
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

NetAI-Gym: Customized Environment for Network
to Evaluate Agent Algorithm using Reinforcement

Learning in Open-AI Gym Platform
Varshini Vidyadhar1

Research Scholar, Department of
Computer Science and Engineering
Bangalore Institute of Technology

Bangalore, India

Dr. Nagaraj R2
Professor, Department of
Information Science and

Engineering, Bangalore Institute of
Technology, Bangalore, India

Dr. D V Ashoka3
Professor, Department of
Information Science and

Engineering, JSS Academy
Technical Eduction,Bangalore, India

Abstract—The growing size of the network imposes
computational overhead during network route establishment
using conventional approaches of the routing protocol. The
alternate approach in contrast to the route table updating
mechanism is the rule-based method, but this also provides a
limited scope in the dynamic networks. Therefore, reinforcement
learning promises a better way of finding the route, but it
requires an evaluation platform to build a model synchronization
between route and agent. Unfortunately, the de-facto platform
for agent evaluation, namely Open-AI Gym, does not provide a
suitable networking environment. Therefore, this paper aims to
propose a networking environment as a novel contribution by
designing a suitable customized environment for a network
synchronically with Open-AI Gym. The successful deployment of
the proposed network environment: NetAI-Gym provides a
functional and practical result that can be used further to
develop routing mechanisms based on Q-learning. The validation
of the proposed NetAI-Gym is carried out with different nodes in
the network regarding Episodes Vs. Reward. The experimental
outcome justifies the validity of the proposed NetAI-Gym that it
is suitable for solving network-related problems.

Keywords—Open-AI Gym; network; environment; agent;
reinforcement learning

I. INTRODUCTION
Artificial intelligence (AI) is being explored way back in

1997 for some problems like exploring the possibility of
adaptive-AI using a network of neurons like adaptive elements,
where the focus of the study was on the adaptive systems,
where the learning system adapts some behavior from the
environment to maximize the signal. It is being observed that
this approach has received very little attention from the
researchers from the computational perspectives [1][2]. At the
same time, the same idea of the hedonistic-learning system
(HLS) of that time has been realized today as Reinforcement
Learning (RL). However, with a hypothesis that data are
collected only from the IEEE Digital library. It is found that the
routing problem in the network became an active research
problem in the last 20 years, with an overall publication of
86,226. It is observed that in the last decade, the total
publication for the same problem is 52,344, which is alone
60.7%, which shows that the active focus of the researchers is
higher in the running decade. Considering this 60.7% data as

100% and then the stake of Reinforcement Learning is found
only 322 in totality, which is hardly 0.6% and 0.3% from last
two decade. Therefore, it can be concluded that more efforts
are required to study and develop a solution paradigm for
routing problems in a network using reinforcement learning.
The typical architecture of reinforcement learning is shown in
Fig. 1.

The basic design of RL includes building two functional
blocks, namely E and Ag. The Ag takes appropriate Ac based
on the O provided by E and subsequently based on the Ac
taken, E gives positive or negative R. Therefore, to evaluate the
agent algorithm, a suitable platform of the environment is
required as per the domain context and particular task. The role
of RL is to solve the problem of sequential decision tasks in
different networking scenarios. There are many methods found
in the literature to solve this problem by using i) Game theory
[3], ii) Swarm [4], iii) a probabilistic technique [5], and many
more [6-7]. However, all these approaches are associated with
some advantages and limitations. But RL can be utilized to
address very complex problems that conventional approaches
cannot address. RL refers to the computer intelligence field that
studies programmed computing procedures and dynamically
optimizes their performance based on experience learned from
the environment. Therefore, RL offers promising context that
can be used to develop adaptive mechanisms for network
routing so that better performance can be achieved on complex
problems without performing any engineering particular to the
problem. RL's logic considers a decision-maker component
(agent) in the environment (set of states with inputs). At every
step, the agent takes action and gets observations and rewards
when interacting with the environment. The RL algorithm tries
to maximize a certain amount of reward achieved by the agent.
The RL environment for networking was configured based on a
general backbone network according to the concept of a
partially observable Markov decision process [8]. However,
most of the researchers failed to produce their experiments
based on the RL. Recently, an introduced RL tool kit, namely
Open-AI Gym, removes this problem and lacking
standardization in the research process by giving versatile
numbers of the environment with great ease of setting up. This
toolkit offers a collection of test problems. It concentrates on
RL's scenario setting, in which the experience learned by the

169 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

agent is divided into several episodes. The Open-AI provides a
benchmarking framework for building and testing RL
algorithms. However, to date, no any Open-AI Gym library is
available for networking. A thorough investigation of the
existing Open-AI Gym platform reveals that it has 7 explicit
classes contributed by Open-AIGym and an additional class of
third-party contribution. A detailed explanation is given in
section III. It is found that the available environment in Open-
AI Gym is not applicable for solving the problem of network,
especially the routing. Researchers use various network
simulators and experimental testbeds. Hence, this paper is the
first of its type to contribute a custom design of an environment
for evaluating network routing using RL on the Open-AI Gym
platform. The proposed NetAI-Gym offers a scalable
networking environment for implementing any reinforcement
learning algorithm for training agents and accessing their
performances in the context of networking. This paper is
organized as in Fig. 2.

Fig. 1. Typical Reinforcement Learning Architecture.

Fig. 2. Organization of the Paper.

II. RELATED WORK
The use of RL is found in the literature for the various task

in the respective networks. In WSN, automation of the radio
scheduling task for optimizing energy usage is designed using
the RL technique [9]. RL eliminates overheads of the control
messages used for communication among neighbors as ∀
nodes ∈WSN as it approximates its neighbor conditions based
on the current state. Since this method does not use any
specific tool like Open-AI Gym to evaluate the agent designed,
it uses an approach of trial and error to simplify the problem of
the sequential decision using game theory. However, it is a
computationally expensive method. Reinforcement learning
aims to solve sequential decision tasks through trial-and-error
interactions with the environment. Another related network in
the context of industrial-WSN uses RL for minimizing the
latency and maximizing the lifetime of the network [10]. There
remain many open issues that include computation of time
complexities in terms of learning and exploration that validate
performance enhancements. A Markov decision process is used
to formulate a path selection process. A deep RL technique is
then applied to minimize the probability of network congestion
in the network under heavy traffic [11]. Throughput is
achieved, but overall network performance can be enhanced by
considering network-related dynamic parameters. RL
technique adoption is also found in [12] for designing grid-
oriented routing mechanisms to address message forwarding
challenges in the Vehicular ad-hoc network (VANET).
However, the focus is only on the problem of the message
forwarding issue from the source to the fixed destination. The
Q-table is learned offline and may not be well suited to the
dynamic characteristics of urban VANETs. Traffic-aware and
road-side-unit (RSU) supported routing mechanism is
introduced in [13]. Here, RL is implemented to facilitates
intelligent data transmission processes between vehicle-to-
vehicle and RSU-2-RSU.However, the vehicle's direction is
not considered, which may affect the performance of the
routing scheme when it comes to real-time deployment
scenarios. An RL-based routing protocol is designed in [14] to
analyze the impact of a varying number of nodes on the
performance of the Underwater Acoustic Sensor Networks
(UWSN). Q-learning is used, where the node has packets to
forward based on the state of the buffer, remaining energy, and
proximity of adjacent nodes to select the next sender node. In
[15], a channel-aware RL-oriented adaptive path selection
technique is introduced for multi-hop UWSN. The protocol
switches between single-path and multi-path routing
accomplish joint optimization in energy consumption and
packet delivery ratio. Q-learning-based distributed
opportunistic routing mechanism is introduced by [16] for
minimizing the average packet routing cost in Wireless Ad-hoc
network. This mechanism combinedly solves the problems
related to learning and routing network structure is
characterized by the communication and data transaction
success probability. An efficient mechanism for collaborative
RL is used in [17] for optimizing path selection in MANET.
The use of RL is used for routing optimization in software-
defined networking (SDN) [18]. The effectiveness of the agent
is tested under the self-convergence aspects. The authors in
[19] used a deep RL mechanism for optimizing routing
performance in SDN. The authors in [20] explored RL's

170 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

effectiveness towards the energy harvesting routing model
based on Q-learning for multi-hop Cognitive Radio networks
(CRN). The runtime complexity of this model is 𝑂(𝑁2) .
However, the performance of CRN can be further enhanced
using spectrum sensing and power allocation mechanism. The
problem of link selection in the Energy Harvesting Relay
network (EHRN) is solved by [21] using RL and Deep-Q-
learning techniques. A pre-trained algorithm is used to avoid
the massive iterations and alleviate the computation overhead
in convergence optimization. However, this approach is not
much scalable when environmental parameters change. The
use of RL in [22] is found for designing routing protocol in
Magnetic Induction Underwater Sensor Networks (MIUSN). A
Q-table is derived by taking into account the distance factor
and energy loss. However, the protocol requires periodic
control message exchange for neighbor discovery to give rise
to high overheads and reduce channel usage due to slow
propagation. The adoption of the RL-based Q-learning
technique for content placement is found in [23] for a dynamic
cloud content delivery network (CCDN). An efficient routing
design based on RL in Unmanned Robotic Network (URN) is
suggested by [24] considering location information, link
condition, and battery information to realized the neighbor
node with the most significant future reward for determining
the next hop. Table I summarizes the above-discussed literature
for quick insight concerning network scenarios and issues
handled.

It is analyzed that RL is mainly adopted for addressing
optimization problems of routing and congestion control in
various networking scenarios. However, none of the studies are
found in the context of using a customizable environment for
the agent algorithm designed to solve routing and network
performance problems using RL. The environment used in the
existing literature is formulated based on the general core
network in the simulation process. Since RL is associated with
reasonable overhead, the existing approaches are not suitable
for providing an efficient solution. It may be exposed to many
problems when it comes to real-time deployment scenarios.
Therefore, a customizable environment specific to RL
approaches for networking is required for suitable analysis of
performance.

TABLE I. SUMMARY OF EXISTING LITERATURE

Authors Network
Scenario Problem Handled

5, 6 WSN Energy usage [5], Latency [6]
7 Relay Network congestion

8,9 VANET Message forwarding [8], transmission
efficiency [9]

10,11 UWSN Energy
12 Ad-Hoc Routing cost
13 MANET Path selection
14,15 SDN Routing Performance
16 CRN Network Performance
17 EHRN Computation overhead
18 MIUSN Energy and Channel utilization
19 CCDN Content placement
20 URN Routing and Energy

III. EXPLORATION OF EXISTING ENVIRONMENTS OF OPEN-
AI GYM PLATFORM

The first instance of Open-AI Gym is found in 2016 to
support reinforcement learning used for various decision
making and control systems. It includes a study of agent
learning to achieve the learning goal in an uncertain and
complex environment. The use of RL is found in the
diversified problem domain, such as robot motor control,
games, and business decision makings, wherever a sequence of
decision making is required. In the recent past, RL is being
used in various complex environments. However, the
advancement into deep learning demands engineering aspects
specific to the problem.

A. Custom Design of Net-Ai Gym
1) Modelling network: The mathematical model for the

network is represented by a collection of vectors as in
set:η = �N1����⃗ , N2����⃗ , N3����⃗ ,⋯Nn�����⃗ �, where, ∀Nk����⃗ ∈ η represents a node
with two intrinsic properties as {Node number (Xk), Set of
links(Rk)} s.t Nk����⃗ is represented by a pair of {Xk, Rk}, where k
=1to n, n ∈ ℕ and n ≥ 2 . Basically, a node Nk����⃗ may have
connectivity with many of the node ∈ η − {Nk������⃗ }, therefore, ∀
the link-set is represented by a collection of vectors: Rl =
�L1����⃗ , L2����⃗ , L3����⃗ ,⋯ Lm�����⃗ � s.t ∀Lk����⃗ ∈ Rl contains two intrinsic
properties as {Connecting node number (Xk), the weight of the
link (Wk)}. This arrangement of vector representation for the
nodes and reference to the links alleviates the challenge of
handling memory usage by dimensionality reduction. Else the
simple representation of Tensor imposes excessive use of
memory and computational resources. Fig. 3 illustrates a
sample representation of a weighted 3 node network with 3
links.

Fig. 3. Network Representation.

η = {{X1, R1}, {X1, R2}, {X1, R3}}, where, R1  {{X2,3}, {
X3,4}}, R2{{X1,3}, {X3,1}}, R3 {{X1,4}, {X2, 1}}

2) Modeling transaction: The transaction (T) is the
delivery of one packet (P) from the source node (Ns) to the
destination node (Nd). There are two outcomes of the
transaction: i) FAILURE and ii) SUCCESS. To elaborate the
process of the transaction and associate states, Fig. 4 with 4-
nodes considering node N1 as Ns and node N4 as Nd.

Fig. 4. Illustration of Transaction.

171 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

There are various possibilities of transactions between N1
to N4. The first possible condition is that when node N1 does
not find node N4 in its first transaction, then it DROPS the
packet P, and the state is flagged to FAILURE. Based on the
previous record of T, in the next transaction, N1 will look for
another node, say node N2, and this time also the state is
FAILURE as when a packet is delivered to N2, no connection
is found between node N2 and N4. Therefore, in reference to
Fig. 3, the only possible transaction for SUCCESS state is to
transfer packet P either from N1 (Ns)  N2 N3N4 (Nd)
or from N1 (Ns)  N3N4 (Nd) and in this way packet is
DELIVERED from Ns to Nd. The computation process for one
transfer where a transfer is a process of forwarding a packet
from one node to another node is as in algorithm 1.

Algorithm-1: Computational process of transfer T(Nk, Nk+1)
Input: η
Output: REWARD, DONE
Start
1. Initialize Nk, Nk+1
2. T (NkNk+1)
3. GET Rk∈ 𝑁𝑘
4. GET Xk+1 ∈ Rk
5. If Xk+1 ∈ Rk
 If Xk+1 is XD

 REWARD = Vl∈N
 DONE = True
 Else
 REWARD = -Wk
 DONE = False
 Else
 REWARD = 0
 DONE = True
6. Return: REWARD, DONE
End

In the designed networkη, the computational process for
one transfer is the conditions, the environment to get respective
REWARD () and DONE () subjected to network conditions of
node connectivity. The process computes the transaction
between node Nk Nk+1 as T (NkNk+1). Typically,
REWARD is the value returned by the algorithm that signifies
encouragement if it is positive REWARD and discouragement
if it is negative REWARD towards selecting the same route in
the next transaction. In contrast, DONE is a final state which
signifies either FAILURE or SUCCESS before restarting the
next transaction. The respective values of Rk from the Nk set
and Xk+1 from Rk is obtained.

Further, firstly it checks that Xk+1 is an element of Rk. If
this condition is found to be true then, it checks whether Xk+1
is XD (destination node number) or not. If it is true, then a large
natural number is assigned as REWARD, and the transaction
state DONE is set to True means it goes to the next iteration.
Otherwise, a negative value is assigned to REWARD, and the
transaction state DONE is set to False, which means the
transaction further continues. In case Xk+1 does not belong to
Rk, then zero is assigned as REWARD, and Transaction state
DONE is set to True for the further transfer iterations of the
transaction.

3) Modeling environment: The typical environment
modeling for Net-AI Gym mimics Fig. 1, and corresponding
constructs are mapped as {E, Ag}:  {O, R, Ac} and in the
case of network, the action (Ac) is mapped to movement of
the packets from the node (Ni) to node (Nj) as shown in
Fig. 5.

Typically, there are many state or observations between
starting observation to the terminating observation, and the set
of ∀ Ob ∈ {Ob-start, Ob-next . . . Ob-Terminating} is known
as one episode. In the custom design of NetAI-Gym, one
episode (Eps) is a journey of a packet (P) from the source node
(Ns) to the destination node (Nd), and the Eps ends when either
the packet drops or it reaches the Nd.The underlying
architecture of the environment adopts the Markov decision
process and works in a stochastic manner following the finite
state machine, as shown in Fig. 6.

In Fig. 5, the states set {S1, S2, S3 …Sn … Sd} is mapped
with the respective nodes set {N1, N2, N3 …Nn … Nd}, and
another state considered is Done. The possible transitions are:
{Transfer, Drop, Reset, Delivered}. The network behavior
exhibits randomness as the weight of the links varies due to
various noises, whereas the route establishment process is
entirely in control of the agent. Therefore, the Markov decision
process (MDP) is justified as MDP is suitable for scenarios
where the possible outcomes are influenced jointly by random
variables and decision-makers. The purpose of this particular
MDP is also to find the best policy (𝜋) for the decision-maker,
such that Nk = 𝜋(Nk-1) where the transfer gives the maximum
reward.

Fig. 5. Movement of Packets: Action from Ni to node Nj.

N3

N1

N2

Nn

Done

Transfer

Transfer

T
ransfer

Tra
nsfe

r

Dro
p

Drop

Delivered

Reset

ND

Fig. 6. Finite State Machine for Environment-Net-AI Gym.

172 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

However, since randomness is involved, a maximum
REWARD cannot be ensured for every transfer. Hence, the
model is designed to REWARD a huge positive value when the
destination state is reached. As shown in Fig. 5, the packet may
drop from any node. Hence a transition is defined from all
states to DONE state as a DROP. This transition represents that
any node may DROP the packet. The delivered transition is
defined only from the destination state to the DONE state. This
transition represents that the transaction is successful only
when the packet reaches the destination node. Once it is
DONE, the network must handle the next packet. The RESET
transition from the DONE state shows this to the first state (Ns).

Generally, the best policy 𝜋 is a function or a
transformation that outputs the next state when the present state
is given. This is done by either a lookup table or a function
approximator to save space. The agent has to find 𝜋 . This
environment is being modeled to help the agent to find
𝜋 efficiently. For that to happen, the model must be designed
efficiently so that maximum reward is awarded when the agent
reaches the destination, and it should discourage alternative
non-efficient policies. Hence, the model is designed to award
negative rewards when the agent tries to follow the longer path.
The agent keeps exploring until no better policy exists
compared to the present policy. And due to this, a well-
programmed agent always finds the best policy. The
environment is written so that there will always be a better
policy with higher reward as long as the agent finds the best
policy. The environment also ends when the agent makes a
mistake. Thereby allowing the agent to learn how to ensure the
packet is not dropped. All these are written keeping in mind
both ML-based as well as rule-based agents. The environment
is modeled so that performance doesn't deteriorate even if we
scale the model. The model is made highly scalable since the
overall state machine architecture is quite simple. The
randomness is also modeled to simulate real-world scenarios of
network disturbances. Overall, this model simulates a real-
world computer network as realistically as possible.

IV. IMPLEMENTATION OF NET-AI GYM ON OPEN-AI GYM
This section presents a detailed discussion on the modeling

and implementation design of the proposed RL environment
for networking, namely 'Net-AI GYM'. The discussion first
highlights the computational ecosystem required an intrinsic
function for Net-AI Gym development followed by algorithmic
steps and discussion.

A. Ecosystem for the Implementation
A professional virtual environment management tool,

Anaconda is used to build the custom version of the Open-AI
Gym library as Net-AI Gym. Anaconda helps to organize the
required libraries, including i well) core Python-3.8 for
scripting, ii) Pandas to acquire and handle data, iii) NumPy for
handling complex matrix manipulations, iv) Matplot lib for
visualization through plotting. Apart from these packages, the
essential package used is a NetworkX for building and
managing network representation using graph theory. Since the
Net-AI Gym is aimed to be used for solving various network-
related problems using reinforcement learning. Therefore, to
evaluate the performance of the designed agents, the stack of
computational ecosystem preferred is as in Fig. 7.

Fig. 7. Stack of Computational System for ML.

The above stack requires intrinsic operational support for
complex and large matrix manipulations. Therefore, to speedup
the training process, Nvidia-GTX architecture supported GPU
issued along with a CPU with the Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz 2.59 GHz with 16 GB of RAM, a best-
suited trailing architecture to the next best possible in the
market. TensorFlow is the neural network library by Google,
used to create agents to work with the environment. This can
even be used to benchmark the environment; hence we need it
at the top layer. As shown in Fig. 7, there are some optional
components, and there are some compulsory components. A
GPU is used to handle complicated matrix operations and
makes the program run faster as most of the ML operations are
mainly Matrix multiplication. However, even the CPU can
handle matrix operations, and GPU is not a must. However, if
A GPU is being used, TensorFlow must access it. CUDA is a c
library given by Nvidia, allowing the C compiler access to
GPU. To allow python to access GPU, we must install the
CUDnn package, which acts as a wrapper to CUDA for
python. If GPU access is allowed in python, CUDA will
automatically access GPU.

The implementation process can proceed once the above
environment is set up. To implement this environment, the
NetworkX library in python is mandatory. This is required
since the proposed study uses approach graph theory in this
implementation. NetworkX provides an excellent source of
graph theory implementation and calculations. The Graph (G)
in the NetworkX contains many nodes, and each node can be
treated as any bashable object. In our case, A node is nothing
but an integer representing the node number. Each connection
can have weight. Even though bidirectional weight is allowed
in NetworkX, this feature is not being used in this
implementation. During implementation, the weight from Node
A to B and vice versa should be the same. This operation is
ensured programmatically. NetworkX is the best-suited library
to implement this environment, and more information can be
stored in each node and edges by using various bashable
objects in future work.

173 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

B. Intrinsic Function Development
The customization of the proposed Net-AI Gym

environment includes the typical process as in Fig. 8. The flow
of the environment is as shown in figure x. The init function is
executed only once since the environment is initiated only
once. The reset function is executed at the end of every
episode. Each episode represents a transaction, i.e., the
movement of a packet from the source node to the destination
node. The step function is executed in a loop till the transaction
is over. The step function represents a transfer, i.e., the
movement of a packet from one node to another. The render
function is optional as it is used only to visualize the network
and transaction. Only when the learning needs to be monitored,
the render function is activated.

Fig. 8. Flow of Environment for Net-AIGym.

4) Init function: Init function is executed at the beginning
of the environment to initiate it. The following algorithm
represents the working of the init function.

Algorithm-2: Initiation of Environment
Input: η
Output: Network N
Start
1. Initialize N
2. Length = len(η)
3. N = {N1,N2,N3..Nn} = createNodes(Length)
4. initalWeights = randomWeights()
5. map(N η)
6. return N
End

As shown in algorithm2, environment initiation happens by
copying the nodes from the data structure to the network graph.
Every vector in η is mapped to a node in the network graph.
This step is done to ease network operations as the network has
built-in functions for network operations. As mentioned earlier,
the init function is executed only once. Even if the network
gets reset, the network structure stays the same, and nodes stay
the same. So only those variables are initialized in this
function.

5) RESET function:The RESET function is executed on
completion of every episode. Meaning, once the packet either
drops or reaches the destination, the reset function is executed.
During the RESET, all those variables are changing during the
execution of the environment.

Algorithm-3: Environment RESET
Input: None
Output: Network N
Start
1. Nc = Ns
2. Reward = 0
3. Weights = initalWeights
4. done = false
5. return N
End

All the variables are reset back to the initial state in the
RESET function as shown in the algorithm. DONE is set to
false as, during the beginning of the environment, it is not
done. The weights are initiated again. The network starts with
the initial node itself; the current node (Nc) is set to the source
node (Ns) as in the beginning. Since the DONE function is set
to false in the RESET function, it can be analyzed from the
flowchart; both the STEP and RENDER functions are executed
at least once.

6) STEP function: The STEP function is where the actual
transaction happens, as shown in algorithm 1. After every step
next state, the REWARD and DONE are returned to the agent.

Algorithm-4: STEP function
Input: An (Action)
Output: Reward,Done,next state
Start
1. Nk = Nc
2. Nk+1 = action
3. Reward,Done = T(Nk,Nk+1) (ref ALG1)
4. Next state = Nk+1
5. return Reward,Done,next state
End

The REWARD needs to be given after every step, be it
positive or negative. The positive REWARD encourages the
agent to follow a similar policy, whereas the negative reward
discourages the agent.

7) RENDER function: This function is used to visualize
the output of the environment. Every step taken can be
visualized. However, if the aim is to simplify the output
analysis, this function can be disabled to save time.

174 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

Algorithm-5: RENDER function
Input: Graph (G), Current Node (Nc)
Output: None
Start
1. for every Nk∈ G
2. if Nc==Nk
3. Nk.color = red
4. else
5. Nk.color = blue
6. plot(G)
End

The render function displays the graph on the screen. If the
environment is being used in a Jupyter notebook, the plot needs
to be cleared manually.

V. RESULT ANALYSIS FOR VALIDATING NET-AI GYM
The default Net-AI Gym with five nodes rendering of the

environment is shown in Fig. 9.

Similarly, Fig. 10(a) and Fig. 10(b) illustrate the rendering
of the Net-AI Gym with 50 and 100 nodes, respectively, to
show the flexibility and scalability of the Net-AI Gym.

Fig. 11 shows the benchmarking of the Net-AI Gym
environment with the stable-baselines benchmarking tool.

As shown in Fig. 11, the environment performs well, and
an agent can find the path in it. Once the implementation is
completed, a stable baselines library [25] is used to benchmark
this environment. The agent can get maximum reward only
when it finds the best path. For simple 6 node environments,
the agents find the best path in 15 episodes. For a complex
environment with 100 nodes, the agent finds the best path in
500 episodes.

Fig. 9. Rendering of the Environment.

(a): 50 Nodes (b):100Nodes

Fig. 10. (a), (b) Rendering of the Environment with 50 and 100 Nodes.

Fig. 11. Baseline Benchmark of Reward Vs. Episodes.

VI. CONCLUSION
The Open-AI Gym is a de-facto toolbox that provides

numerous ready environments to test the agent algorithm's
validity. A thorough investigation reveals that the appropriate
environment for solving network-related problems is not
available to date either by the Open-AI Gym core team or by a
third-party contribution. Due to a lack of environment, the
potential and advantages of RL-based agents can be fully
utilized in networking problems. Therefore, the proposed study
has proposed a novel approach of a customized networking
environment to support RL-agent to be implemented and tested
to solve various networking problems. Our future research
problem is to design and develop an optimal routing algorithm
for the generic network using reinforcement learning that
demands a suitable environment to check the validity of the
designed agent. Therefore, the need for an effective and
scalable environment, Net-AI Gym, arises. The process of
designing Net-AI Gym involves a setting-up stack of
computational systems for ML and building a customized
function. This function includes __Init__, Reset, Step, Render
in the core reposit of Open-AI Gym by adding procedures,
such as Transfer, Transaction, Delivered, Dropped, which are
as per the requirement of the network routing. The production
stage includes registration of environment, re-building Open-
AI Gym with registered Net-AI Gym. Finally, the Net-AI Gym
environment validation is performed for scalability and proper
functioning with default 5 nodes, 50 and 100 nodes. The
synchronized support of NetworkX in Net-AI Gym renders the
network's visualization successfully and benchmarked with
different numbers of nodes 5, 50, and 100 for reward Vs.
Episodes analysis shows a stable pattern. Thus, the design and
construction of Net-AI Gym provide a suitable platform to
evaluate network routing agent algorithms.

REFERENCES
[1] A.H. Klopf, “Drive-reinforcement learning and hierarchical networks of

control systems as models of nervous system function”, International
Journal of Psychophysiology, Vol. 1(25), pp. 42-3, 1997.

[2] R.S. Sutton, A.G. Barto, “Reinforcement learning: An introduction”,
MIT press, 2018.

[3] C. Sun, H. Duan, “Markov decision evolutionary game theoretic
learning for cooperative sensing of unmanned aerial vehicles”, Sci.
China Technol. Vol. 58, pp. 1392–1400, 2015.

175 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

[4] M. Hüttenrauch, S. Adrian and G. Neumann, “Deep reinforcement
learning for swarm systems”, Journal of Machine Learning
Research, Vol. 20(54), pp.1-31, 2018.

[5] R. Ghoul, J. He, S. Djaidja, M. A.A Al-qaness, and S. Kim, “PDTR:
Probabilistic and Deterministic Tree-based Routing for Wireless Sensor
Networks”, Sensors, 20(6), pp.1697, 2020.

[6] J.H. Drake, A. Kheiri, E. Özcan, and E.K. Burke, “Recent advances in
selection hyper-heuristics”, European Journal of Operational
Research, Vol. 285(2), pp.405-428, 2020.

[7] Z. A.Aghbari, A.M. Khedr, W. Osamy, I. Arif and D.P. Agrawal,
“Routing in wireless sensor networks using optimization techniques: A
survey”, Wireless Personal Communications, pp.1-28, 2019.

[8] H. Wang, N. Liu, Y. Zhang, “Deep reinforcement learning: a
survey”, Front Inform Technol Electron Eng, Vol. 21, pp. 1726–1744,
2020.

[9] J. D. Ye and M. Zhang, "A Self-Adaptive Sleep/Wake-Up Scheduling
Approach for Wireless Sensor Networks," in IEEE Transactions on
Cybernetics, vol. 48, no. 3, pp. 979-992, March 2018, doi:
10.1109/TCYB.2017.2669996.

[10] G. Künzel, L. S. Indrusiak and C. E. Pereira, "Latency and Lifetime
Enhancements in Industrial Wireless Sensor Networks: A Q-Learning
Approach for Graph Routing," in IEEE Transactions on Industrial
Informatics, vol. 16, no. 8, pp. 5617-5625, Aug. 2020, doi:
10.1109/TII.2019.2941771.

[11] R. Ding, Y. Xu, F. Gao, X. Shen and W. Wu, "Deep Reinforcement
Learning for Router Selection in Network With Heavy Traffic," in IEEE
Access, vol. 7, pp. 37109-37120, 2019, doi:
10.1109/ACCESS.2019.2904539.

[12] F. Li, X. Song, H. Chen, X. Li and Y. Wang, "Hierarchical Routing for
Vehicular Ad Hoc Networks via Reinforcement Learning," in IEEE
Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1852-1865,
Feb. 2019, doi: 10.1109/TVT.2018.2887282.

[13] J. Wu, M. Fang, H. Li and X. Li, "RSU-Assisted Traffic-Aware Routing
Based on Reinforcement Learning for Urban Vanets," in IEEE Access,
vol. 8, pp. 5733-5748, 2020, doi: 10.1109/ACCESS.2020.2963850.

[14] Z. Jin, Q. Zhao, and Y. Su, "RCAR: A Reinforcement-Learning-Based
Routing Protocol for Congestion-Avoided Underwater Acoustic Sensor
Networks," IEEE Sensors Journal, vol. 19, pp. 10881–10891, Nov.
2019.

[15] V. Di Valerio, F. Lo Presti, C. Petrioli, L. Picari, D. Spaccini and S.
Basagni, "CARMA: Channel-Aware Reinforcement Learning-Based
Multi-Path Adaptive Routing for Underwater Wireless Sensor
Networks," in IEEE Journal on Selected Areas in Communications, vol.

37, no. 11, pp. 2634-2647, Nov. 2019, doi:
10.1109/JSAC.2019.2933968.

[16] A. A. Bhorkar, M. Naghshvar, T. Javidi and B. D. Rao, "Adaptive
Opportunistic Routing for Wireless Ad Hoc Networks," in IEEE/ACM
Transactions on Networking, vol. 20, no. 1, pp. 243-256, Feb. 2012, doi:
10.1109/TNET.2011.2159844.

[17] J. Dowling, E. Curran, R. Cunningham and V. Cahill, "Using feedback
in collaborative reinforcement learning to adaptively optimize MANET
routing," in IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, vol. 35, no. 3, pp. 360-372, May 2005, doi:
10.1109/TSMCA.2005.846390.

[18] C. Yu, J. Lan, Z. Guo and Y. Hu, "DROM: Optimizing the Routing in
Software-Defined Networks With Deep Reinforcement Learning," in
IEEE Access, vol. 6, pp. 64533-64539, 2018, doi:
10.1109/ACCESS.2018.2877686.

[19] Xu, C., Zhuang, W. and Zhang, H., 2020, October. A Deep-
reinforcement Learning Approach for SDN Routing Optimization.
In Proceedings of the 4th International Conference on Computer Science
and Application Engineering (pp. 1-5).

[20] He, X., Jiang, H., Song, Y., He, C. and Xiao, H., 2019. Routing selection
with reinforcement learning for energy harvesting multi-hop CRN. IEEE
Access, 7, pp.54435-54448.

[21] H. Zhang, D. Zhan, C. J. Zhang, K. Wu, Y. Liu, and S. Luo, "Deep
Reinforcement Learning-Based Access Control for Buffer-Aided
Relaying Systems With Energy Harvesting," IEEE Access, vol. 8, pp.
145006–145017, Aug. 2020.

[22] Y. Liu, D. Lu, G. Zhang, J. Tian and W. Xu, "Q-Learning Based
Content Placement Method for Dynamic Cloud Content Delivery
Networks," in IEEE Access, vol. 7, pp. 66384-66394, 2019, doi:
10.1109/ACCESS.2019.2917564.

[23] S. Wang and Y. Shin, "Efficient Routing Protocol Based on
Reinforcement Learning for Magnetic Induction Underwater Sensor
Networks," in IEEE Access, vol. 7, pp. 82027-82037, 2019, doi:
10.1109/ACCESS.2019.2923425.

[24] W. Jin, R. Gu and Y. Ji, "Reward Function Learning for Q-learning-
Based Geographic Routing Protocol," in IEEE Communications Letters,
vol. 23, no. 7, pp. 1236-1239, July 2019, doi:
10.1109/LCOMM.2019.2913360.

[25] A. Hill and A. Raffin, M. Ernestus, and A. Gleave, A. Kanervisto, R.
Traore, P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A.
Radford, J. Schulman, S. Sidor, Y. Wu, "Stable Baselines" in GitHub
repository on GitHub, 2018, (online: https://github.com/hill-a/stable-
baselines

176 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Exploration of Existing Environments of Open-Ai Gym Platform
	A. Custom Design of Net-Ai Gym
	IV. Implementation of Net-AI Gym on Open-AI Gym
	A. Ecosystem for the Implementation
	B. Intrinsic Function Development
	V. Result Analysis for Validating Net-Ai Gym
	VI. Conclusion
	References

