
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Integrated Pairwise Testing based Genetic Algorithm
for Test Optimization

Baswaraju Swathi1
Research Scholar

Department of CSE
Jain University, Bengaluru

India

Dr.Harshvardhan Tiwari2
Associate Professor, Centre for Incubation

Innovation, Research and Consultancy (CIIRC)
Jyothy Institute of Technology, Bengaluru

Karnataka, India

Abstract—Generation of Test cases in software testing is an
important and a complex activity as it deals with diversified
range of inputs. Fundamentally, test case generation is
considered to be a multi-objective problem as it aims to cover
many targets. Deriving test cases for the Web Applications has
become critical to the most of the enterprises. In this paper, a
solution for generating test cases for web applications is
proposed; the solution uses the System Graph (consisting of links
and data dependencies) considering that test cases were based on
a combination of input values and data dependencies. Pairwise
testing is used to derive the test cases to be executing from entire
test cases and then a genetic algorithm is proposed to generate
test cases specific to functional testing. The proposed approach
was tested through two distinct experiments by measuring the
code coverage at every generation and results show that genetic
algorithm used increased the fitness value and code coverage.
Overall, the results of the paper validate the proposed approach
and algorithm, having potential in further construct an
automated integrated solution for generating test cases for the
entire process.

Keywords—Test case generation; genetic algorithm; multi
objective optimization; pairwise testing; test optimization; fitness
value

I. INTRODUCTION
The key point regarding the usage of Soft Computing in

testing is towards maximizing the quality of software testing
and to automate the test generation process. The search issue is
all about finding perfect results from a list of adversary results,
which is handled by a fitness function to identify results.
Software Testing is not just limited to the testing of an
application or system but includes checking entirety of a
system. Genetic Programming (GP) [1] is a type of
Evolutionary Algorithm which is simulated by biological
growth to search programs that perform certain user-defined
tasks. This programming technique has been successfully
applied to many fatigue problems present in software testing
such as instinctive design, pattern recognition, and test suit
generation [2].This suit of algorithms helps to automate the
generation of basic test paths which includes several problems
like data generation, sequence generation, test case derivation,
and optimization. Recent studies stated a regeneration genetic
algorithm which is proven to be operative and trivial for
coverage-oriented software test suit generation. Issues related
to software reusability can be resolved by the grouping of soft
computing approaches like neural networks through software

testing. Soft computing techniques such as GA are very much
suitable for test size and coverage problems. Efforts are taken
to develop the finest potential solutions for the automation in
test suits and test sequence generation. Problems like test
sequence, test data generation in white box testing and
functional testing uses GA. In the current era of software
development, test automation has a significant function in
testing the software in its entirety. Test automation comes with
its own challenges which include reusable scripts generation,
recompiling the test scripts with modifications for different
runs and rapid test development with least amount of
development time and effort. Traditional methods such as
randomized approaches, goal aligned techniques involve
human intervention, development effort, cost. Limited
Resources, missing the critical requirements and generation of
redundant test cases are the prominent constraints in test case
generation. To overcome the mentioned challenges test case
generation methods needs enhanced algorithms.

II. RELATED WORK
Test case generation techniques are classified into

specification based which uses specification documents to
derive the test cases, sketch based commonly work with
diagrams such as UML, source code based where in test cases
are derived using source code applicable to white box
testing[3]. Study suggests test case generation to be a complex
problem where in various strategies were proposed for the
same. The algorithms GA, GA-NN and MA algorithms were
applied in [4] which applies Machine Learning techniques to
test generation process. Sketch based test case generation in
combination with uml diagrams and state transition diagrams
were proposed by [5].[6-8] Test case in combination with soft
computing techniques such as Genetic Algorithm, Particle
Swarm Optimization, Artificial Bee Colony derived a suitable
results. The proposed approach considers test case generation
process as a combinatorial optimization and the best feasible
solution is in a set of discrete range. Combinatorial solutions
were present in the literature, with different approaches: single
objective optimization, multiple objective optimization. Test
Case is a set of various combinations of input values which run
on a scenario to produce the result and later decided
accordingly. Hence the Test Case problem is (T, U, M, F), T is
set of test instances can be considered as a test set, U is
determinate set of solutions from the suite, given an instance x
and a feasible solution y m is a measure on y.

144 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Combinatorial approaches are a vital group of precise
distinct enhancing approaches. These methods use successive
analysis and exclusion of substitutes by Mikhalevich, Shor [9-
11], the scheme is produces a group of additional schemes. For
instance, dynamic encoding approaches, branch bound
procedures can be defined in its framework. f is a fitness
function usually considered to be a goal function which can be
either min or max. Test case generation as a Single objective
optimization [12] aims at achieving maximum fitness value
such that the test suit derived will have the high probability of
generating good code coverage. Consider T be the group of test
cases {T1, T2, T3…Tn} and t is targets, the optimization
problem is to generate a test suit to generate maximum fitness
value.

Test case as a Multi objective optimization [13] here aims
to maximize the fitness value considering along with code
coverage the other parameters such as dependencies and all
coverage criteria.

Max Fi(X) = C1(T1, X), C2(T2, X), Cn(Tn, X), where

C1, C2, and Cn are the various coverage criteria.

Differential evolutionary techniques [14] uses multi-
dimensional real valued function, generates new population
based on existing solutions with a simple formulation.

III. METHODOLOGY
The current work proposes a System Graph, (graph

representing the web application with annotations of number of
link dependencies and number of data dependencies) for a
program under test where the data and link dependencies of the
web page are captured. As the test cases deals with the
combination of input values the data dependencies [15] are
considered to play a vital role. Further the link dependencies on
the web page are prioritized. In combinatorial tests, Pairwise
(T-way testing) contains on choosing a subsection of test cases
that covers completely potential sets of arrangements,
decreasing the amount of entire test cases to be executed, and
growing the test efficiency by distributing its range, though
using a minor pairs of test cases. This is mainly operative once
the amount of variables surges, dropping extremely the amount
of test cases. Pairwise testing [16, 17] which is proven to
reduce the test cases considerable is been the next in the
process so as to reduce the combination of input value pairs in
the test suit generated. The proposed GA algorithm as specified
in Fig. 1 generates and optimizes test cases specific to
functional testing, is one of the randomized search procedures
that have been established in a determination to emulate the
method of regular selection and usual genetics. GA is proven to
create first-class elucidations to optimization complications.

System Graph can be constructed either with the source
code analysis [18, 19] and the web page itself. Since the data
flows from one node to other node the resultant test cases after
the Pairwise testing are considered, the same set of test cases
are represented using a Graph for the logical representation of
gene in our encoding phase of GA. Once the Graph generates
the required paths as in Fig. 2, deliberated as test cases and
genes are constructed.

Fig. 1. Proposed System.

Fig. 2. Web Application Graph Model (System Graph).

A. Parameters Considered
Fitness value: Fitness is defined to give a value to each

candidate solution which is considered to play a vital role in
the search space. Fitness value [20] guides the whole Genetic
Algorithm or a PSO algorithm in order to select the correct fit
of individuals.

Code Coverage: Code Coverage [21] is considered to be a
measure which of the test suite and the source code of the
system covered with respect to this test suite.

Branch Coverage: Brach Coverage [22] is one more
important method which ensures that the path/paths selected
covers at least one branch, the branches true/false executed.

145 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Dependency Coverage: Data dependencies and link
dependencies [23] drive the extreme amount of test cases
where page transits throughout the web application.

IV. STRUCTURE OF GENETIC ALGORITHM
Genetic Algorithm runs with an initial population of genes

which are test cases. Fitness function is computed over the
population to select set of chromosomes which will participate
in the next generation population. Cross over and mutation
operators are applied over the selected population to generate
diversified range of population.GA stops once the population is
either converged or for a specified number of iterations.

A. Genetic Algorithm
GA is a parameter coding technique which usually works

on population of solutions and deterministic transitions.
Considering the test case generation with respect to multi
objective optimization PARETO [24] solutions and multi-
criteria decision-aid technique is applied to select the finest
solution. PROMETHEE technique [25] of decision is applied
such that ranking amongst the individuals. Positive ranking is
given as in Eq. 1, which expresses to what extent each
alternative outranks all the others.

∑ ∅(𝑎) = 1
𝑛
− 1𝜋(𝑎,𝑏)

𝑏𝜖𝐴,𝑏≠𝑎 (1)

B. Genetic Algorithm Encoding
Each chromosome is encoded as a combination of pages

and the data flow for each element to other element in a web
page. We use a graph data structure to indicate the paths and
web pages. The data flow from one element to other likely one
page to other page is created. P1→P2→P3….Pn. From the
Graph below sample genes considered:

 geneA = {0, 1, 5, 8, 5, 9}
 geneB = {5, 4, 7, 5, 6}
geneC = {1, 5, 2, 5, 6, 10, 6, 3}
geneD = {0, 1, 5, 3}

C. Fitness Function and Selection Mechanism
Tournament based selection [26, 27] is preferred over the

roulette wheel selection as to lessen the risk of missing test
cases. The primary fitness value is derived based on the
valuation standard code coverage. If selected set of test cases
covers the maximum code coverage are assigned to be highly
probable. Secondary fitness value is dependent on the number
of data dependencies and link dependencies of the given nodes.
Individual gene with fitness f will succeed in the tournament of
t individuals picked from the test suite with whole population
given as in Eq. 2.

P(F)=MAX (F1,F2….FN)=X P(F<H)S-1P(F) (2)

where P(F) constitutes the probability. S denotes the genes
having lower fitness score. The anticipated tournament succeed
from a tournament size s is specified as in Eq. 3.

𝑠∫ 𝑓 𝑃(𝑓 𝑠 − 1 𝑝(𝑓))𝑑𝑓 (3)

A test case is given a higher fitness value depending on the
below functions.

Code Coverage of the chromosomes

nd→ Number of data dependencies,

nl→ Number of link dependencies,

tnd and tnl are the all-inclusive number of data
dependencies and all-inclusive number of link dependencies
contributed by the test case.

Test cases corresponding to the genes defined in the above
section:

geneA :{ 0, 1, 5, 8, 5, 9}

TC1: P1→P2→P6→P9→P6→P10

geneB = {5, 4, 7, 5, 6}

TC2: P6→P5→P8→P6→P7

geneC= {1, 5, 2, 5, 6, 10, 6, 3}

TC3: P2→P6→P3→P6→P11→P7→P4

geneD = {0, 1, 5, 3}

TC4: P1→P2→P6→P4

Cross over: Single point crossover is considered initially to
generate new population, if diversified range of population to
be generated the other cross over operations can be applied.

TC1: P1→P2→P6→P9→P6→P10,

TC2: P6→P5→P8→P6→P7

TC3: P2→P6→P3→P6→P11→P7→P4,

TC4: P1→P2→P6→P4

TC11: P1→P2→P5→P8→P6→P7 (TC1&TC2)

TC12:P2→P6→P9→P6→P10 (TC1&TC3)

The mutation process [28] is to maximize the chance of
complete search space in the algorithm, a predefined mutation
probability [29-30] is calculated for each chromosome, and
score is arbitrarily engendered to relate the mutation
probability to resolve for the mutation process. Sample of the
test cases after the crossover operation and mutation operation.

From the above generated test cases:

TC21: P4→P6→P9→P6→P10 (TC1 and TC4)

Acceptance: As the mutation and crossover involve certain
level of uncertainty, the off springs may or may not be superior
to parent chromosomes. Hence fitness needs to be calculated
for acceptance.

Stop criteria: for a specified number of maximum
generations the GA is executed, based on the fitness and code
coverage the GA is stopped.

146 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

ALGORITHM - TEST CASE GENERATION

Input:
Program under test
Initial set of paths (Test Cases) from the System Graph for
Web application.
Initial set of paths (Test Cases) from the Program Graph for
console programs.
Output:
Set of optimized paths (Test Cases),
{P1, P2, P3…Pn}, Code Coverage, Fitness value.

Initialization phase:
Build a DLDG graph for the corresponding program under
test.
Generate initial population of genes
{TC1, TC2, TC3…TCn},
Apply Pairwise testing to generate genes
{TCm1, TCm2, TCm3…TCmn}

GA Algorithm:
gen1=1, max_gen
Current_population:
{TCm1, TCm2, TCm3…TCmn}=
{P1→P2→P3..Pi}, (initial set of paths)
While (gen1≤ max_gen)
Begin
for each gene genei in Current_ population
{gene 1, gene 2 ,gene 3…gene n}
Calculate the fitness_ value Fi as specified in Eq.4

𝐹𝑖 = ∑ 𝐶𝑖 + 𝑇𝐶𝑖((𝑛𝑑 + 𝑛𝑙𝑛
𝑖=0)/(𝑡𝑛𝑑 + 𝑡𝑛𝑙)) Eq. (4)

Ci is the code coverage of the test suit, nd, nl,tnd,tnl as stated
in the fitness and selection mechanism.
for each gene{gene i }
If (fitness_value is in the range)
Select the gene {genei} based on Tournament based selection
Apply crossover operation to generate the new genes
Apply mutation operation to change the gene
Add the above population to the current_ population
End

V. EXPERIMENTS AND EVALUATION
Experiment 1:

Triangle classification problem where in the input is
considered for three sides of a triangle and the output details
the type of a triangle. SideA, SideB, SideC for the first
generation was chosen randomly as specified in Table I, these
values were further selected to be part of parent chromosomes
and underwent GA operations using the fitness function and
pairwise testing described in the above algorithm. Pairwise
testing values were obtained using online Pairwise online tool.
Code coverage from the second generation was noted and
specified in Table II. NUnit coverage tool is used to record the
code coverage of the test suit. The tables provide the data
obtained as a result of our methodology in Fig. 1.

Fig. 3 illustrates the tests vs coverage in terms of line and
branch coverage for the values specified on the horizontal axis.

TABLE I. GENERATION- 1

SideA SideB SideC
0 2 1

2 5 1
1 1 5
5 2 1

TABLE II. GENERATION-2

Test case SideA,SideB,SideC Branch coverage Line coverage

1,2,1 33.33% 40.90%

1,0,0 33.33% 31.81%

1,5,0 25% 31.81%

1,1,2 33.33% 31.81%

1,1,0 25% 31.81%

1,0,2 33.33% 31.81%

2,1,1 41.66% 40.90%

2,5,2 41.66% 40.90%

2,0,1 33.33% 31.81%

2,1,1 33.33% 31.81%

2,2,0 25% 31.81%

5,5,1 41.66% 40.90%

5,0,1 33.33% 31.81%

5,1,1 33.33% 31.81%

5,1,0 25% 31.81%

5,2,1 50% 45.45%

5,1,2 50% 45.45%

0,0,1 25% 31.81%

0,1,0 25% 31.81%

0,1,1 25% 31.81%

0,2,2 25% 31.81%

0,5,1 25% 31.81%

Fig. 3. Tests vs. Coverage.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Co
ve

ra
ge

 %

Branch
coverage
Line
coverage

147 | P a g e
www.ijacsa.thesai.org

https://en.wikipedia.org/wiki/Code_coverage

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

The sample values after processing and normalized values
achieved the below result as shown in Fig. 4.

Fig. 4. Tests vs. Coverage.

The results after eight generations achieved a consistent
result which achieved 88.20% of code coverage and are
depicted in the Fig. 5.

Fig. 5. Generation vs. Code Coverage.

Experiment 2:

The source code for a simple web application was
considered for experimental evaluation and random test cases
were generated. This was a Web based application as
represented in Fig. 2, the automated test cases were captured
using selenium IDE. Selenium IDE is basically a record and
playback tool, the test cases generated by Selenium IDE are
saved and deployed as JUnit, NUnit test cases. The sample test
cases were run through NUnit code coverage [31, 32] which
achieved the following result over the main modules like
performing an insertion and deletion of the records of
customers.

Proposed GA Algorithm was then executed on the same set
considering few sample test cases from the above document,
which achieved the following result. At each iteration the
fitness value is generated using the fitness function and the
genes are allotted the ranking as per selection criteria discussed
previously. The set of genes which are valid and invalid is
checked manually which can be automated further. Hence the
genes undergo a preprocessing phase for the mentioned.

Considering the above mentioned geneA, geneB, geneC,
geneD, Sample of genes generated by GA algorithm for three
of the generations are as mentioned below.

Test cases derived for a sample of three generations

Generation 0: Random population considered from the Fig. 3
are:

[0, 1, 5, 8, 5, 9]
[5, 4, 7, 5, 6]
[1, 5, 2, 5, 6, 10, 6, 3]
[0, 1, 5, 3].

After processing with the selection, crossover and mutation
operation the following were the chromosomes generated for
second generation.

Generation 1:

[0, 1, 5, 5, 6, 9]
[5, 4, 7, 8, 5]
[0, 1, 5, 8, 5, 9]
[5, 4, 7, 5, 6]
[0, 1, 5, 5, 6, 9]
[5, 4, 7, 8, 5]
[0, 1, 5, 8, 5, 9]
[5, 4, 7, 5, 6]
[0, 1, 5, 3, 6, 10, 6, 3]
[1, 5, 2, 5]
[0, 5, 2, 5, 6, 10, 6, 3]
[1, 1, 5, 3]
[0, 5, 5, 3, 6, 10, 6, 3]
[1, 1, 2, 5]
[0, 5, 5, 5, 6, 10, 6, 3]

Generation 2:

[0, 5, 5, 5, 6, 10]
[0, 1, 5, 8, 5, 9, 6, 3]
[0, 1, 5, 8, 5, 9]
[0, 5, 5, 5, 6, 10, 6, 3]
[0, 1, 5, 5, 6, 10]
[0, 5, 5, 8, 5, 9, 6, 3]
[0, 1, 5, 8, 5, 9]
[0, 5, 5, 5, 6, 10, 6, 3]
[1, 1, 2, 3, 6]
[5, 4, 7, 5]
[1, 4, 7, 5, 6]
[5, 1, 2, 3]
[1, 4, 2, 3, 6]
[5, 1, 7, 5]
[1, 4, 2, 5, 6]
[5, 1, 7, 3]

The above values after preprocessing where in repeated
genes and invalid genes were processed and further reduced.
Validity and invalidity of the genes were verified based on the
data associated with the genes, for instance the path from
P1→P2 is valid based on data which were minimized using
pairwise testing. Considering P1 to be a Login page the page
transits to other page if P1 {data} is valid, if P1 {data} is not

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%

Co
ve

ra
ge

 %

Tests

Branch
coverage

Line
coverage

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 2 3 4 5 6 7 8

Co
de

 C
ov

er
ag

e
%

Generations

Code
Coverage

148 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

valid the page transits to other page. Fig. 6 and Fig. 7 depicts
the graph Tests vs. coverage, the very first initialization of the
test suit is chosen randomly specified with values in the
horizontal axis, where the line coverage and branch coverage
are proportional, the intermediate tests didn’t achieve the
coverage but stabilized in due evolution with Genetic
Algorithm.

Fig. 6. Tests vs. Coverage for First Generation (Random Test Cases).

Fig. 7. Tests vs. Coverage for Generation 2.

VI. FUTURE SCOPE
The future work of the proposed work is to evaluate with

large scale web applications and console programs. Though the
current approach proposes an automated solution, the pairwise
integration, validation for each run with respect to the test
cases is done manually. The work can be extended with a
complete automated integrated solution for generating test
cases for the entire process.

VII. CONCLUSION
This paper proposes an automated solution for Test case

generation problem by means of Integrated Pairwise Genetic
algorithm. A set of optimized test cases after Pairwise testing
are considered as initial population for the GA. Considerably
less genes were initiated which leads gradually to huge amount
of test suites. Code coverage was measured at every generation
and based on fitness values the parent genes were selected and
then were involved in the generation process. When the
evaluation metric code coverage is compared with random

generation of test cases and GA, the results show that GA has
considerably increased the fitness value and code coverage.
Further our work requires and automated integrated solution
for the whole process.

REFERENCES
[1] Katoch, S., Chauhan, S.S. & Kumar V, “A review on genetic algorithm:

past, present, and future,” Multimed Tools Appl (2020).
https://doi.org/10.1007/s11042-020-10139-6.

[2] TianTian and Dunwei Gong. 2016., “Test data generation for path
coverage of message-passing parallel programs based on co-
evolutionary genetic algorithms,” Automated Software Engg. 23, 3
(September 2016), 469–500. DOI:https://doi.org/10.1007/s10515-014-
0173-z.

[3] NichaKosindrdecha and JirapunDaengdej, 2010, “A Test Case
Generation Process and Technique,” Journal of Software Engineering,
4: 265-287.

[4] M.R. Keyvanpour, H. Homayouni and HaseinShirazee, 2011,
“Automatic Software Test Case Generation,” Journal of Software
Engineering, 5: 91-101.DOI: 10.3923/jse.2011.91.101

[5] Khurana N, Chillar RS, “ Test Case Generation and Optimization using
UML Models and Genetic Algorithm,” Procedia Computer Science
[Internet]. 2015;57:996–1004.Available from: .http://dx.doi.org/10.
1016/j.procs.2015.07.502.

[6] Rijwan Khan, Mohd. Amjad, “Automatic test case generation for unit
software testing using genetic algorithm and mutation analysis,”
2015IEEE UP Section Conference on Electrical Computer and
Electronics (UPCON).

[7] Shveta Parnami, KrishnaSwaroop Sharma, “Empirical Validation of
Test Case Generation based on All- Edge Coverage
Criteria,”International Journal of Computer Applications,September
2015.

[8] Baswaraju Swathi, Dr.Harshvardhan Tiwari, “Genetic Algorithm
Approach to Optimize Test Cases," International Journal of Engineering
Trends and Technology 68.10(2020):112-116.

[9] Hulme A, Mclean S, Salmon PM, Thompson J, Lane BR, Nielsen RO, “
Computational methods to model complex systems in sports injury
research: agent-based modelling (ABM) and systems dynamics (SD)
modelling,” Br J Sports Med. 2019 Dec;53(24):1507-1510. doi:
10.1136/bjsports-2018-100098. Epub 2018 Nov 17. PMID: 30448782.

[10] Abu Sharkh, M., Shami, A. &Ouda, A, “Optimal and suboptimal
resource allocation techniques in cloud computing data centers,” J Cloud
Comp 6, 6 (2017). https://doi.org/10.1186/s13677-017-0075-2.

[11] Islam, M.R., Mahmud, M.R. &Pritom, R.M, “Transportation scheduling
optimization by a collaborative strategy in supply chain management
with TPL using chemical reaction optimization,” Neural
Comput&Applic 32, 3649–3674 (2020). https://doi.org/10.1007/s00521-
019-04218-5.

[12] Ram Krishna Rathore, Kaushal Sharma , Amit Sarda, “An Adaptive
Approach for Single Objective Optimization,”Ram Krishna Rathore et al
Int. Journal of Engineering Research and Applications ,ISSN : 2248-
9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746.

[13] AnnibalePanichella , Fitsum MesheshaKifetew , “Automated Test Case
Generation as a Many-Objective Optimization Problem with Dynamic
Selection of the Targets,”IEEE Transactions on Software
Engineering (Volume: 44 , Issue: 2 , Feb. 1 2018).

[14] Libiao Zhang, Xiangli Xu, Chunguang Zhou, Ming Ma, Zhezhou Yu,
“An Improved Differential Evolution Algorithm for Optimization
Problems,”Advances in Computer Science, Intelligent System and
Environment.

[15] HasanUral,KassemSaleh, Alan W Williams, “Test generation based on
control and data dependencies within system specifications in SD,”
Computer Communications 23(7):609-627.

[16] Kamal Z Zamli, “T-Way Strategies and Its Applications for
Combinatorial Testing,” International Journal on New Computer
Architectures and Their Applications (IJNCAA)1(2): 459-473The
Society of Digital Information and Wireless Communications, 2011
(ISSN: 2220-9085).

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

Co
ve

ra
ge

 %

Tests

Branch coverage

Line coverage

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

Ap
pl

ic
at

io
nT

es
t1

…
Ap

pl
ic

at
io

nT
es

t3
…

Ap
pl

ic
at

io
nT

es
t5

…
Ap

pl
ic

at
io

nT
es

t7
…

Ap
pl

ic
at

io
nT

es
t9

…
Ap

pl
ic

at
io

nT
es

t1
…

Ap
pl

ic
at

io
nT

es
t1

…
Ap

pl
ic

at
io

nT
es

t1
…

Ap
pl

ic
at

io
nT

es
t1

…
Ap

pl
ic

at
io

nT
es

t1
…

Co
ve

ra
ge

 %

Tests

Branch
coverage

Line coverage

149 | P a g e
www.ijacsa.thesai.org

https://dx.doi.org/10.3923/jse.2011.91.101
https://ieeexplore.ieee.org/author/37680168600
https://ieeexplore.ieee.org/author/37085562186
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8289825
https://link.springer.com/book/10.1007/978-3-642-23777-5
https://link.springer.com/book/10.1007/978-3-642-23777-5
https://www.researchgate.net/profile/Kamal_Zamli?_sg%5B0%5D=_7ymKFzA0zjbNTYVft6IMlFl9DGdxyCuU514OQYuz8V1ISTOnaybj9wn3P_unhEM7Y8hk0M.r71qNv9q-F_yHCshCJLyKtWYBBoBnVvmRJB1IIvoQsptRSTcKTGp9qAkx5WSiix3QfCUEbdzJhq1g_Z3CBT42w&_sg%5B1%5D=wRYbd5Nf6JJKGQ_lo-E7U0fp-XIkx9WI707lzmO5KEbGWGzR--z7cltYD4XTELZB5fziOV4.lotQYhfSf38k3kv7YnJ6aee9Q-OS6pB51Hrc3rtmw4QLoksPbVkqPTZwY5kR1PneyKwjw6CWo-Z8XELMNSG1bg

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

[17] Feng Duan et al, “An Approach to T-Way Test Sequence Generation
with Constraints,” 2019 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW).

[18] Haralambi Haralambievet al, “Applying source code analysis
techniques: A case study for a large mission-critical software
system,” 2011 IEEE EUROCON - International Conference on
Computer as a Tool.

[19] Rahma Mahmood, Qusay H. Mahmoud, “Evaluation of Static Analysis
Tools for Finding Vulnerabilities in Java and C/C++ Source Code,”
arXiv.org cs, 1805.09040,Cornell University.

[20] Rahm Mitrabinda Ray, “PSO based test case generation for critical path
using improved combined fitness function,” Journal ,Volume 32, Issue
4, May 2020, Pages 479-490.

[21] Marko Ivanković et al, “Code Coverage at Google,” Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, ACM, pp. 955-963.

[22] Giovanni Grano et AL,“Branch coverage prediction in automated
testing,”Journal of Software Evolution and Process, 08 March 2019.

[23] MatteoBiagiolaetal, “Web Test Dependency Detection,” Coronell
University,arXiv:1905.00357.

[24] Mark Harman, KiranLakhotia, Phil McMinn, “A Multi–Objective
Approach To Search–Based Test Data Generation,” GECCO’07, July 7–
11, 2007.

[25] Sun Zhaoxu , Han Min et al, “ Multi-criteria Decision Making Based on
PROMETHEE Method,” 2010 International Conference on Computing,
Control and Industrial Engineering.

[26] YongshengFang,Jun li , “A Review of Tournament Selection in Genetic
Programming,”. Cai et al. (Eds.): ISICA 2010, LNCS 6382, pp. 181–
192, 2010.c©Springer-Verlag Berlin Heidelberg 2010.

[27] ArtemSokolov,DarrellWhitley, “Unbiased tournament selection,”
Genetic and Evolutionary Computation Conference, GECCO 2005,
Proceedings, Washington DC, USA, June 25-29, 2005.

[28] R. Tinos,A.C.P.L.F. de Carvalho, “A genetic algorithm with gene
dependent mutation probability for non-stationary optimization
problems,” IEEE, Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No.04TH8753).

[29] Jürgen Hesser, Reinhard Männer, “Towards an optimal mutation
probability for genetic algorithms,”Genetic Algorithms Genetic
Algorithm Theory, International Conference on Parallel Problem
Solving from Nature,Springer,PPSN 1990: Parallel Problem Solving
from Nature pp 23-32.

[30] BaswarajuSwathi, Harshvardhan Tiwari, “Test Case Generation Process
using Soft Computing Techniques,” International Journal of Innovative
Technology and Exploring Engineering (IJITEE), ISSN: 2278- 3075,
Volume-9 Issue-1, November 2019.

[31] Boyuan Chen et al,“An Automated Approach to Estimating Code
Coverage Measures via Execution Logs,” 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE).

[32] Matina C. Donaldson-Matasci, Carl T. Bergstrom, and Michael
Lachmann,“The fitness value of information,” Oikos,PMC 2015 Apr3.

150 | P a g e
www.ijacsa.thesai.org

https://ieeexplore.ieee.org/xpl/conhome/8725607/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8725607/proceeding
https://ieeexplore.ieee.org/author/37704807300
https://ieeexplore.ieee.org/xpl/conhome/5876183/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5876183/proceeding
https://www.sciencedirect.com/science/article/pii/S1319157818313004%23!
https://www.sciencedirect.com/science/journal/13191578/32/4
https://www.sciencedirect.com/science/journal/13191578/32/4
https://arxiv.org/search/cs?searchtype=author&query=Biagiola%2C+M
https://ieeexplore.ieee.org/author/37974193100
https://ieeexplore.ieee.org/author/37979225600
https://ieeexplore.ieee.org/xpl/conhome/5491854/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5491854/proceeding
https://www.researchgate.net/scientific-contributions/70767289-Yongsheng-Fang?_sg%5B0%5D=bDrlMACiAC1hE2wDvKUtO1Z0iENvJ5Jv-Q6nHBXOBC0TTuTnLKrs2ua4UBDdvc3L4B3yilg.rxISgqVUNPxspVoOCk8HEMLPQ2783z--nx8c-AmFG4J1JoS1V5BpL-7ypZCuI3-O64aRmRABL6vuJXxp5DDOoA&_sg%5B1%5D=0HfG9U9bvpaw_bZyHmpy9LxJmgvS8OerMogPRqfbe85ICc2QoYeKn2LgrqNXJxyd03gzeh4.0j_8xGeQmtZnI7RHNwAAdbsh4494nxAh0kL6zJ9T38mRQ_7o9daxiVHzOYeTOLpCZ8UU9TFU1QgRwmq36bYjGg
https://www.researchgate.net/profile/Jun_Li315?_sg%5B0%5D=bDrlMACiAC1hE2wDvKUtO1Z0iENvJ5Jv-Q6nHBXOBC0TTuTnLKrs2ua4UBDdvc3L4B3yilg.rxISgqVUNPxspVoOCk8HEMLPQ2783z--nx8c-AmFG4J1JoS1V5BpL-7ypZCuI3-O64aRmRABL6vuJXxp5DDOoA&_sg%5B1%5D=0HfG9U9bvpaw_bZyHmpy9LxJmgvS8OerMogPRqfbe85ICc2QoYeKn2LgrqNXJxyd03gzeh4.0j_8xGeQmtZnI7RHNwAAdbsh4494nxAh0kL6zJ9T38mRQ_7o9daxiVHzOYeTOLpCZ8UU9TFU1QgRwmq36bYjGg
https://www.researchgate.net/profile/Artem_Sokolov2?_sg%5B0%5D=O12hLg2nnlNjnN0Fyn0DVWyQKudr2QMbEeEFyQvYW-i7h9LmNbO65fotZ-wiC19abq6HcME.10d0ytdCBMdOfJQV4xl2XthMNxW7HLOhi4HyuImnc1VCNDjDwmthybKZ_bKtIDd-B4GSN9kvcw9XCkVoFLZVxA&_sg%5B1%5D=KcULDpchFFvLbw12RyKOn422dq4_U7smVRvJR1uGYdWLjocKj1SqMWYGuK1Kil0PcwOJgRM.EWal67lLUzuVeBUnxbMi7Yd6Lo_Jpslo-UscJw5EbPWyXBx7yOOPiQK5khQT7vM3vpmq0Mxwutr-WKawdkiRZQ
https://www.researchgate.net/profile/Darrell_Whitley2?_sg%5B0%5D=O12hLg2nnlNjnN0Fyn0DVWyQKudr2QMbEeEFyQvYW-i7h9LmNbO65fotZ-wiC19abq6HcME.10d0ytdCBMdOfJQV4xl2XthMNxW7HLOhi4HyuImnc1VCNDjDwmthybKZ_bKtIDd-B4GSN9kvcw9XCkVoFLZVxA&_sg%5B1%5D=KcULDpchFFvLbw12RyKOn422dq4_U7smVRvJR1uGYdWLjocKj1SqMWYGuK1Kil0PcwOJgRM.EWal67lLUzuVeBUnxbMi7Yd6Lo_Jpslo-UscJw5EbPWyXBx7yOOPiQK5khQT7vM3vpmq0Mxwutr-WKawdkiRZQ
https://ieeexplore.ieee.org/author/37281901000
https://ieeexplore.ieee.org/author/37274858500
https://ieeexplore.ieee.org/xpl/conhome/9256/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9256/proceeding
https://link.springer.com/conference/ppsn
https://link.springer.com/conference/ppsn
https://link.springer.com/book/10.1007/BFb0029723
https://link.springer.com/book/10.1007/BFb0029723
https://ieeexplore.ieee.org/author/37086119634
https://ieeexplore.ieee.org/xpl/conhome/8977928/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8977928/proceeding
https://www.ncbi.nlm.nih.gov/pubmed/?term=Donaldson-Matasci%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=25843980
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bergstrom%20CT%5BAuthor%5D&cauthor=true&cauthor_uid=25843980
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lachmann%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25843980
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lachmann%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25843980
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384894/

	I. Introduction
	II. Related Work
	III. Methodology
	A. Parameters Considered

	IV. Structure of Genetic Algorithm
	A. Genetic Algorithm
	B. Genetic Algorithm Encoding
	C. Fitness Function and Selection Mechanism

	V. Experiments and Evaluation
	VI. Future Scope
	VII. Conclusion

