic 
request, change in capacity, 
enforcement period 

Two million messages per tenant 
per month 

Homogenous message size 
limited to 512 bytes 

C4 [12] CloudSim Compared with time/space shared 
policy. 

Simulated with 10-50 cloudlets 
(tasks) 

The reactive policy cannot 
scale and tolerate dynamism 

C5 [32] CloudSim using 
deeplearnig4j open source 

Compared with automatic scaling and 
conventional threshold-based scaling 
techniques. 

NASA Clark net workload 

Explanation required for 
computations of response time, 
number of the completed 
request. 

C6 [29] Test bed constructed with 2 
servers, 6-VM/server 

 Evaluate the performance of VMTA 
(virtualized multi-tier applications) 
through cache hit ratio, request arrival 
rate. 

Rubis and Wikipedia tiers under 
burst & non-burst workloads. 

The trade-off between 
assignments of cores to 
domains, cache contention can 
be investigated. 

C7 [28] Amazon cloud watch (EC2 
monitoring tool) 

JMeter load tests-to measure response 
time & utilization, Amazon cloud 
watch - % of utilization 

3-tier web applications 

QRE (QoS aware Resource 
Elasticity) framework is 
considered a homogenous type 
of VMs only. Resource 
availability, fault tolerance can 
be measured. 

C8 [33] Cloud Sim Compared with first come first serve, 
round-robin 

web service generated workload 
traces 

Cannot handle instantaneous 
demand of resources, leads to 
over-provisioning or under-
provisioning. 

C9 [34] 
Test bed: eucalyptus cloud, 
Tomcat-based SaaS 
platform deployed over it. 

t-test statistical analysis 
Apache JMeter to create web 
service workloads to the Tomcat 
cluster 

HPC and Online transactions, 
bandwidth, storage, and 
transfer data, need to 
experiment  

C10 [35] 
Amazon cloud watch (EC2 
monitoring tool) with Mat 
lab graph generation 

Partial ASP and limited ASP 
(Application service provider) 

Wikibench- to generate workload 
from Wikipedia, Mediawiki for 
backend database 

The reactive approach cannot 
address stochastic 
heterogeneous workload type  

C11 [36] 

1) Test bed-prototype 
implementation with a 
cluster of 20 dual-core 
machines and 2) Trace-
driven simulation. 

Correctness convergence, job-
optimality of multistage deferred 
acceptance are proved through 
theorems & lemma 

RICC (RIKEN Integrated Cluster of 
Clusters), explored for 200 tasks  
with 1000 VMs 

VM migration can be included 

C12 [31] Amazon EC2 instances 

Evaluated with MAPE (Mean absolute 
Percentage), PRED (25) (Prediction 
accuracy within 25%), RMSE (Root 
Mean Square Error) 

TPC-W - interactive E-commerce 
application 

Integration of prediction 
strategies with auto-scaling can 
enhance the effectiveness of the 
adaptive resource allocation in 
terms of performance and cost. 
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IV. ANALYSIS OF REINFORCEMENT LEARNING ASSISTED 
RASP 

The human-to-machine and machine-to-machine 
interaction-based IoT applications demand a technique that 
makes the optimal decision at high speed. The traditional rule-
based programming approach does not withstand the stochastic 
requirements of IoT. Hence, a machine learning programming 
approach that observes and adapts to the environment is 
required. Such requirement leads to the choice of 
Reinforcement Learning (RL) which automatically learns to 
take decisions by trial and error method under a dynamic 
environment with prior domain knowledge. Fig. 2 depicts the 
basic structure of RL. 

In RL based RASP, service request and the resource pool 
forms the environment. The values like the expected number of 
service requests and the amount of available resource observed 
at any instant of time form the state. At every time-step of 
interaction, the state values form the input to the agent from the 
environment. Action is the decision taken to place the service 
request in the appropriate resource. The agent chooses its 
action in such a way that the system achieves maximum 

resource utilization with minimum cost. For every action taken, 
the agent receives a suitable positive or negative reward as an 
incentive. By trial and error, the agent tries to maximize its 
reward by taking optimal decisions (actions) in the long run. 

The agent is trained to take optimal action through either of 
the RL algorithms like Q-learning, SARSA, E-SARSA, or 
Deep RL. The choice of the RL algorithm depends on the type 
of problem encountered and the feasibility of implementation.  
This section analyzes the RL-assisted RASP works for the 
categories given in Table I. 

 
Fig. 2. RL Assisted RASP. 
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R1 [37] Nassar & Yilmaz, 2019  ✓ ✓   ✓    

R2 [40] Gai & Qiu, 2018 ✓   ✓    ✓  

R3 [6] Cheng et al., 2018 ✓   ✓   ✓   

R4 [38] Bahrpeyma et al., 2015 ✓   ✓   ✓   

R5 [41] Xiangping Bu et al., 2013 ✓   ✓     ✓ 

R6 [42] Xu et al., 2012 ✓    ✓    ✓ 

R7         [43] Dutreilh et al., 2011  ✓ ✓      ✓ 

R8 [26] Rao et al., 2011  ✓  ✓     ✓ 
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TABLE V. ANALYSIS OF REINFORCEMENT LEARNING ASSISTED RASP WORKS 
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A. RL based RASP for F-RAN (Fog-Radio Access Network) 
Fifth-generation wireless communication is an emerging 

solution to the expectations of ultra-low latency, minimized 
energy consumption, and high throughput [37]. Cloud-based 
Radio Access Network (C-RAN) used base stations, remote 
radio heads as resources to process IoT applications. But, the 
unlimited IoT traffic imposes a heavy burden, turning the C-
RAN less efficient for IoT applications. Employing  RL 
assisted Fog nodes in the front-haul alleviated the cloud’s 
burden, and elevated Fog-RAN (F-RAN) as a promising 
solution to tackle time-critical applications of IoT [39]. RL-
enabled RASP in F-RAN has the advantage of local processing 
and distributed storage capability at the vicinity of the end-user 
resulting in high resource utilization [37]. 

B. Job Rejection Rate and Customer Retention in RL based 
RASP 
Enterprises look for CSPs to host their applications for 

online business. A CSP is chosen based on the service quality 
they provide. But, in the CSP viewpoint, a job is rejected under 
certain circumstances: (i) If the job cannot be completed within 
the deadline even after using a large number of resources, (ii) if 
the estimated resource capacity is greater than the available 
resource capacity (iii) frequent change of requirements from 
the client-side. The increase in DCs has driven competition 
among the CSPs to attract and retain customers. Though the 
CSPs advertise a low price, consumers do not prefer them due 
to the diminished QoS they offer. [38] Hence, to avoid 
customer loss, CSPs adopt an optimal resource provisioning 
policy like RL-DRP (Reinforcement Learning based Dynamic 
Resource Provision). 

C. Quality of Experience (QoE) in RL based RASP 
In [40], the author addressed the issues of RA and achieved 

QoE through Smart Content-Centric Services for IoT 
applications (SCCS-IoT). The algorithm employs RL based 
Mapping Table (RLMT) to update/maintain the cost mapping 
table. Each IoT task is an n-tuple to represent m number of 
costs (energy, latency, bandwidth, execution time). The 
allocation path and the quality level represented the state of the 
environment. Each update that was carried out on the table 
represented the action. The sequence of costs formed the 
feedback. The updated cost mapping table forms the input to 
the second algorithm called, RL-based RA (RLRA) that 
generated a policy to obtain an optimal RA for the incoming 
tasks. 

D. Auto Reconfiguration of VMs in RL Assisted RASP 
Large-scale application deployment demands adaptive 

techniques like RL-based RASP that dynamically 
configure/reconfigure the VMs and the application 
requirements, as needed. The RL-based framework called 
CoTuner synchronizes the configuration of VMs and the 
applications hosted in it [41]. VMs and applications in the 
cloud were auto-reconfigured at an optimal range to improve 
the resource utility and application performance in [42]. 
Dynamic resource configuration through RL was suggested in 
[43]. The delayed learning process of RL was overcome by a 
value-function that converged the optimal learning policy at a 
fast rate. 

A self-adaptive learning agent called iBalloon handled the 
dynamic capacity management of each VM in [26]. iBalloon 
was based on RL in which utilization of the CPU, memory, and 
I/O are considered as the state of the environment. The action 
to be taken was of the form (no-operation, scale-up, scale-
down) on the VM’s resources. The Decision Maker (DM) 
module computed the required resource capacity. The Host 
Agent module monitored and reconfigured VM’s resources. 
Any deviation from the SLA was reported back to the DM that 
updated the capacity management. The observations of the 
existing works on RL-assisted RASP are tabulated in Table V. 

V. ANALYSIS OF ENERGY EFFICIENT COMPUTING (EEC) 
ASSISTED RASP 

With the proliferation of DCs, the CAGR (Cumulative 
Annual Growth Rate) of carbon emission is expected to cross 
11% worldwide, which is a serious threat to be handled 
immediately [5]. Hence, an EEC-based RASP that minimizes 
energy consumption and carbon emission is required [44].  The 
EEC-assisted RASP is classified as thermal aware and power-
aware energy management as shown in Fig. 3. In general, 
thermal aware energy depends on the number of resources 
involved rather than the temperature density of those resources. 
As power is directly proportionate to the temperature density of 
the resources, the proposed survey focuses on power-aware 
energy management [23]. 

Energy management through Load balancing tackles the 
overload and underload aspects of resources, only after the 
tasks are scheduled. Whereas, RA approach handles energy 
management by predicting the power consumption in advance 
and optimizes the resource utilization [22]. This section 
discusses the works related to EEC-assisted RASP under 
various criteria as shown in Table VI. 

A. Minimization of Energy Cost and Latency 
Energy consumption and latency reduction in Fog 

computing were implemented in[16]. In the health care case 
study, the Medium Access Control (MAC) scheduler allocated 
the available time slots in Time Slotted Channel Hopping 
(TSCH) frame to the requesting sensors, by an equally spaced 
method. Cloudlet (an interface node between the mobile device 
and cloud server) assisted with Dynamic Energy Cost 
Minimization (DECM) technique was adopted to reduce the 
energy cost in [19]. Whenever applications are invoked 
through mobile, the DECM finds the cloudlets that reside near 
to the CSP. Then, the mobile request is forwarded to the 
recommended cloudlet. 

 
Fig. 3. Taxonomy of EEC. 
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TABLE VI. EEC ASSISTED RASP WORKS 
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E1 [16] La et al., 2019 ✓  ✓   ✓    

E2 [18] Thein et al., 2018 ✓  ✓    ✓   

E3 [17] Duan et al., 2017 ✓   ✓    ✓  

E4 [45] Shelar et al., 2017  ✓ ✓     ✓  

E5 [19] Gai et al., 2016  ✓  ✓  ✓    

E6 [49] Wu et al., 2014 ✓  ✓      ✓ 

E7 [48] Fargo et al., 2014 ✓   ✓     ✓ 

E8 [20] Basmadjian et al., 2012  ✓ ✓      ✓ 

E9 [44] Beloglazov et al., 2012  ✓ ✓     ✓  

E10 [49] Zhang et al., 2012 ✓   ✓     ✓ 

B. Energy Conservation through PUE and DCiE 
Power Usage Effectiveness (PUE) and DC infrastructure 

Efficiency (DCiE) were referred to in the RA framework to 
compute the power consumption of a DC in [18]. PUE is the 
ratio of the power consumed by IT equipment to the power 
consumed by the total IT facility. But, DCiE is inversely 
proportional to PUE [23]. The framework senses the state    
(number of physical hosts) of the DC and takes actions 
(allocate or not allocate), respectively. 

C. Energy Conservation based on VM Placement, Migration, 
and Server Consolidation 
VM migration is the process of transferring the process of 

the selected VMs from one host to another, to avoid 
overutilization or under-utilization issues [22]. VM migration 
enables server consolidation by utilizing only the optimal 
number of servers thereby shutting down the unused servers in 
[17]. To reduce energy consumption, the Modified Best Fit 
Decreasing (MBFD) algorithm[44], arranged VMs in 
decreasing order of CPU utilization and allocated them to the 
highest power-efficient host. The algorithm aiCloud optimized 
the total power consumption, by switching the idle and 

underutilized physical machines to a power-saving state or 
offline state (hibernate/ sleep/standby) in [45]. 

D. DVS/DVFS based Energy-Efficient Computing 
The growth in the number of DCs has become a huge 

consumer of power. Scaling down the frequency/voltage, at the 
level of processor, memory, HDD, and NIC were the 
techniques employed to save power consumption in general. 
DVFS scaling that controls the frequency and voltage to 
maintain optimal performance was employed in [46]. The 
architecture specified the minimum and maximum frequency to 
run a job as one of the requirements, based on which the DVFS 
was programmed. 

An Autonomic Workload and Resource Management 
framework (AWRM) that reduced power consumption by 
predicting the workload was employed in [47]. [20] [48] 
presented an energy-saving and carbon footprint reduction 
model where the processor frequency was reduced instantly, 
once it turned idle. The author proved that with the right      
combination of optimization policy and power prediction 
model, energy consumption was reduced by 20%. Table VII, 
tabulates the observations of the EEC-assisted RASP works. 
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TABLE VII. ANALYSIS OF ENERGY EFFICIENT COMPUTING ASSISTED RASP WORKS 
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VI. ANALYSIS OF RASP IN FOG COMPUTING 
The term Fog computing was proposed by cisco systems in 

2012. Cisco defines Fog as a computing architecture that 
extends the capabilities of the cloud closer to the things that 
produce and act on data. The IoT devices that produce and 
consume data are located in the edge network. Fog computing 
resides as a middle layer between the edge network and the 
cloud as shown in Fig. 1. The proximity of fog nodes near the 
edge network guarantees minimum bandwidth and latency for 
time-critical applications. A well-defined RASP strategy in 
Fog layer helps IoT realize its potential. The Fog computing-
based RASP works considered for the survey are categorized in 
Table VIII. 

A. Profit-Cost Oriented QoS in RASP 
The profit-centric service provider saved their cost by 

employing an optimized RA model that guaranteed less 
response time in [8]. An empirical approach that maximized 
Fog utilization and minimized cost was presented in [49]. A 
RA strategy that maximized the profit of both the resource 
provider and consumer was suggested in [50]. The 
contradiction between price and time in completing a task was 
resolved through Priced Timed Petri Nets (PTPN) in which the 
required resources were chosen from a group of pre-allocated 
resources. 

Besides other requirements, the cost is a significant QoS 
metric for both the service provider and the user [51].  A Cost 
aware Fog RA for the medical cyber-physical system was 
presented in [51]. While the base transceiver station was 
employed as a fog node, the data transmission rate, delay, and 
service rate were the QoS metrics used to compute the total 
cost in allocating the resource. 

B. RASP based on Resource Utilization Oriented QoS 
Resource utilization is the allocation of available resources 

among the competing tasks within the budget as specified in 
the QoS. The price of a resource depends upon whether it is 
over-demanded or under-demanded. A market equilibrium 
framework that balanced the interests of both the service 
(buyer) and the Fog resource (goods) was employed in [52]. 

A two-sided matching game problem that stabilized the 
association of Fog and IoT to maximize resource utilization 
was presented in [53]. The higher resource utilization rate 
indicated its optimal consumption which in turn reduces the 
carbon emission. A proximal algorithm that assured utility-
oriented RA and reduced carbon disposal was suggested in 
[54]. 

C. RASP based on Quality of Experience (QoE) 
Quality of Experience (QoE) is the key factor to evaluate 

the service satisfaction of the end-user. QoE varies with the 
expectation of the end-user. While certain consumers are 
satisfied with minimal latency and bandwidth, others prefer 

saving the cost. An efficient RASP strategy that enhanced the 
QoE of mobile users was described in [55]. A RA model that 
enhanced the QoE of IoT users in terms of cost reduction 
through the game theory approach was implemented in [56]. 

D. RASP based on Bandwidth Oriented QoS 
The geographical distance and insufficient bandwidth 

issues of the Cloud were overcome by the Fog enabled Cloud 
architecture called ROUTER (ResOUrce management 
TEchnique for smaRt homes) [57]. ROUTER ensured 
minimum bandwidth and response time through the Particle 
Swarm Optimization algorithm. The algorithm found the best 
resource for a job (particle) through fitness value (sum of 
weighted values of required energy, bandwidth, latency, and 
response time). 

Bandwidth aware Component Deployment Problem (CDP) 
was presented in [58]. The backtrack search algorithm picked a 
compatible Fog node to deploy a component (IoT request). The 
compatibility was verified in terms of the HW-SW 
requirement, communication link, and bandwidth capacity. 
When the requirement matched, the component was deployed 
in the Fog node, otherwise, the search was repeated to find a 
compatible Fog node. The author implemented a preprocessing 
procedure to reduce the search time of the Fog node. 

E. QoS of Latency, Round Trip Time (RTT), Delay and 
Response Time 
As far as Industrial IoT is concerned, a minimal delay is the 

most expected QoS metric. Even Fog suffers the delay caused 
by the VM boot time. Hence, virtual containers that consumed 
less memory and instantiation time was suggested as Fog 
resource in [7]. The Gaussian Process Regression for Fog-
Cloud Allocation (GPRFCA) was employed to decide, whether 
a request is to be processed in Fog or Cloud in [59]. A QoS-
aware Fog Service Placement Problem (FSPP) that reduced 
execution cost and response time was recommended by [60]. 

F. Fog Radio Access Network (Fog-RAN) 
The scarcity of Fog resources was overcome by employing 

the fronthaul devices of the cellular network as fog devices in 
[39]. A loosely coupled architecture for emerging 5G networks 
of  Fog-RAN was recommended by [39]. The architecture 
encouraged the participation of more Fog nodes to lessen the 
burden of the fronthaul on cellular networks. 

A RA scheme with the radio spectrum and Fog nodes as the 
resource was implemented through the student project 
matching algorithm in [61]. The service provider maintained 
the list of radio spectrum and Fog resource pair to which the 
request was matched as per the preference of the users. The 
base transceiver stations, Wi-Fi access points, and femtocell 
routers upgraded with CPU and memory capacity served as 
Fog nodes to deliver ultra-high-speed latency for IoT 
applications in [61]. 

73 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 3, 2021 

TABLE VIII. CLASSIFICATION OF RASP PAPERS IN FOG COMPUTING 
Pa
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B
an

dw
id

th
 

L
at

en
cy

 

Fo
g-

R
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F1 [8] Tran et al., 2019 ✓ 
 

✓ 
  

✓ 
      

F2 [52] Nguyen et al., 2019 
 

✓ ✓ 
   

✓ 
     

F3 [55] Kim, 2019 
 

✓ ✓ 
    

✓ 
    

F4 [57] Gill et al., 2019 ✓ 
 

✓ 
     

✓ 
   

F5 [53] Abedin et al., 2019 ✓ 
 

✓ 
   

✓ 
     

F6 [56] Shah-Mansouri & Wong, 
2018  

✓ ✓ 
    

✓ 
    

F7 [59] da Silva & Fonseca, 2018 
 

✓ 
 

✓ 
     

✓ 
  

F8 [7] Yin et al., 2018 
 

✓ ✓ 
      

✓ 
  

F9 [61] Y. Gu et al., 2018 
 

✓ ✓ 
       

✓ 
 

F10 [39] Rahman et al., 2018 
 

✓ ✓ 
       

✓ 
 

F11 [60] Skarlat et al., 2017 ✓ 
 

✓ 
      

✓ 
  

F12 [49] Mulla et al., 2017 ✓ 
 

✓ 
  

✓ 
      

F13 [58] Brogi & Forti, 2017 ✓ 
 

✓ 
     

✓ 
   

F14 [62] Sun & Zhang, 2017 ✓ 
 

✓ 
        

✓ 

F15 [50] Ni et al., 2017 
 

✓ ✓ 
  

✓ 
      

F16 [51] L.Gu et al., 2017 
 

✓ ✓ 
  

✓ 
      

F17 [63] Alsaffar et al., 2016 ✓ 
 

✓ 
        

✓ 

F18 [54] Do et al., 2015 ✓ 
 

✓ 
   

✓ 
     

G. QoS-SLA based RASP in Fog Computing 
With scalability being a challenge to Fog, the author 

suggested sharing computing resources from mobile users as 
Fog nodes in [62]. Incentives were provided to the mobile 
owners who contribute to the resource pool. A Fog-Cloud 
federated IoT RASP architecture that optimized resource 
utilization and data distribution was presented in [63].  
Table IXA and IXB tabulate the analysis of Fog based RASP 
works 

VII. DISCUSSION AND CONCLUSION 

A. Identified Research Gaps and Future Enhancements 
The survey explores different strategies to solve the RASP 

problem under various domains viz., Cloud, Fog, RL, and 

EEC. In the effort to solve the RASP problem arises many sub 
problems. Resource scalability, over-provision/under-provision 
of resources, violation of cost, budget, and time constraints are 
some of the subproblems that need to be addressed while 
implementing an effective RASP system. Especially, in the 
case of IoT applications where the requirements are stochastic 
and delay-sensitive. 

Most of the RASP works were carried out using reactive 
policy. Though reactive policy incurs less cost, its case-driven 
programming approach does not withstand the time-sensitive 
requirements of IoT applications. Hence, adapting machine 
learning-based proactive and hybrid policies gives an effective. 
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TABLE IX. A. ANALYSIS OF RASP WORKS IN FOG COMPUTING 

Paper 
ID 

Ref. Problem addressed Objective Algorithm Performance metrics 
addressed 

F1 [8] Optimization of IoT task 
placement on fog  

Maximize task deployment in 
fog & minimize response 
time, energy consumption, 
and operational cost 

Empirical approach Latency, energy, network load, 
operational cost. 

F2 [52] 
Allocation of capacity limited 
fog nodes to competing requests 
with diverse preferences. 

Maximize resource utilization 
of fog under budget 
constraint 

Market equilibrium (ME) solution 
with service requests as buyers and 
fog resources as goods. 

Resource utilization. 

F3 [55] 
Inefficient coordination among 
mobile devices and Fog 
Controller in allocating 
resources 

Maximize QoE and resource 
utilization, minimize task 
failure rate. 

2 phase Gaussian model-based BVG 
and NBS resource allocation 

Task failure probability, QoE, 
resource utilization at Fog 
Access Point (FAP) 

F4 [57] 
Response time issue in Fog-
Cloud federated resource 
allocation for smart home 

li ti  

Optimize performance 
parameters through a fitness 
function 

Particle Swarm Optimization 
algorithm 

Response time, Bandwidth, 
latency, energy consumption 

F5 [53] Limited bandwidth in fog 
network resource allocation 

Maximize fog network 
resource utilization for IoT 
applications 

 Analytics hierarchy process (AHP) 
based QoS prioritization through 
two-sided matching game best fit 

 

Resource utilization, 
throughput, bandwidth, 
efficiency, job-delay 

F6 [56] Pure Nash Equilibrium problem 
in RA for IoT applications  

Maximize QoE, minimize 
energy and delay 

Near-optimal RA algorithm to 
tackle Pure Nash Equilibrium 

Computation delay, average 
QoE, Number of IoT users 
benefited 

F7 [59] IoT service placement in 
Fog/cloud 

Minimize energy 
consumption, request 
blocking, and latency. 

Gaussian process regression fog-
cloud allocation (GPRFCA). 

Energy consumption, request 
block ratio, and latency. 

F8 [7] 
Delay due to limited resource 
capacity of fog in real-time 
analysis of smart manufacturing  

Maximize Fog utilization, 
minimize task delay 

A heuristic algorithm-based fixed 
threshold (FT), dynamic threshold 
(DT) with fixed and reallocation 
quota. 

Number of accepted tasks, 
delay, execution time 

F9 [61] 

Instability in the allocation of 
channel bandwidth and 
computational resource for IoT 
in Fog 

Maximize user satisfaction in 
terms of cost performance 
subject to delay, transmission 
quality, and power control 

Student Project matching algorithm 
combined with user-oriented 
cooperation (UOC) 

Latency, Service provider's 
revenue, data size, delay  

F10 [39] 
Restricted fronthaul capacity 
and computing delay increases 
the latency  

To achieve ultra-low latency 
and optimized transmission 
rate 

Jointly distributed computing 
algorithm and distributed content 
clustering algorithm 

Delay, number of users served 
in fog 

F11 [60] QoS violation and execution 
cost 

Maximize fog resource 
utilization with response time 
less than the deadline 

constraint based empirical algorithm Fog Utility, response time, 
make span 

F12 [49] 
Fault tolerance, 
overflow/underflow problem in 
resource allocation 

Maximize Fog utilization Empirical approach 
Response time, DC processing 
time, total cost (VM cost + data 
transfer cost) 

F13 [58] QoS aware IoT task placement Minimum latency and 
maximum task placement. 

Back tracking and heuristic search  Latency and bandwidth 

F14 [62] 
Integration of spare resources 
from end-users to fog resource 
pool 

Maximize resource utilization 
and income of fog broker 

crowd funding algorithm approach 
refining Nash equilibrium 

Failure rate of SLA, Task 
Completion time 

F15 [50] 
Price cost and time cost issues 
involved in allocating resources 
to IoT task in fog 

Maximize resource 
utilization, profit of fog 
service providers and satisfy 
QoS requirements 

Priced Timed Petri Nets Task completion cost, make 
span 
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F16 [51] 

Cost hike due to the unstable 
and long delay communication 
link between the medical device 
and datacentre 

Minimize the cost of 
communication, delay, 
processing, and deployment 
to ensure QoS 

Mixed Integer Linear Programming 
(MILP) through joint optimization 
using 2- phase LP-based heuristic 
algorithm 

Total cost (cost of uplink 
comm., deployment, 
processing) 

F17 [63] 
Assurance of SLA/QoS in IoT 
service placement and RA in the 
fog-cloud federation 

Improve RA and 
Optimization of Big data 
distribution 

Decision rules of Linear decision 
tree approach 

Response time, number of VMs 
used, Number of SLA met 

F18 [54] 
Joint optimization of resource 
allocation and carbon footprint 
issue 

Maximize Fog utility and 
minimize cost with reduced 
carbon emission 

Alternative direction method of 
multipliers (ADMM) as the 
proximal algorithm 

Fog Utility and carbon emission 
rate 

B. ANALYSIS OF RASP WORKS IN FOG COMPUTING 

Paper 
ID Ref. Experiment Evaluation  Workload Limitations 

F1 [8] 

iFogSim with 28 NW 
configurations for task 
placement in fog 
landscape.  2)Test bed 
to emulate Intelligent 
transport system 

Validated with IBM CPLEX optimization 
solver results 

Simulated data & 65 applications 
from the Intelligent Transport 
System (ITS) with 28 scenarios 
tested. 

Applications with 
independent tasks alone are 
considered. 

F2 [52] 

Amazon EC2 instances 
test bed coded using 
MATLAB, 
CVX/MOSEK 

evaluated with five allocation schemes 
GEG, EG, PROP, SWM, MM benchmarks Data set 

Maximum resource capacity 
of fog nodes not mentioned 
while max. resource 
demand used  

F3 [55] 
Test bed with 25 FAP 
and 100 mobile 
devices. 

evaluated with SDFC, SSEC, CFIC scheme Mobile device generated service 
request (data set) 

Due to reactive policy 
scalability issue arises. 

F4 [57] CloudSim, iFogSim Validated with IoT based Smart Home 
application (SHA) 

Real time- Small scale smart home 
automation experiment case study 

 PSO do not address 
dynamic scalability 

F5 [53] 
Test bed with 50 IoT 
devices and 10 fog 
devices 

Validated for stability, complexity and 
convergence 

Enhanced Mobile Broadband 
(eMBB) services, Ultra Reliable 
Low Latency Communication 
(URLLC) services-delay & BER 
(Bit Error Rate) intensive 

Performance measured only 
for specific services 

F6 [56] 
Numerical Experiment 
and Test bed 
simulation 

QoE at equilibrium with price of anarchy 
compared with social optimal cost Simulated mobile request data set 

Number of user request and 
computing services 
considered constant 

F7 [59] 
iFogSim, GPR 
implemented with 
gptool of python  

Fog only tasks compared with fog-cloud Remote VM application and 
augmented reality application. 

Mobility of accessing 
device not considered 

F8 [7] Test bed set up Evaluated with fixed and dynamic 
threshold for varying resource quota 

GNOME to simulate concurrent 
request Scalability issue 

F9 [61] Test bed set up with 45 
to 210 IoT users 

SPA, Random resource allocation, Energy 
Consumption and delay performance 
(EDM) 

IoT device requests Reactive policy restricts 
scalability 

F10 [39] Simulated experiment Compared with fixed power allocation 
scheme and random fog clustering scheme 

20 requests from 5 users for 20 
fog access points 

The transmission delay 
between fog nodes 
considered negligible 

F11 [60] iFogSim   
evaluated with IBM Cplex solver, 
compared with first fit baseline & pure 
cloud models 

Motion, video, audio, 
temperature-based applications 

The reactive policy does not 
scale and fails to address 
stochastic requirements 
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F12 [49] Cloud analyst 

Efficient resource allocation (ERA) 
compared with existing Optimize response 
time (ORT) and Reconfigure dynamically 
with load balancing (RDLB)  

Simulated data  Cannot address stochastic 
requirements 

F13 [58] 
Fog torch prototype, a 
proof of concept java 
tool. 

Evaluated for expected QoS profile in 50 
fog nodes 

Fire alarm IoT application offered 
by an insurance company to its 
customers. 

A single application tested 
for task placement. 
Scalability problem. 

F14 [62] Test bed with 50 smart 
phones 

Validated with Minimum Migration and 
MBFD (Modified Best Fit Decreasing) 

Test data for pressure application 
generated by JMeter 

The static approach does not 
support scalability 

F15 [50] 

Test bed set up with 
dawn-3000 parallel 
machine with ten 
Linux cluster to model 
fog computing 
environment 

 MFR (Mapping Fog Resource to user 
directory scheme) compared with MinMin 
and MaxMin algorithm 

Random function generated 
service requests 

As resources are mapped to 
user price, the waiting time 
for a resource, increases the 
delay of completing user 
tasks.   

F16 [51] 

Test bed set up of 
300x300 network size 
with 80 users and 50 
Base stations. 

Total cost evaluated across several base 
stations and 2-phase LP compared with the 
greedy algorithm 

The medical device-generated data 
traffic 

VM deployment in the base 
station is application-
specific 

F17 [63] CloudSim Internally compared among shared and 
reserved allocation.   

The workload of multimedia big 
data from fog-cloud broker to use 
smart devices 

Static number of requests 
and data considered for the 
experiment 

F18 [54] Mathematical model Convergence rate of proximal algorithm 
and ADMM 

Video streaming request from 
Akamai- the world’s largest 
content delivery network 

Only Theoretical proof of 
mathematical model 
analyzed 

Solution. In general, the existing works were from the 
service provider’s point of view saving their cost. A RASP 
strategy that prioritizes consumer’s profit, needs focus. 
Deployment of multi-tier and parallel applications in fog nodes 
is another issue that needs attention. 

The unexpected network traffic and access rate of the 
hosted applications were not foreseen during SLA. This leads 
not only in the violation of QoS requirements but some 
catastrophic failures of resource access. Hence dynamic 
provision, to monitor and configure the resources automatically 
with intelligence is the need for such a situation. Research on 
autonomic computing that possesses self-management 
capability will enhance the RASP strategy. 

The proliferation of IoT requires unlimited bandwidth. The 
huge number of heterogeneous geo-distributed devices 
involved in the fog layer that handles IoT consumes enormous 
energy. Instead of draining the available energy, fog nodes that 
work on solar and green energy should be brought into usage. 
Hence, a Fog-based RASP solution that supports green 
environmental sustainability needs focus. 

The manufacturing units in Industry, nowadays depend on 
Fog services for instantaneous processing. But, the protocol 
interoperability problem between the assembling units and Fog 
devices causes a delay that is not tolerable in Industrial IoT. 
With fewer works carried out in this area, it remains yet 
another open challenge in Fog research. 

Findings show that based on the delay constraint of the 
applications, the arriving requests are segregated among the 
Cloud and Fog for processing. But, the question arises how the 
decision is made when the delay constraint is not explicitly 
mentioned.  One possible approach is that the Cloud/Fog center 
can be decided based on the application type. Service requests 

from critical health-care, disaster management, real-time 
chemical reactors, and Industrial IoT can be considered as 
emergent applications that need to be processed in the Fog 
layer. 

Further, the efficiency of the RASP system can be escalated 
by clustering the fog nodes on application basis for processing. 
Instead of making all fog nodes available for processing, 
certain fog nodes can be employed for general purposes while 
the rest of the fog nodes can be reserved exclusively for 
emergent applications. Algorithms are to be devised that ensure 
maximum utilization of the fog nodes.  The idle fog cluster can 
be employed either for the migrated emergent applications or 
for the local non-emergent applications during peak hours. As 
Fog computing is still in its infancy stage, standard protocols 
are yet to be explored. 

VIII. CONCLUSION 
The survey elaborates various RASP strategies in Fog and 

Cloud environments. The survey investigated the individual 
work from the viewpoint of, the problem defined, objective set, 
algorithm adopted, performance metrics addressed, experiment 
and evaluation tools employed, and the workloads used for 
testing. The tabulated information presents an exhaustive 
analysis of the individual work with their limitations projected 
as open challenges. 

Although review articles exclusive to Cloud and Fog exists, 
the proposed survey explores the RASP problem, in Cloud and 
Fog for IoT applications. The survey stands unique to employ 
techniques like Reinforcement Learning (RL) and Energy 
Efficient Computing (EEC) to save cost and energy 
respectively. Sure enough, the survey will motivate the 
researchers to focus on the research gaps and helps them to 
conceive innovative RASP solutions in the Fog-Cloud 
federation. 
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