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Abstract—The growing size of the network imposes 
computational overhead during network route establishment 
using conventional approaches of the routing protocol. The 
alternate approach in contrast to the route table updating 
mechanism is the rule-based method, but this also provides a 
limited scope in the dynamic networks. Therefore, reinforcement 
learning promises a better way of finding the route, but it 
requires an evaluation platform to build a model synchronization 
between route and agent. Unfortunately, the de-facto platform 
for agent evaluation, namely Open-AI Gym, does not provide a 
suitable networking environment. Therefore, this paper aims to 
propose a networking environment as a novel contribution by 
designing a suitable customized environment for a network 
synchronically with Open-AI Gym. The successful deployment of 
the proposed network environment: NetAI-Gym provides a 
functional and practical result that can be used further to 
develop routing mechanisms based on Q-learning. The validation 
of the proposed NetAI-Gym is carried out with different nodes in 
the network regarding Episodes Vs. Reward. The experimental 
outcome justifies the validity of the proposed NetAI-Gym that it 
is suitable for solving network-related problems. 

Keywords—Open-AI Gym; network; environment; agent; 
reinforcement learning 

I. INTRODUCTION 
Artificial intelligence (AI) is being explored way back in 

1997 for some problems like exploring the possibility of 
adaptive-AI using a network of neurons like adaptive elements, 
where the focus of the study was on the adaptive systems, 
where the learning system adapts some behavior from the 
environment to maximize the signal. It is being observed that 
this approach has received very little attention from the 
researchers from the computational perspectives [1][2]. At the 
same time, the same idea of the hedonistic-learning system 
(HLS) of that time has been realized today as Reinforcement 
Learning (RL). However, with a hypothesis that data are 
collected only from the IEEE Digital library. It is found that the 
routing problem in the network became an active research 
problem in the last 20 years, with an overall publication of 
86,226. It is observed that in the last decade, the total 
publication for the same problem is 52,344, which is alone 
60.7%, which shows that the active focus of the researchers is 
higher in the running decade. Considering this 60.7% data as 

100% and then the stake of Reinforcement Learning is found 
only 322 in totality, which is hardly 0.6% and 0.3% from last 
two decade. Therefore, it can be concluded that more efforts 
are required to study and develop a solution paradigm for 
routing problems in a network using reinforcement learning. 
The typical architecture of reinforcement learning is shown in 
Fig. 1. 

The basic design of RL includes building two functional 
blocks, namely E and Ag. The Ag takes appropriate Ac based 
on the O provided by E and subsequently based on the Ac 
taken, E gives positive or negative R. Therefore, to evaluate the 
agent algorithm, a suitable platform of the environment is 
required as per the domain context and particular task. The role 
of RL is to solve the problem of sequential decision tasks in 
different networking scenarios. There are many methods found 
in the literature to solve this problem by using i) Game theory 
[3], ii) Swarm [4], iii) a probabilistic technique [5], and many 
more [6-7]. However, all these approaches are associated with 
some advantages and limitations. But RL can be utilized to 
address very complex problems that conventional approaches 
cannot address. RL refers to the computer intelligence field that 
studies programmed computing procedures and dynamically 
optimizes their performance based on experience learned from 
the environment. Therefore, RL offers promising context that 
can be used to develop adaptive mechanisms for network 
routing so that better performance can be achieved on complex 
problems without performing any engineering particular to the 
problem. RL's logic considers a decision-maker component 
(agent) in the environment (set of states with inputs).  At every 
step, the agent takes action and gets observations and rewards 
when interacting with the environment. The RL algorithm tries 
to maximize a certain amount of reward achieved by the agent. 
The RL environment for networking was configured based on a 
general backbone network according to the concept of a 
partially observable Markov decision process [8].  However, 
most of the researchers failed to produce their experiments 
based on the RL. Recently, an introduced RL tool kit, namely 
Open-AI Gym, removes this problem and lacking 
standardization in the research process by giving versatile 
numbers of the environment with great ease of setting up. This 
toolkit offers a collection of test problems. It concentrates on 
RL's scenario setting, in which the experience learned by the 
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agent is divided into several episodes. The Open-AI provides a 
benchmarking framework for building and testing RL 
algorithms. However, to date, no any Open-AI Gym library is 
available for networking. A thorough investigation of the 
existing Open-AI Gym platform reveals that it has 7 explicit 
classes contributed by Open-AIGym and an additional class of 
third-party contribution. A detailed explanation is given in 
section III. It is found that the available environment in Open-
AI Gym is not applicable for solving the problem of network, 
especially the routing. Researchers use various network 
simulators and experimental testbeds. Hence, this paper is the 
first of its type to contribute a custom design of an environment 
for evaluating network routing using RL on the Open-AI Gym 
platform. The proposed NetAI-Gym offers a scalable 
networking environment for implementing any reinforcement 
learning algorithm for training agents and accessing their 
performances in the context of networking. This paper is 
organized as in Fig. 2. 

 
Fig. 1. Typical Reinforcement Learning Architecture. 

 
Fig. 2. Organization of the Paper. 

II. RELATED WORK 
The use of RL is found in the literature for the various task 

in the respective networks. In WSN, automation of the radio 
scheduling task for optimizing energy usage is designed using 
the RL technique [9]. RL eliminates overheads of the control 
messages used for communication among neighbors as ∀ 
nodes ∈WSN as it approximates its neighbor conditions based 
on the current state. Since this method does not use any 
specific tool like Open-AI Gym to evaluate the agent designed, 
it uses an approach of trial and error to simplify the problem of 
the sequential decision using game theory. However, it is a 
computationally expensive method. Reinforcement learning 
aims to solve sequential decision tasks through trial-and-error 
interactions with the environment. Another related network in 
the context of industrial-WSN uses RL for minimizing the 
latency and maximizing the lifetime of the network [10]. There 
remain many open issues that include computation of time 
complexities in terms of learning and exploration that validate 
performance enhancements. A Markov decision process is used 
to formulate a path selection process. A deep RL technique is 
then applied to minimize the probability of network congestion 
in the network under heavy traffic [11]. Throughput is 
achieved, but overall network performance can be enhanced by 
considering network-related dynamic parameters. RL 
technique adoption is also found in [12] for designing grid-
oriented routing mechanisms to address message forwarding 
challenges in the Vehicular ad-hoc network (VANET). 
However, the focus is only on the problem of the message 
forwarding issue from the source to the fixed destination. The 
Q-table is learned offline and may not be well suited to the 
dynamic characteristics of urban VANETs. Traffic-aware and 
road-side-unit (RSU) supported routing mechanism is 
introduced in [13]. Here, RL is implemented to facilitates 
intelligent data transmission processes between vehicle-to-
vehicle and RSU-2-RSU.However, the vehicle's direction is 
not considered, which may affect the performance of the 
routing scheme when it comes to real-time deployment 
scenarios. An RL-based routing protocol is designed in [14] to 
analyze the impact of a varying number of nodes on the 
performance of the Underwater Acoustic Sensor Networks 
(UWSN). Q-learning is used, where the node has packets to 
forward based on the state of the buffer, remaining energy, and 
proximity of adjacent nodes to select the next sender node. In 
[15], a channel-aware RL-oriented adaptive path selection 
technique is introduced for multi-hop UWSN. The protocol 
switches between single-path and multi-path routing 
accomplish joint optimization in energy consumption and 
packet delivery ratio. Q-learning-based distributed 
opportunistic routing mechanism is introduced by [16] for 
minimizing the average packet routing cost in Wireless Ad-hoc 
network. This mechanism combinedly solves the problems 
related to learning and routing network structure is 
characterized by the communication and data transaction 
success probability.  An efficient mechanism for collaborative 
RL is used in [17] for optimizing path selection in MANET. 
The use of RL is used for routing optimization in software-
defined networking (SDN) [18]. The effectiveness of the agent 
is tested under the self-convergence aspects. The authors in 
[19] used a deep RL mechanism for optimizing routing 
performance in SDN. The authors in [20] explored RL's 
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effectiveness towards the energy harvesting routing model 
based on Q-learning for multi-hop Cognitive Radio networks 
(CRN). The runtime complexity of this model is 𝑂(𝑁2) . 
However, the performance of CRN can be further enhanced 
using spectrum sensing and power allocation mechanism. The 
problem of link selection in the Energy Harvesting Relay 
network (EHRN) is solved by [21] using RL and Deep-Q-
learning techniques. A pre-trained algorithm is used to avoid 
the massive iterations and alleviate the computation overhead 
in convergence optimization. However, this approach is not 
much scalable when environmental parameters change. The 
use of RL in [22] is found for designing routing protocol in 
Magnetic Induction Underwater Sensor Networks (MIUSN). A 
Q-table is derived by taking into account the distance factor 
and energy loss. However, the protocol requires periodic 
control message exchange for neighbor discovery to give rise 
to high overheads and reduce channel usage due to slow 
propagation. The adoption of the RL-based Q-learning 
technique for content placement is found in [23] for a dynamic 
cloud content delivery network (CCDN). An efficient routing 
design based on RL in Unmanned Robotic Network (URN) is 
suggested by [24] considering location information, link 
condition, and battery information to realized the neighbor 
node with the most significant future reward for determining 
the next hop. Table I summarizes the above-discussed literature 
for quick insight concerning network scenarios and issues 
handled. 

It is analyzed that RL is mainly adopted for addressing 
optimization problems of routing and congestion control in 
various networking scenarios. However, none of the studies are 
found in the context of using a customizable environment for 
the agent algorithm designed to solve routing and network 
performance problems using RL. The environment used in the 
existing literature is formulated based on the general core 
network in the simulation process. Since RL is associated with 
reasonable overhead, the existing approaches are not suitable 
for providing an efficient solution. It may be exposed to many 
problems when it comes to real-time deployment scenarios. 
Therefore, a customizable environment specific to RL 
approaches for networking is required for suitable analysis of 
performance. 

TABLE I. SUMMARY OF EXISTING LITERATURE 

Authors Network 
Scenario Problem Handled 

5, 6 WSN Energy usage [5], Latency [6] 
7 Relay Network congestion 

8,9 VANET Message forwarding [8], transmission 
efficiency [9] 

10,11 UWSN Energy 
12 Ad-Hoc Routing cost 
13 MANET Path selection 
14,15 SDN Routing Performance 
16 CRN Network Performance 
17 EHRN Computation overhead 
18 MIUSN Energy and Channel utilization 
19 CCDN Content placement 
20 URN Routing and Energy 

III. EXPLORATION OF EXISTING ENVIRONMENTS OF OPEN-
AI GYM PLATFORM 

The first instance of Open-AI Gym is found in 2016 to 
support reinforcement learning used for various decision 
making and control systems. It includes a study of agent 
learning to achieve the learning goal in an uncertain and 
complex environment. The use of RL is found in the 
diversified problem domain, such as robot motor control, 
games, and business decision makings, wherever a sequence of 
decision making is required.  In the recent past, RL is being 
used in various complex environments. However, the 
advancement into deep learning demands engineering aspects 
specific to the problem. 

A. Custom Design of Net-Ai Gym 
1) Modelling network: The mathematical model for the 

network is represented by a collection of vectors as in 
set:η = �N1����⃗ , N2����⃗ , N3����⃗ ,⋯Nn�����⃗ �, where, ∀Nk����⃗ ∈ η represents a node 
with two intrinsic properties as {Node number (Xk), Set of 
links(Rk)} s.t Nk����⃗  is represented by a pair of  {Xk, Rk}, where k 
=1to n, n ∈ ℕ and n ≥ 2 . Basically, a node Nk����⃗  may have 
connectivity with many of the node ∈ η − {Nk������⃗ }, therefore, ∀ 
the link-set is represented by a collection of vectors: Rl =
�L1����⃗ , L2����⃗ , L3����⃗ ,⋯ Lm�����⃗ �  s.t ∀Lk����⃗ ∈ Rl  contains two intrinsic 
properties as {Connecting node number (Xk), the weight of the 
link (Wk)}. This arrangement of vector representation for the 
nodes and reference to the links alleviates the challenge of 
handling memory usage by dimensionality reduction. Else the 
simple representation of Tensor imposes excessive use of 
memory and computational resources. Fig. 3 illustrates a 
sample representation of a weighted 3 node network with 3 
links. 

 
Fig. 3. Network Representation. 

η =  {{X1, R1}, {X1, R2}, {X1, R3}}, where, R1  {{X2,3}, { 
X3,4}}, R2{{X1,3}, {X3,1}}, R3 {{X1,4}, {X2, 1}} 

2) Modeling transaction: The transaction (T) is the 
delivery of one packet (P) from the source node (Ns) to the 
destination node (Nd). There are two outcomes of the 
transaction: i) FAILURE and ii) SUCCESS. To elaborate the 
process of the transaction and associate states, Fig. 4 with 4-
nodes considering node N1 as Ns and node N4 as Nd. 

 
Fig. 4. Illustration of Transaction. 
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There are various possibilities of transactions between N1 
to N4. The first possible condition is that when node N1 does 
not find node N4 in its first transaction, then it DROPS the 
packet P, and the state is flagged to FAILURE. Based on the 
previous record of T, in the next transaction, N1 will look for 
another node, say node N2, and this time also the state is 
FAILURE as when a packet is delivered to N2, no connection 
is found between node N2 and N4. Therefore, in reference to 
Fig. 3, the only possible transaction for SUCCESS state is to 
transfer packet P either from N1 (Ns)  N2 N3N4 (Nd) 
or from N1 (Ns)  N3N4 (Nd) and in this way packet is 
DELIVERED from Ns to Nd. The computation process for one 
transfer where a transfer is a process of forwarding a packet 
from one node to another node is as in algorithm 1. 

Algorithm-1: Computational process of transfer T(Nk, Nk+1) 
Input: η 
Output: REWARD, DONE  
Start 
1. Initialize Nk, Nk+1 
2. T (NkNk+1 ) 
3. GET Rk∈ 𝑁𝑘 
4. GET Xk+1 ∈ Rk 
5.      If Xk+1 ∈ Rk 
 If Xk+1 is XD 

 REWARD = Vl∈N 
    DONE = True 
              Else  
       REWARD = -Wk 
       DONE = False 
        Else  
 REWARD = 0 
 DONE = True 
6. Return: REWARD, DONE 
End 

In the designed networkη, the computational process for 
one transfer is the conditions, the environment to get respective 
REWARD () and DONE () subjected to network conditions of 
node connectivity. The process computes the transaction 
between node Nk Nk+1 as T (NkNk+1). Typically, 
REWARD is the value returned by the algorithm that signifies 
encouragement if it is positive REWARD and discouragement 
if it is negative REWARD towards selecting the same route in 
the next transaction. In contrast, DONE is a final state which 
signifies either FAILURE or SUCCESS before restarting the 
next transaction. The respective values of Rk from the Nk set 
and Xk+1 from Rk is obtained. 

Further, firstly it checks that Xk+1 is an element of Rk. If 
this condition is found to be true then, it checks whether Xk+1 
is XD (destination node number) or not. If it is true, then a large 
natural number is assigned as REWARD, and the transaction 
state DONE is set to True means it goes to the next iteration. 
Otherwise, a negative value is assigned to REWARD, and the 
transaction state DONE is set to False, which means the 
transaction further continues. In case Xk+1 does not belong to 
Rk, then zero is assigned as REWARD, and Transaction state 
DONE is set to True for the further transfer iterations of the 
transaction. 

3) Modeling environment: The typical environment 
modeling for Net-AI Gym mimics Fig. 1, and corresponding 
constructs are mapped as {E, Ag}:  {O, R, Ac} and in the 
case of network, the action (Ac) is mapped to movement of 
the packets from the node (Ni) to node (Nj) as shown in 
Fig. 5. 

Typically, there are many state or observations between 
starting observation to the terminating observation, and the set 
of ∀ Ob ∈ {Ob-start, Ob-next . . . Ob-Terminating} is known 
as one episode. In the custom design of NetAI-Gym, one 
episode (Eps) is a journey of a packet (P) from the source node 
(Ns) to the destination node (Nd), and the Eps ends when either 
the packet drops or it reaches the Nd.The underlying 
architecture of the environment adopts the Markov decision 
process and works in a stochastic manner following the finite 
state machine, as shown in Fig. 6. 

In Fig. 5, the states set {S1, S2, S3 …Sn … Sd} is mapped 
with the respective nodes set {N1, N2, N3 …Nn … Nd}, and 
another state considered is Done. The possible transitions are: 
{Transfer, Drop, Reset, Delivered}. The network behavior 
exhibits randomness as the weight of the links varies due to 
various noises, whereas the route establishment process is 
entirely in control of the agent. Therefore, the Markov decision 
process (MDP) is justified as MDP is suitable for scenarios 
where the possible outcomes are influenced jointly by random 
variables and decision-makers. The purpose of this particular 
MDP is also to find the best policy (𝜋) for the decision-maker, 
such that Nk = 𝜋(Nk-1) where the transfer gives the maximum 
reward. 

 
Fig. 5. Movement of Packets: Action from Ni to node Nj. 

N3

N1

N2

Nn

Done

Transfer

Transfer

T
ransfer

Tra
nsfe

r

Dro
p

Drop

Delivered

Reset

ND

 
Fig. 6. Finite State Machine for Environment-Net-AI Gym. 
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However, since randomness is involved, a maximum 
REWARD cannot be ensured for every transfer. Hence, the 
model is designed to REWARD a huge positive value when the 
destination state is reached. As shown in Fig. 5, the packet may 
drop from any node. Hence a transition is defined from all 
states to DONE state as a DROP. This transition represents that 
any node may DROP the packet. The delivered transition is 
defined only from the destination state to the DONE state. This 
transition represents that the transaction is successful only 
when the packet reaches the destination node. Once it is 
DONE, the network must handle the next packet. The RESET 
transition from the DONE state shows this to the first state (Ns). 

Generally, the best policy 𝜋  is a function or a 
transformation that outputs the next state when the present state 
is given. This is done by either a lookup table or a function 
approximator to save space. The agent has to find 𝜋 . This 
environment is being modeled to help the agent to find 
𝜋 efficiently. For that to happen, the model must be designed 
efficiently so that maximum reward is awarded when the agent 
reaches the destination, and it should discourage alternative 
non-efficient policies. Hence, the model is designed to award 
negative rewards when the agent tries to follow the longer path. 
The agent keeps exploring until no better policy exists 
compared to the present policy. And due to this, a well-
programmed agent always finds the best policy. The 
environment is written so that there will always be a better 
policy with higher reward as long as the agent finds the best 
policy. The environment also ends when the agent makes a 
mistake. Thereby allowing the agent to learn how to ensure the 
packet is not dropped. All these are written keeping in mind 
both ML-based as well as rule-based agents. The environment 
is modeled so that performance doesn't deteriorate even if we 
scale the model. The model is made highly scalable since the 
overall state machine architecture is quite simple. The 
randomness is also modeled to simulate real-world scenarios of 
network disturbances. Overall, this model simulates a real-
world computer network as realistically as possible. 

IV. IMPLEMENTATION OF NET-AI GYM ON OPEN-AI GYM 
This section presents a detailed discussion on the modeling 

and implementation design of the proposed RL environment 
for networking, namely 'Net-AI GYM'. The discussion first 
highlights the computational ecosystem required an intrinsic 
function for Net-AI Gym development followed by algorithmic 
steps and discussion. 

A. Ecosystem for the Implementation 
A professional virtual environment management tool, 

Anaconda is used to build the custom version of the Open-AI 
Gym library as Net-AI Gym. Anaconda helps to organize the 
required libraries, including i well) core Python-3.8 for 
scripting, ii) Pandas to acquire and handle data, iii) NumPy for 
handling complex matrix manipulations, iv) Matplot lib for 
visualization through plotting. Apart from these packages, the 
essential package used is a NetworkX for building and 
managing network representation using graph theory. Since the 
Net-AI Gym is aimed to be used for solving various network-
related problems using reinforcement learning. Therefore, to 
evaluate the performance of the designed agents, the stack of 
computational ecosystem preferred is as in Fig. 7. 

 
Fig. 7. Stack of Computational System for ML. 

The above stack requires intrinsic operational support for 
complex and large matrix manipulations. Therefore, to speedup 
the training process, Nvidia-GTX architecture supported GPU 
issued along with a CPU with the Intel(R) Core(TM) i7-9750H 
CPU @ 2.60GHz   2.59 GHz with 16 GB of RAM, a best-
suited trailing architecture to the next best possible in the 
market. TensorFlow is the neural network library by Google, 
used to create agents to work with the environment. This can 
even be used to benchmark the environment; hence we need it 
at the top layer. As shown in Fig. 7, there are some optional 
components, and there are some compulsory components. A 
GPU is used to handle complicated matrix operations and 
makes the program run faster as most of the ML operations are 
mainly Matrix multiplication. However, even the CPU can 
handle matrix operations, and GPU is not a must. However, if 
A GPU is being used, TensorFlow must access it. CUDA is a c 
library given by Nvidia, allowing the C compiler access to 
GPU. To allow python to access GPU, we must install the 
CUDnn package, which acts as a wrapper to CUDA for 
python. If GPU access is allowed in python, CUDA will 
automatically access GPU. 

The implementation process can proceed once the above 
environment is set up. To implement this environment, the 
NetworkX library in python is mandatory. This is required 
since the proposed study uses approach graph theory in this 
implementation. NetworkX provides an excellent source of 
graph theory implementation and calculations. The Graph (G) 
in the NetworkX contains many nodes, and each node can be 
treated as any bashable object. In our case, A node is nothing 
but an integer representing the node number. Each connection 
can have weight. Even though bidirectional weight is allowed 
in NetworkX, this feature is not being used in this 
implementation. During implementation, the weight from Node 
A to B and vice versa should be the same. This operation is 
ensured programmatically. NetworkX is the best-suited library 
to implement this environment, and more information can be 
stored in each node and edges by using various bashable 
objects in future work. 
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B. Intrinsic Function Development 
The customization of the proposed Net-AI Gym 

environment includes the typical process as in Fig. 8. The flow 
of the environment is as shown in figure x. The init function is 
executed only once since the environment is initiated only 
once. The reset function is executed at the end of every 
episode. Each episode represents a transaction, i.e., the 
movement of a packet from the source node to the destination 
node. The step function is executed in a loop till the transaction 
is over. The step function represents a transfer, i.e., the 
movement of a packet from one node to another. The render 
function is optional as it is used only to visualize the network 
and transaction. Only when the learning needs to be monitored, 
the render function is activated. 

 
Fig. 8. Flow of Environment for Net-AIGym. 

4) Init function: Init function is executed at the beginning 
of the environment to initiate it. The following algorithm 
represents the working of the init function. 

Algorithm-2: Initiation of Environment 
Input: η 
Output: Network N 
Start 
1. Initialize N 
2. Length = len(η) 
3. N = {N1,N2,N3..Nn} = createNodes(Length) 
4. initalWeights = randomWeights() 
5. map(N η)  
6. return N 
End 

As shown in algorithm2, environment initiation happens by 
copying the nodes from the data structure to the network graph. 
Every vector in η is mapped to a node in the network graph. 
This step is done to ease network operations as the network has 
built-in functions for network operations. As mentioned earlier, 
the init function is executed only once. Even if the network 
gets reset, the network structure stays the same, and nodes stay 
the same. So only those variables are initialized in this 
function. 

5) RESET function:The RESET function is executed on 
completion of every episode. Meaning, once the packet either 
drops or reaches the destination, the reset function is executed. 
During the RESET, all those variables are changing during the 
execution of the environment. 

Algorithm-3: Environment RESET 
Input: None 
Output: Network N 
Start 
1. Nc = Ns 
2. Reward = 0 
3. Weights = initalWeights 
4. done = false 
5. return N 
End 

All the variables are reset back to the initial state in the 
RESET function as shown in the algorithm. DONE is set to 
false as, during the beginning of the environment, it is not 
done. The weights are initiated again. The network starts with 
the initial node itself; the current node (Nc) is set to the source 
node (Ns) as in the beginning. Since the DONE function is set 
to false in the RESET function, it can be analyzed from the 
flowchart; both the STEP and RENDER functions are executed 
at least once. 

6) STEP function: The STEP function is where the actual 
transaction happens, as shown in algorithm 1. After every step 
next state, the REWARD and DONE are returned to the agent. 

Algorithm-4: STEP function 
Input: An (Action) 
Output: Reward,Done,next state 
Start 
1. Nk = Nc 
2. Nk+1 = action 
3. Reward,Done = T(Nk,Nk+1) (ref ALG1) 
4. Next state = Nk+1 
5. return Reward,Done,next state 
End 

The REWARD needs to be given after every step, be it 
positive or negative. The positive REWARD encourages the 
agent to follow a similar policy, whereas the negative reward 
discourages the agent. 

7) RENDER function: This function is used to visualize 
the output of the environment. Every step taken can be 
visualized. However, if the aim is to simplify the output 
analysis, this function can be disabled to save time. 
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Algorithm-5: RENDER function 
Input: Graph (G), Current Node (Nc) 
Output: None 
Start 
1. for every Nk∈ G 
2.     if Nc==Nk 
3.           Nk.color = red 
4.     else 
5.           Nk.color = blue 
6. plot(G) 
End 

The render function displays the graph on the screen. If the 
environment is being used in a Jupyter notebook, the plot needs 
to be cleared manually. 

V. RESULT ANALYSIS FOR VALIDATING NET-AI GYM 
The default Net-AI Gym with five nodes rendering of the 

environment is shown in Fig. 9. 

Similarly, Fig. 10(a) and Fig. 10(b) illustrate the rendering 
of the Net-AI Gym with 50 and 100 nodes, respectively, to 
show the flexibility and scalability of the Net-AI Gym. 

Fig. 11 shows the benchmarking of the Net-AI Gym 
environment with the stable-baselines benchmarking tool. 

As shown in Fig. 11, the environment performs well, and 
an agent can find the path in it. Once the implementation is 
completed, a stable baselines library [25] is used to benchmark 
this environment. The agent can get maximum reward only 
when it finds the best path. For simple 6 node environments, 
the agents find the best path in 15 episodes. For a complex 
environment with 100 nodes, the agent finds the best path in 
500 episodes. 

 
Fig. 9. Rendering of the Environment. 

  
(a): 50 Nodes  (b):100Nodes 

Fig. 10. (a), (b) Rendering of the Environment with 50 and 100 Nodes. 

 
Fig. 11. Baseline Benchmark of Reward Vs. Episodes. 

VI. CONCLUSION 
The Open-AI Gym is a de-facto toolbox that provides 

numerous ready environments to test the agent algorithm's 
validity. A thorough investigation reveals that the appropriate 
environment for solving network-related problems is not 
available to date either by the Open-AI Gym core team or by a 
third-party contribution. Due to a lack of environment, the 
potential and advantages of RL-based agents can be fully 
utilized in networking problems. Therefore, the proposed study 
has proposed a novel approach of a customized networking 
environment to support RL-agent to be implemented and tested 
to solve various networking problems. Our future research 
problem is to design and develop an optimal routing algorithm 
for the generic network using reinforcement learning that 
demands a suitable environment to check the validity of the 
designed agent. Therefore, the need for an effective and 
scalable environment, Net-AI Gym, arises. The process of 
designing Net-AI Gym involves a setting-up stack of 
computational systems for ML and building a customized 
function. This function includes __Init__, Reset, Step, Render 
in the core reposit of Open-AI Gym by adding procedures, 
such as Transfer, Transaction, Delivered, Dropped, which are 
as per the requirement of the network routing. The production 
stage includes registration of environment, re-building Open-
AI Gym with registered Net-AI Gym. Finally, the Net-AI Gym 
environment validation is performed for scalability and proper 
functioning with default 5 nodes, 50 and 100 nodes. The 
synchronized support of NetworkX in Net-AI Gym renders the 
network's visualization successfully and benchmarked with 
different numbers of nodes 5, 50, and 100 for reward Vs. 
Episodes analysis shows a stable pattern. Thus, the design and 
construction of Net-AI Gym provide a suitable platform to 
evaluate network routing agent algorithms. 
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