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Abstract—Generation of Test cases in software testing is an 
important and a complex activity as it deals with diversified 
range of inputs. Fundamentally, test case generation is 
considered to be a multi-objective problem as it aims to cover 
many targets. Deriving test cases for the Web Applications has 
become critical to the most of the enterprises. In this paper, a 
solution for generating test cases for web applications is 
proposed; the solution uses the System Graph (consisting of links 
and data dependencies) considering that test cases were based on 
a combination of input values and data dependencies. Pairwise 
testing is used to derive the test cases to be executing from entire 
test cases and then a genetic algorithm is proposed to generate 
test cases specific to functional testing. The proposed approach 
was tested through two distinct experiments by measuring the 
code coverage at every generation and results show that genetic 
algorithm used increased the fitness value and code coverage. 
Overall, the results of the paper validate the proposed approach 
and algorithm, having potential in further construct an 
automated integrated solution for generating test cases for the 
entire process. 

Keywords—Test case generation; genetic algorithm; multi 
objective optimization; pairwise testing; test optimization; fitness 
value 

I. INTRODUCTION 
The key point regarding the usage of Soft Computing in 

testing is towards maximizing the quality of software testing 
and to automate the test generation process. The search issue is 
all about finding perfect results from a list of adversary results, 
which is handled by a fitness function to identify results. 
Software Testing is not just limited to the testing of an 
application or system but includes checking entirety of a 
system. Genetic Programming (GP) [1] is a type of 
Evolutionary Algorithm which is simulated by biological 
growth to search programs that perform certain user-defined 
tasks. This programming technique has been successfully 
applied to many fatigue problems present in software testing 
such as instinctive design, pattern recognition, and test suit 
generation [2].This suit of algorithms helps to automate the 
generation of basic test paths which includes several problems 
like data generation, sequence generation, test case derivation, 
and optimization. Recent studies stated a regeneration genetic 
algorithm which is proven to be operative and trivial for 
coverage-oriented software test suit generation. Issues related 
to software reusability can be resolved by the grouping of soft 
computing approaches like neural networks through software 

testing. Soft computing techniques such as GA are very much 
suitable for test size and coverage problems. Efforts are taken 
to develop the finest potential solutions for the automation in 
test suits and test sequence generation. Problems like test 
sequence, test data generation in white box testing and 
functional testing uses GA. In the current era of software 
development, test automation has a significant function in 
testing the software in its entirety. Test automation comes with 
its own challenges which include reusable scripts generation, 
recompiling the test scripts with modifications for different 
runs and rapid test development with least amount of 
development time and effort. Traditional methods such as 
randomized approaches, goal aligned techniques involve 
human intervention, development effort, cost. Limited 
Resources, missing the critical requirements and generation of 
redundant test cases are the prominent constraints in test case 
generation. To overcome the mentioned challenges test case 
generation methods needs enhanced algorithms. 

II. RELATED WORK 
Test case generation techniques are classified into 

specification based which uses specification documents to 
derive the test cases, sketch based commonly work with 
diagrams such as UML, source code based where in test cases 
are derived using source code applicable to white box 
testing[3]. Study suggests test case generation to be a complex 
problem where in various strategies were proposed for the 
same. The algorithms GA, GA-NN and MA algorithms were 
applied in [4] which applies Machine Learning techniques to 
test generation process. Sketch based test case generation in 
combination with uml diagrams and state transition diagrams 
were proposed by [5].[6-8] Test case in combination with soft 
computing techniques such as Genetic Algorithm, Particle 
Swarm Optimization, Artificial Bee Colony derived a suitable 
results. The proposed approach considers test case generation 
process as a combinatorial optimization and the best feasible 
solution is in a set of discrete range. Combinatorial solutions 
were present in the literature, with different approaches: single 
objective optimization, multiple objective optimization. Test 
Case is a set of various combinations of input values which run 
on a scenario to produce the result and later decided 
accordingly. Hence the Test Case problem is (T, U, M, F), T is 
set of test instances can be considered as a test set, U is 
determinate set of solutions from the suite, given an instance x 
and a feasible solution y m is a measure on y. 
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Combinatorial approaches are a vital group of precise 
distinct enhancing approaches. These methods use successive 
analysis and exclusion of substitutes by Mikhalevich, Shor [9-
11], the scheme is produces a group of additional schemes. For 
instance, dynamic encoding approaches, branch bound 
procedures can be defined in its framework. f is a fitness 
function usually considered to be a goal function which can be 
either min or max. Test case generation as a Single objective 
optimization [12] aims at achieving maximum fitness value 
such that the test suit derived will have the high probability of 
generating good code coverage. Consider T be the group of test 
cases {T1, T2, T3…Tn} and t is targets, the optimization 
problem is to generate a test suit to generate maximum fitness 
value. 

Test case as a Multi objective optimization [13] here aims 
to maximize the fitness value considering along with code 
coverage the other parameters such as dependencies and all 
coverage criteria. 

Max Fi(X) = C1(T1, X), C2(T2, X), Cn(Tn, X), where 

C1, C2, and Cn are the various coverage criteria. 

Differential evolutionary techniques [14] uses multi-
dimensional real valued function, generates new population 
based on existing solutions with a simple formulation. 

III. METHODOLOGY 
The current work proposes a System Graph, (graph 

representing the web application with annotations of number of 
link dependencies and number of data dependencies) for a 
program under test where the data and link dependencies of the 
web page are captured. As the test cases deals with the 
combination of input values the data dependencies [15] are 
considered to play a vital role. Further the link dependencies on 
the web page are prioritized. In combinatorial tests, Pairwise 
(T-way testing) contains on choosing a subsection of test cases 
that covers completely potential sets of arrangements, 
decreasing the amount of entire test cases to be executed, and 
growing the test efficiency by distributing its range, though 
using a minor pairs of test cases. This is mainly operative once 
the amount of variables surges, dropping extremely the amount 
of test cases. Pairwise testing [16, 17] which is proven to 
reduce the test cases considerable is been the next in the 
process so as to reduce the combination of input value pairs in 
the test suit generated. The proposed GA algorithm as specified 
in Fig. 1 generates and optimizes test cases specific to 
functional testing, is one of the randomized search procedures 
that have been established in a determination to emulate the 
method of regular selection and usual genetics. GA is proven to 
create first-class elucidations to optimization complications. 

System Graph can be constructed either with the source 
code analysis [18, 19] and the web page itself. Since the data 
flows from one node to other node the resultant test cases after 
the Pairwise testing are considered, the same set of test cases 
are represented using a Graph for the logical representation of 
gene in our encoding phase of GA. Once the Graph generates 
the required paths as in Fig. 2, deliberated as test cases and 
genes are constructed. 

 
Fig. 1. Proposed System. 

 
Fig. 2. Web Application Graph Model (System Graph). 

A. Parameters Considered 
Fitness value: Fitness is defined to give a value to each 

candidate solution which is considered to play a vital role in 
the search space. Fitness value [20] guides the whole Genetic 
Algorithm or a PSO algorithm in order to select the correct fit 
of individuals. 

Code Coverage: Code Coverage [21] is considered to be a 
measure which of the test suite and the source code of the 
system covered with respect to this test suite. 

Branch Coverage: Brach Coverage [22] is one more 
important method which ensures that the path/paths selected 
covers at least one branch, the branches true/false executed. 
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Dependency Coverage: Data dependencies and link 
dependencies [23] drive the extreme amount of test cases 
where page transits throughout the web application. 

IV. STRUCTURE OF GENETIC ALGORITHM 
Genetic Algorithm runs with an initial population of genes 

which are test cases. Fitness function is computed over the 
population to select set of chromosomes which will participate 
in the next generation population. Cross over and mutation 
operators are applied over the selected population to generate 
diversified range of population.GA stops once the population is 
either converged or for a specified number of iterations. 

A. Genetic Algorithm 
GA is a parameter coding technique which usually works 

on population of solutions and deterministic transitions. 
Considering the test case generation with respect to multi 
objective optimization PARETO [24] solutions and multi-
criteria decision-aid technique is applied to select the finest 
solution. PROMETHEE technique [25] of decision is applied 
such that ranking amongst the individuals. Positive ranking is 
given as in Eq. 1, which expresses to what extent each 
alternative outranks all the others. 

∑ ∅(𝑎) = 1
𝑛
− 1𝜋(𝑎,𝑏)

𝑏𝜖𝐴,𝑏≠𝑎              (1) 

B. Genetic Algorithm Encoding 
Each chromosome is encoded as a combination of pages 

and the data flow for each element to other element in a web 
page. We use a graph data structure to indicate the paths and 
web pages. The data flow from one element to other likely one 
page to other page is created. P1→P2→P3….Pn. From the 
Graph below sample genes considered: 

 geneA = {0, 1, 5, 8, 5, 9} 
 geneB = {5, 4, 7, 5, 6} 
geneC = {1, 5, 2, 5, 6, 10, 6, 3} 
geneD = {0, 1, 5, 3} 

C. Fitness Function and Selection Mechanism 
Tournament based selection [26, 27] is preferred over the 

roulette wheel selection as to lessen the risk of missing test 
cases. The primary fitness value is derived based on the 
valuation standard code coverage. If selected set of test cases 
covers the maximum code coverage are assigned to be highly 
probable. Secondary fitness value is dependent on the number 
of data dependencies and link dependencies of the given nodes. 
Individual gene with fitness f will succeed in the tournament of 
t individuals picked from the test suite with whole population 
given as in Eq. 2. 

P(F)=MAX (F1,F2….FN)=X P(F<H)S-1P(F)           (2) 

where P(F) constitutes the probability. S denotes the genes 
having lower fitness score. The anticipated tournament succeed 
from a tournament size s is specified as in Eq. 3. 

𝑠∫ 𝑓 𝑃(𝑓 𝑠 − 1 𝑝(𝑓))𝑑𝑓             (3) 

A test case is given a higher fitness value depending on the 
below functions. 

Code Coverage of the chromosomes 

nd→ Number of data dependencies, 

nl→ Number of link dependencies, 

tnd and tnl are the all-inclusive number of data 
dependencies and all-inclusive number of link dependencies 
contributed by the test case. 

Test cases corresponding to the genes defined in the above 
section: 

geneA :{ 0, 1, 5, 8, 5, 9} 

TC1: P1→P2→P6→P9→P6→P10 

geneB = {5, 4, 7, 5, 6}  

TC2: P6→P5→P8→P6→P7 

geneC= {1, 5, 2, 5, 6, 10, 6, 3} 

TC3: P2→P6→P3→P6→P11→P7→P4 

geneD = {0, 1, 5, 3} 

TC4: P1→P2→P6→P4 

Cross over: Single point crossover is considered initially to 
generate new population, if diversified range of population to 
be generated the other cross over operations can be applied. 

TC1: P1→P2→P6→P9→P6→P10, 

TC2: P6→P5→P8→P6→P7 

TC3: P2→P6→P3→P6→P11→P7→P4,  

TC4: P1→P2→P6→P4 

TC11: P1→P2→P5→P8→P6→P7 (TC1&TC2) 

TC12:P2→P6→P9→P6→P10 (TC1&TC3) 

The mutation process [28] is to maximize the chance of 
complete search space in the algorithm, a predefined mutation 
probability [29-30] is calculated for each chromosome, and 
score is arbitrarily engendered to relate the mutation 
probability to resolve for the mutation process. Sample of the 
test cases after the crossover operation and mutation operation. 

From the above generated test cases: 

TC21: P4→P6→P9→P6→P10 (TC1 and TC4) 

Acceptance: As the mutation and crossover involve certain 
level of uncertainty, the off springs may or may not be superior 
to parent chromosomes. Hence fitness needs to be calculated 
for acceptance. 

Stop criteria: for a specified number of maximum 
generations the GA is executed, based on the fitness and code 
coverage the GA is stopped. 
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ALGORITHM - TEST CASE GENERATION 

Input:  
Program under test 
Initial set of paths (Test Cases) from the System Graph for 
Web application. 
Initial set of paths (Test Cases) from the Program Graph for 
console programs. 
Output: 
Set of optimized paths (Test Cases),  
{P1, P2, P3…Pn}, Code Coverage, Fitness value. 

Initialization phase: 
Build a DLDG graph for the corresponding program under 
test. 
Generate initial population of genes  
{TC1, TC2, TC3…TCn},  
Apply Pairwise testing to generate genes  
{TCm1, TCm2, TCm3…TCmn} 

GA Algorithm: 
gen1=1, max_gen 
Current_population: 
{TCm1, TCm2, TCm3…TCmn}= 
{P1→P2→P3..Pi}, (initial set of paths) 
While (gen1≤ max_gen) 
Begin 
for each gene genei in Current_ population 
{gene 1, gene 2 ,gene 3…gene n} 
Calculate the fitness_ value Fi as specified in Eq.4 

𝐹𝑖 = ∑ 𝐶𝑖 + 𝑇𝐶𝑖((𝑛𝑑 + 𝑛𝑙𝑛
𝑖=0 )/(𝑡𝑛𝑑 + 𝑡𝑛𝑙)) Eq. (4) 

Ci is the code coverage of the test suit, nd, nl,tnd,tnl as stated 
in the fitness and selection mechanism. 
for each gene{gene i } 
If (fitness_value is in the range) 
Select the gene {genei} based on Tournament based selection 
Apply crossover operation to generate the new genes 
Apply mutation operation to change the gene 
Add the above population to the current_ population 
End 

V. EXPERIMENTS AND EVALUATION 
Experiment 1: 

Triangle classification problem where in the input is 
considered for three sides of a triangle and the output details 
the type of a triangle. SideA, SideB, SideC for the first 
generation was chosen randomly as specified in Table I, these 
values were further selected to be part of parent chromosomes 
and underwent GA operations using the fitness function and 
pairwise testing described in the above algorithm. Pairwise 
testing values were obtained using online Pairwise online tool. 
Code coverage from the second generation was noted and 
specified in Table II. NUnit coverage tool is used to record the 
code coverage of the test suit. The tables provide the data 
obtained as a result of our methodology in Fig. 1. 

Fig. 3 illustrates the tests vs coverage in terms of line and 
branch coverage for the values specified on the horizontal axis. 

TABLE I. GENERATION- 1 

SideA SideB SideC 
0 2 1 

2 5 1 
1 1 5 
5 2 1 

TABLE II. GENERATION-2 

Test case SideA,SideB,SideC Branch coverage  Line coverage 

1,2,1 33.33% 40.90% 

1,0,0 33.33% 31.81% 

1,5,0 25% 31.81% 

1,1,2 33.33% 31.81% 

1,1,0 25% 31.81% 

1,0,2 33.33% 31.81% 

2,1,1 41.66% 40.90% 

2,5,2 41.66% 40.90% 

2,0,1 33.33% 31.81% 

2,1,1 33.33% 31.81% 

2,2,0 25% 31.81% 

5,5,1 41.66% 40.90% 

5,0,1 33.33% 31.81% 

5,1,1 33.33% 31.81% 

5,1,0 25% 31.81% 

5,2,1 50% 45.45% 

5,1,2 50% 45.45% 

0,0,1 25% 31.81% 

0,1,0 25% 31.81% 

0,1,1 25% 31.81% 

0,2,2 25% 31.81% 

0,5,1 25% 31.81% 

 
Fig. 3. Tests vs. Coverage. 
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The sample values after processing and normalized values 
achieved the below result as shown in Fig. 4. 

 
Fig. 4. Tests vs. Coverage. 

The results after eight generations achieved a consistent 
result which achieved 88.20% of code coverage and are 
depicted in the Fig. 5. 

 
Fig. 5. Generation vs. Code Coverage. 

Experiment 2: 

The source code for a simple web application was 
considered for experimental evaluation and random test cases 
were generated. This was a Web based application as 
represented in Fig. 2, the automated test cases were captured 
using selenium IDE. Selenium IDE is basically a record and 
playback tool, the test cases generated by Selenium IDE are 
saved and deployed as JUnit, NUnit test cases. The sample test 
cases were run through NUnit code coverage [31, 32] which 
achieved the following result over the main modules like 
performing an insertion and deletion of the records of 
customers. 

Proposed GA Algorithm was then executed on the same set 
considering few sample test cases from the above document, 
which achieved the following result. At each iteration the 
fitness value is generated using the fitness function and the 
genes are allotted the ranking as per selection criteria discussed 
previously. The set of genes which are valid and invalid is 
checked manually which can be automated further. Hence the 
genes undergo a preprocessing phase for the mentioned. 

Considering the above mentioned geneA, geneB, geneC, 
geneD, Sample of genes generated by GA algorithm for three 
of the generations are as mentioned below. 

Test cases derived for a sample of three generations 

Generation 0: Random population considered from the Fig. 3 
are: 

[0, 1, 5, 8, 5, 9]  
[5, 4, 7, 5, 6] 
[1, 5, 2, 5, 6, 10, 6, 3]  
[0, 1, 5, 3]. 

After processing with the selection, crossover and mutation 
operation the following were the chromosomes generated for 
second generation. 

Generation 1: 

[0, 1, 5, 5, 6, 9] 
[5, 4, 7, 8, 5] 
[0, 1, 5, 8, 5, 9] 
[5, 4, 7, 5, 6] 
[0, 1, 5, 5, 6, 9] 
[5, 4, 7, 8, 5] 
[0, 1, 5, 8, 5, 9] 
[5, 4, 7, 5, 6] 
[0, 1, 5, 3, 6, 10, 6, 3] 
[1, 5, 2, 5] 
[0, 5, 2, 5, 6, 10, 6, 3] 
[1, 1, 5, 3] 
[0, 5, 5, 3, 6, 10, 6, 3] 
[1, 1, 2, 5] 
[0, 5, 5, 5, 6, 10, 6, 3] 

Generation 2: 

[0, 5, 5, 5, 6, 10] 
[0, 1, 5, 8, 5, 9, 6, 3] 
[0, 1, 5, 8, 5, 9] 
[0, 5, 5, 5, 6, 10, 6, 3] 
[0, 1, 5, 5, 6, 10] 
[0, 5, 5, 8, 5, 9, 6, 3] 
[0, 1, 5, 8, 5, 9] 
[0, 5, 5, 5, 6, 10, 6, 3] 
[1, 1, 2, 3, 6] 
[5, 4, 7, 5] 
[1, 4, 7, 5, 6] 
[5, 1, 2, 3] 
[1, 4, 2, 3, 6] 
[5, 1, 7, 5] 
[1, 4, 2, 5, 6] 
[5, 1, 7, 3] 

The above values after preprocessing where in repeated 
genes and invalid genes were processed and further reduced. 
Validity and invalidity of the genes were verified based on the 
data associated with the genes, for instance the path from 
P1→P2 is valid based on data which were minimized using 
pairwise testing. Considering P1 to be a Login page the page 
transits to other page if P1 {data} is valid, if P1 {data} is not 
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valid the page transits to other page. Fig. 6 and Fig. 7 depicts 
the graph Tests vs. coverage, the very first initialization of the 
test suit is chosen randomly specified with values in the 
horizontal axis, where the line coverage and branch coverage 
are proportional, the intermediate tests didn’t achieve the 
coverage but stabilized in due evolution with Genetic 
Algorithm. 

 
Fig. 6. Tests vs. Coverage for First Generation (Random Test Cases). 

 
Fig. 7. Tests vs. Coverage for Generation 2. 

VI. FUTURE SCOPE 
The future work of the proposed work is to evaluate with 

large scale web applications and console programs. Though the 
current approach proposes an automated solution, the pairwise 
integration, validation for each run with respect to the test 
cases is done manually. The work can be extended with a 
complete automated integrated solution for generating test 
cases for the entire process. 

VII. CONCLUSION 
This paper proposes an automated solution for Test case 

generation problem by means of Integrated Pairwise Genetic 
algorithm. A set of optimized test cases after Pairwise testing 
are considered as initial population for the GA. Considerably 
less genes were initiated which leads gradually to huge amount 
of test suites. Code coverage was measured at every generation 
and based on fitness values the parent genes were selected and 
then were involved in the generation process. When the 
evaluation metric code coverage is compared with random 

generation of test cases and GA, the results show that GA has 
considerably increased the fitness value and code coverage. 
Further our work requires and automated integrated solution 
for the whole process. 
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