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Abstract—Vehicular Edge Computing (VEC) systems have
recently become an essential computing infrastructure to support
a plethora of applications entailed by smart and connected
vehicles. These systems integrate the computing resources of edge
and cloud servers and utilize them to execute computational
tasks offloaded from various vehicular applications. However,
the highly fluctuating status of VEC resources besides the
varying characteristics and requirements of different application
types introduce extra challenges to task offloading. Hence, this
paper presents, implements and evaluates various task offloading
algorithms based on the Multi-Armed Bandit (MAB) theory for
VEC systems with predefined application types. These algorithms
seek to make use of available contextual information to better
steer task offloading. These information include application type,
application characteristics, network status and server utilization.
The proposed algorithms are based on having either a single MAB
learner with application-dependent reward assignment, multiple
application-dependent MAB learners or dedicated contextual
bandits implemented as an array of incremental learning models.
They have been implemented and extensively evaluated using
the EdgeCloudSim simulation tool. Their performance has been
assessed based on task failure rate, service time and Quality of
Experience (QoE) and compared to that of recently reported
algorithms. Simulation results demonstrate that the proposed
contextual bandit-based algorithm outperforms its counterparts
in terms of failure rate and QoE while having comparable service
time values. It has achieved up to 73.4% and 21.7% average
improvements in failure rate and QoE, respectively, among all
application types. In addition, it efficiently utilizes the available
contextual information to make appropriate offloading decisions
for tasks originating from different application types achiev-
ing more balanced utilization of the available VEC resources.
Ultimately, employing incremental learning to implement the
proposed contextual bandit algorithm has shown a profound
potential to cope with dynamic changes of the simulated VEC
systems.

Keywords—Vehicular edge computing; task offloading; multi-
armed bandits; contextual bandits

I. INTRODUCTION

Recently, the emergence of smart and connected vehicles
has excelled the development of various types of vehicular
applications such as infotainment and autonomous driving ser-
vices [1], [2]. These applications are usually supported by the
on-board computing and storage hardware resources. However,
the ever-increasing spectrum of compute-intensive vehicular

applications and services has rendered the on-board computa-
tional resources inadequate. Hence, Vehicular Edge Computing
(VEC) systems have emerged as a baseline for providing high-
performance and reliable computing services for in-vehicle
applications [3]. In these systems, vehicles, edge servers -
instantiated at the road side units (RSUs) and cloud servers
can contribute their resources to process computational tasks
generated from on-board mobile devices or vehicular driving
systems [4]. Hence, computational tasks within VEC systems
can be offloaded to any of the available hardware resources to
ensure their correct and timely execution. While task offload-
ing can enhance task execution and improve user-perceived
Quality of Service (QoS), designing an efficient task offloading
scheme is not straightforward. First, the VEC environment
encompasses different application classes each with different
processing demands, network bandwidth requirements, timing
constraints and delay sensitivity. Such diversity in application
characteristics besides the unpredictable behavior of offload-
ing requests will cause the heterogeneous computational and
network resources contained in VEC infrastructure to ex-
hibit transient and dynamic operational characteristics. These
characteristics are mostly related to the utilization levels of
available computational servers and the availability of network
bandwidth. Second, VEC systems entail the collaboration of
various entities such as vehicles, local edge servers and global
cloud servers. While such a multi-component environment can
lead to more versatility in task offloading, it also increases
the state-space of task offloading complicating the decision
to select the most appropriate entity to handle an offloaded
task [5], [6]. As the dynamic changes to the VEC systems are
difficult to predict or model in advance, an efficient offloading
scheme should be able to learn while offloading; it should
utilize its historical offloading data to steer its future offloading
decisions considering both application-salient characteristics
and current status of the VEC system [7]. This work targets
task offloading in VEC systems with a predefined set of
applications with each application having different processing,
network bandwidth and timing requirements. The essence
of task offloading in such systems is to enable vehicles or
offloading decision makers to interact with potential offloading
destinations via task offloading, learn their suitability to handle
the offloaded tasks and utilize recent offloading history to guide
current offloading decisions. As the set of possible offloading
destinations in the considered VEC systems remain unchanged,
task offloading can be formulated as a multi-armed bandit
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(MAB) in which each possible offloading destination (i.e.,
computational server) is considered as an independent arm.
Hence, pulling an arm at each round is equivalent to selecting
a particular computational server to receive the offloaded
task. This requires maintaining a reasonable trade-off between
the exploitation (i.e., selecting the current best computational
server based on past offloading decisions) and exploration (
i.e., trying other servers to gain more useful and accurate
information). In this regard, classical MAB solutions such as
the Upper-Confidence Bound (UCB) and soft-max [8], [9],
[10] become ineffective from multiple facets. On the one
hand, offloading requests originate from different applications
with distinct timing requirements and delay sensitivity levels
hindering the process of reward formulation in the underlying
MAB problem. On the other hand, the candidate arms (i.e.,
computational servers) may encounter dynamic changes due
to their varying resource utilization levels and network con-
nections status. To address these issues, this paper presents
and evaluates three different approaches that leverage some
contextual information about different application types and
current status of computational servers to make offloading
decisions. First, as the considered applications have different
timing requirements and delay sensitivity levels, a MAB-
based approach with application-dependent reward assignment
is implemented and evaluated. Second, in order to ensure that
an offloading decision for a particular task type is influenced
only by the offloading history of similar tasks, another MAB
approach, in which a dedicated bandit learner is maintained
per each application type, is proposed and evaluated. Third, to
cope with the dynamic and continuous changes of the VEC en-
vironment, two variations of a contextual-bandit algorithm are
also proposed. This algorithm leverages incremental (online)
learning to continuously adjust offloading decisions based on
current environment changes. The rationale behind contextual
bandits is to compute expected rewards as function of some
contextual information. In order to capture variations between
different arms for the same application type or variations of the
same arm for different application types, this work implements
contextual-bandits as an array of incremental learners with
either one separate learner per arm (i.e., computational server)
or one dedicated learner per each combination of arm and
application type.

The rest of this paper is organized as follows. Section II
discusses related research efforts. Section III presents the pro-
posed algorithms. Section IV shows and discusses simulation
results and Section V summarizes and concludes this paper.

II. RELATED WORK

Task offloading in VEC environments has recently gained a
noticeable interest among researchers. Several research efforts
with different decision variables and optimization goals have
been proposed. In these efforts, vehicles are assumed to offload
some or all of their tasks using vehicles to everything (V2X)
communication technologies. Typically, V2X is a general term
that indicates different communication models used by the
vehicles to offload their tasks. In this context, Vehicle to
Vehicle (V2V), Vehicle to RSU (V2R), Vehicle to Pedestrian
(V2P) and Vehicle to Infrastructure (V2I) can be utilized [11].
Sun et. al. [12] have proposed an adaptive learning based task
offloading (ALTO) algorithm for the dynamic VEC systems.
They have proposed a MAB-based solution that works in a

distributed manner and targets minimizing the average delay
of task offloading. However, their proposed algorithm focused
on V2V task offloading. On the other hand, Zhang et. al. [7]
have formulated task offloading as a mortal MAB problem in
which tasks can be offloaded to neighboring edge nodes. While
contextual information obtained from various edge nodes were
considered when making an offloading decision, the presence
of different applications with distinct characteristics and timing
requirements was not considered. On the other hand, Xu et. al.
[13] have formulated task offloading in VEC environments as
a multi-objective optimization problem. They have solved the
optimization problem using genetic algorithm with the goal of
minimizing offloading latency and improving resource utiliza-
tion. In their proposed method, tasks can be offloaded either to
edge servers or other vehicles. However, since task offloading
is an online problem and its constituent task characteristics and
environment dynamics are not known in advance, finding an
offline task offloading solution may not be effective in real-life.

Dai et al. [14] have formulated offloading destination
selection and load balancing in VEC systems as a mixed-
integer nonlinear programming problem. They have proposed
an approximation heuristic algorithm to solve this problem.
Their proposed algorithm is assumed to run on the vehicles
in a distributed manner. In addition, they have assumed that
some parts of the tasks can be executed locally using in-vehicle
resources while the rest can be offloaded to the VEC server.
However, dividing task execution into several parts and then
combining the results is error-prone and may not be suitable
for delay-sensitive applications such as accident prevention
services.

Wang et al. [15] have employed a game theory-based
technique to find the offloading probability of each vehicle
in the VEC system. Their primary goal was to maximize the
utility of each vehicle. The vehicles adjust their offloading
probabilities by considering the offloading probability of other
vehicles in the previous stage. Based on the computed proba-
bilities, tasks can be executed locally, or offloaded to the edge
server. However, they did not consider task offloading to the
global cloud server neither did they consider the presence of
applications with different requirements.

Liu et al. [16] have utilized a matching-based approach for
minimizing the network delay associated with task offloading.
In their work, the VEC system is composed of three layers that
include the vehicles, RSUs and a macro base station (MBS).
The MBS is responsible for performing task offloading and
handover operations. Hence, all the vehicles and RSUs are
assumed to be connected to the MBS. The matching algorithm
operates iteratively based on matching requests sent from the
vehicles to the RSUs. However, their work was based on a
fixed-latency network model in which the latency of the wide-
area network (WAN) is assumed to be fixed. Hence, their work
did not consider the impact of network status on task offloading
especially that the matching requests will create extra load on
the available network bandwidth.

Feng et al. [17] have proposed a hybrid vehicular cloud
(HVC) framework to increase the computing capacity of vehi-
cles by utilizing computational resources of other neighboring
vehicles, RSUs and the cloud. The goal of their proposed
online algorithm is to increase the number of successfully
offloaded and executed tasks while minimizing cellular net-
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work usage. Their proposed algorithm seeks to first find the
idle slots on other neighboring vehicles and RSUs considering
both the estimated transmission and execution delays. If no
idle slots are found on the neighbouring vehicles or the
RSUs, the cellular network is used to access the cloud. All
devices in the VEC system are assumed to work collaboratively
by broadcasting a beacon message. Computational tasks are
scheduled consecutively based on their anticipated transmis-
sion and processing delays. However, incorrect or misleading
information provided by some malicious vehicles may cause
some tasks to fail. On the other hand, Jiang et. al. [18]
have introduced task replication technique to improve service
reliability in VEC systems. In their proposed approach, task
replicas can be simultaneously offloaded to multiple vehicles
to be processed. However, one drawback of their proposed
framework is that it needs frequent state information update
and can place significant overhead on the network bandwidth.

Sonmez et al. [6] have recently proposed a machine
learning-based task offloading scheme for VEC systems. They
have considered a multi-access, multi-tier VEC architecture
that consists of three main layers, namely, the vehicles, RSUs
and cloud servers. In addition, they have also assumed a multi-
access communication framework in which vehicular wireless
local area network (WLAN), wide-area network (WAN) and
cellular network can be used for V2I task offloading. Their task
offloading scheme is based on a two-stage process in which
dedicated regression and classification models are maintained
per each potential offloading destination. During the first
stage, the classification models are consulted to predict which
devices could successfully handle the offloaded task. In the
second stage, the regression models are employed to predict
the time required to execute the offloaded task (i.e., service
time) on each of the devices identified during the first stage.
Thereafter, the device with the lowest predicted service time
is chosen to receive the offloaded task. However, their work
is based on having a static dataset to train the regression
and classification models. However, such a static dataset may
not be available in real-life as the VEC environment from
which the data is collected changes continuously. In addition,
their used regression and classification models remain static
and do not acquire any new knowledge from the dynamic
changes of VEC environment. In other words, when the VEC
environment conditions to which the static models are exposed
differ from those used for model training, their proposed
offloading scheme may fall short and lead to poor performance.

In this work, three different online MAB-based task of-
floading schemes are implemented and evaluated based on the
VEC architecture presented in [6]. The common theme among
these schemes is to account for the presence of applications
with different requirements and dynamically adjust the offload-
ing decisions based on the dynamic conditions of the VEC
system.

III. ONLINE VEHICULAR TASK OFFLOADING

As task offloading requests are sequentially generated in a
dynamic manner, task offloading becomes an online sequential
decision making process that cannot be handled using tradi-
tional offline optimization tools. Instead, it can be formulated
and solved using MAB theory. Hence, this work implements
several MAB-based task offloading algorithms. In addition,

it evaluates their performance in terms of the percentage of
satisfied task offloading requests, task response time and QoE
- under dynamically changing server utilization levels and
network conditions.

A. VEC System Overview

A typical VEC system is composed of multiple edge
servers augmented by the global cloud resources. In ad-
dition, the underlying communication infrastructure encom-
passes multiple technologies such as WLAN, MAN and WAN
[19]. Such a heterogeneous architecture with time-varying
offloading patterns leads to a dynamic scene that requires
proper management of task execution. In this regard, the
task offloading engine tries to preserve an efficient operation
of the entire VEC system by selecting the best available
computational server to receive an offloaded task. The decision
on which server to choose is substantially demanding as it
should consider both task characteristics, computational server
utilization and network status. This work assumes a multi-
tier and multi-access VEC system’s architecture in which
both local edge servers and global cloud servers can receive
offloaded tasks [6]. In this architecture, vehicles can offload
their computational tasks to the edge servers (i.e., V2R) or
to the cloud servers (i.e., V2I). On the one hand, tasks can
be offloaded to the edge servers using a short-range WLAN
communication protocol such as the IEEE 802.11 used in [20],
[21]. On the other hand, vehicles can offload their tasks to
the cloud servers using the Internet connection (WAN), which
provides a more flexible and high-bandwidth network interface.
Similar to the model proposed in [6], vehicular tasks can be
offloaded to the cloud either through the serving RSUs, which
are assumed to use fiber connection to the cloud, or using
the cellular network’s broadband connection. Furthermore, the
RSUs in the considered VEC architecture are also connected
through a Metropolitan Area Network (MAN). This allows
RSUs to form a shared resource pool in which task migration
can be performed to handle the handover problem as proposed
in [16]. In the assumed handover scheme, when a vehicle
leaves the range of its current serving RSU before the results
of the offloaded task are received, those results are transmitted
to that vehicle in a multi-hop manner via the other RSUs
in the VEC system. The handover process only fails if the
offloading vehicle leaves the range of its current serving RSU
while uploading a task or downloading a result.

Therefore, the considered VEC system allows vehicles to
offload their tasks either to the edge sever, cloud server through
RSU or cloud server through cellular network.

B. Task Offloading Algorithms

In this work, the considered algorithms are based on
the MAB theory which is a Reinforcement Learning (RL)
approach to maximize the total cumulative reward through
sequential decision making. As shown in Fig. 1, a typical
RL problem is modelled as an environment whose state is
continuously observed by an agent. As shown, the agent
observes the environment state (S1) and takes an action (A).
Consequently, the environment responds by transitioning to
state (S2) and sending a reward (R) to the agent. The reward
may be positive or negative. Over a series of such trials and

www.ijacsa.thesai.org 306 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 4, 2021

errors, the agent learns an optimal policy (i.e., a mapping from
states to actions) to maximize the long-term reward.

Agent Environment

S1 S2

Action (A)

Reward (R)

State

Fig. 1. Reinforcement Learning Flow.

In reality, the RL problem can be simply abstracted as a
MAB problem. As shown in Fig. 2. MAB problems do not
account for the environments and their state changes. In other
words, an agent observes only the actions it takes and the
associated rewards it receives and tries to compose the optimal
strategy accordingly. The rationale behind solving MAB prob-
lems is to try and explore the actions involved in the action
space and realize the unknown distributions of the rewards.
Therefore, in MAB problems, the agents will ultimately try
different actions and maintain a trade-off between exploration
and exploitation to devise the optimal policy.

Agent Environment

?

Action (A)

Reward (R)

Fig. 2. Multi-armed Bandit Problem Flow.

Evidently, the main drawback of MABs is that the agents
totally ignore the environment state when making an action.
The environment state can provide significantly useful insights
that can help the agent in devising an efficient policy much
faster. Utilizing some useful elements of the environment state
has introduced a new class of algorithms know as contextual
or context-aware bandits [22], [23], [24], illustrated in Fig. 3.
Here, instead of managing the trade-off between exploration
and exploitation randomly, the agent obtains some context (i.e.,
contextual information) about the environment and utilizes
that information to properly manage the actions. The notion
of context is different from that of the state used in the
RL problem formulation. A context is simply some useful
knowledge about the environment that helps the agent take a
proper action. For example, in the case of task offloading, the
context may provide some information about the application
type to which an offloaded task belongs.

Agent Environment

Action (A)

Reward (R)

C

Context

Fig. 3. Context-aware Multi-armed Bandit Problem Flow.

In the task offloading problem - formulated as a MAB or
contextual MAB problem, the task offloading engine is the
agent, the environment represents the VEC system while the
reward is a numeric representation of user’s perception of the
quality of the offloading service. On the other hand, the action
space consists of all offloading options i.e., offloading to the
edge servers, offloading to the cloud severs via the RSU or
offloading to the cloud via the cellular network. The following
sections (i.e., III-B1, III-B2 and III-B3) describe each of the
implemented context-aware task offloading algorithms.

1) Task offloading with application-dependent rewards:
This section explains the implemented MAB-based task of-
floading algorithms in which the reward assigned to the agent
is application-dependent. The reward assigned after receiving
the results of an offloaded task is computed based on the
observed task’s response time, maximum tolerable delay of the
application to which the offloaded task belongs and that ap-
plication’s delay sensitivity. The response time of an offloaded
task can be computed as shown in equation 1.

TR = tu + tp + td

tu =
Ts + TIN
Networkub

tp =
TIC

ServerMIPS

td =
TOUT

Networkdb

(1)

Where TR is the total response time of the offloaded task
in seconds, tu is the time required to upload the task and its
input file to the selected server, tp is the execution time of the
offloaded task, td is the time required to download the results
to the offloading vehicle, Ts is the size of the offloaded task’s
binary in Megabyte (MB), TIN is the task’s input file size in
MB, Networkub the uplink bandwidth of the network con-
nection associated with the selected arm (i.e., computational
server) in MB/s, TIC represents the instruction count of the
offloaded task, ServerMIPS is the processing capacity of the
associated server in million instructions per second (MIPS),
TOUT is the task’s output file size and Networkdb is the
downlink bandwidth of the used network connection.

Assuming that the response time observed after the agent
has offloaded a task (i), generated from an application (A)
whose maximum delay requirement is Tmax and delay sensi-
tivity is αA, is Ti. Then, the reward assigned to the agent (Ri)
is computed as shown in equation 2. This formulation is based
on the notion of Quality of Experience (QoE) proposed in [6].
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Ri =


0, if i has failed
0, if Ti ≥ 2Tmax
(1− Ti−Tmax

Tmax
).(1− αA), if Tmax ≤ Ti < 2Tmax

αA.Rmax, if Ti ≤ Tmax
(2)

Where Rmax is the maximum possible reward, αA ∈ [0, 1]
and 1 − αA refers to the delay tolerance of the associated
application. In other words, a high value of αA indicates
that the associated application is a delay-sensitive applica-
tion while a low value of αA represents a delay-tolerable
application. Apparently, the value of the reward is directly
linked to application characteristics (i.e., the maximum delay
requirement and delay sensitivity). Hence, two similar response
time values obtained for two different applications - with
distinct requirements will be viewed differently by the agent.
Consequently, the agent will reasonably scale the cumulative
reward associated with a particular arm in proportion to appli-
cation characteristics; while a selected arm (i.e., computational
server) might be suitable for a particular application type, it
may not satisfy the requirements of other application types.

In a MAB problem with k possible arms, there are k
possible actions i.e., arm selection choices. Each action has
an expected reward provided that the action is selected. This
expected reward is known as the value of that action and
denoted as q∗(a). The action selected at time instant t is
denoted as At. Hence, the value of an arbitrary action a, is
the expected reward given that a is selected by the agent, as
shown in equation 3 [25].

q∗(a)=̇E[Rt|At = a] (3)

If the agent knew the value associated with each action,
then it would be trivial to solve the MAB problem: the agent
would always select the action with highest value. However,
the agent does not know the action values with certainty,
although it may have estimates. The estimated value of action
a at time instance t is denoted as Qt(a). If the agent maintains
estimates of the values of different actions, then at any time
instant there exist at least one action whose estimated value is
the highest. This action - with the highest estimated value is
known as the greedy action. Hence, a simple action selection
policy is to always pick the greedy action, as given in equation
4 [25].

At=̇ argmax
a

Qt(a) (4)

Where the argmax operator returns the action that max-
imizes the enclosed expression. If the agent selects a greedy
action, the agent is said to be exploiting its current knowledge
of the values of the actions. If instead the agent picks one of
the non-greedy actions, then the agent is said to be exploring,
because this enables the agent improve its estimates of the
values of the non-greedy actions. While exploitation is the right
thing that the agent can do to maximize the expected reward
on the one step, exploration may yield greater total reward in
the long run. For example, suppose the value of the greedy
action is known with certainty, while some other actions are

anticipated to be nearly as good but with some high degree
of uncertainty. The uncertainty is such that at least one of the
other actions is probably better than the greedy action, but the
agent does not know which one. If the agent has many time
steps ahead on which to choose among actions, then it may be
better to explore the non-greedy actions and identify which of
them are better than the greedy action. Because the agent is
not able to both explore and exploit with any single action
selection, the conflict or trade-off between exploration and
exploitation should be properly addressed. This work considers
two possible MAB algorithms that handle the exploitation-
exploration dilemma taking into account the uncertainty in the
estimates of action values. These algorithms are the Upper-
Confidence Bound (UCB) and the soft-max bandit algorithms
[8], [9], [10]. The UCB action selection policy works based
on the premise that it would be better to choose from the non-
greedy actions in accordance with their potential for actually
being optimal, considering both how close their estimates are
to being maximal besides the uncertainties in those estimates.
This action selection policy is given in equation 5 [8], [26].

At=̇ argmax
a

[
Qt(a) + c

√
ln(N)

Nt(a)

]
(5)

Where N is the number of action selections performed by
the agent, Nt(a) is the number of times action a has been
selected so far and c > 0 is the exploration control parameter.
The rationale behind the UCB action selection is that the
square root term is a measure of the uncertainty in the estimate
of the value of action a. Hence, the quantity being max’ed over
is therefore a kind of upper bound on the potential true value
of action a, with parameter c determining the confidence level.
When action a is selected by the agent, Nt(a) increases and
its associated uncertainty is reduced, and, since Nt(a) appears
in the denominator, the uncertainty term decreases as well. On
the other hand, every time an action other than a is selected by
the agent, the value of t increases but Nt(a) does not. Hence,
as t appears in the numerator, the estimate of uncertainty -
associated with a increases. In addition, the use of the natural
logarithm indicates that the increases in uncertainty get smaller
over time, but are unbounded; all actions will ultimately be
selected. However, actions with lower value estimates, or that
have already been selected more often, will be selected by the
agent with decreasing frequency over time.

On the other hand, the soft-max algorithm picks each action
with a probability that is proportional to its current estimated
value Qt(a) as shown in equation 6 [25], [26].

Pr{At = a}=̇ eQt(a)/τ∑k
j=1 e

Qt(j)/τ
(6)

Where τ is a temperature parameter used to control the
randomness of action selection. When τ = 0, the algorithm
acts greedily. When τ increases to infinity, the algorithm will
select actions uniformly at random. In other words, the soft-
max algorithm learns a numerical preference for each action
a, which is proportional to the action value (i.e., Qt(a)).
The larger the preference, the more frequently that action is
selected.
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In the two algorithms, after an action a is selected and
a reward is received, the estimated value of that action is
incrementally updated as shown in equation 7 [25].

Qt+1(a)=̇Qt(a) +
1

Na(t)
[Rt −Qt(a)] (7)

Where Qt+1(a) is the new estimate of the action value,
Qt(a) is the old estimate of that action’s value, Rt (equation
2) is the recently received reward.

Algorithms 1 and 2 show high-level pseudo-codes of the
UCB and soft-max algorithms, respectively. As shown, the
two algorithms keep track of dynamically changing variables
such as the number of times each arm/action has been se-
lected (i.e., the Na array) and the action value estimates
(i.e., the Q array). On the other hand, each algorithm imple-
ments three basic functions, namely, initialize, chooseArm
and updateArmV alue. The initialize procedure is used
to initialize algorithm’s variables and data structures. The
chooseArm procedure is responsible for arm selection while
the updateArmV alue is used to update the selected action’s
value after receiving the reward from the environment. While
the initialize and chooseArm functions are similar in the
two algorithms, the chooseArm procedures are different. In
the UCB algorithm, the chooseARM procedure computes
the UCB values of different actions based on their current
value estimates and their uncertainty measures. Thereafter,
it acts greedily on the computed UCB values. On the other
hand, the chooseArm procedure in the soft-max algorithm
computes action probabilities - in proportion to their current
value estimates and performs categorical draw to select actions
based on their computed probabilities. Algorithm 3 shows a
high-level abstraction of the main functions involved in the
proposed MAB-based task offloading algorithm with applica-
tion dependent reward assignment. First, the task offloading
agent is initialized as either a UCB or soft-max algorithm
(line 1). The utilized MAB algorithm is configured to have
three possible actions , namely, offloading to the edge server
(Edge), offloading to the cloud server via the RSU (cloudRSU)
and offloading to the cloud server via the cellular network
(cloudCN), as shown in lines 2 and 3 of algorithm 3. Ev-
ery time an offloading request is received by the offloading
agent, the selectOffloadingDestination procedure (lines 4-
9) is invoked. This procedure will call the associated MAB
algorithm to select a particular server to handle the offloaded
task (lines 5-6), update the task’s meta-data to maintain an
association between the task and the selected server (line 7)
and then offload the task to the selected server (line 8). When
the results of the offloaded task are returned from selected
server, the taskCompleted procedure (lines 10-22) will be
called. This procedure will first check the completed task’s
meta-data to determine the server that has handled the task
(lines 11-20) and then ask the MAB learner (i.e., algorithm) to
update the value of that server based on the obtained reward
(line 21). On the other hand, if the offloaded task fails, the
taskFailed procedure (lines 23-35) can be called to update
the value of the associated server accordingly. As shown, the
taskCompleted and taskFailed procedures will eventually
call the updateArmV alue procedure defined in algorithms 1
and 2.

Algorithm 1 UCB Algorithm

Input: Task
Output: selectedArm

1: numArms ← number of arms
2: Na[numArms] ← array of individual arm pulls
3: Q[numArms] ← array of action/arm values
4: procedure INITIALIZE(n)
5: numArms← n
6: N ← 0
7: for i← 1 to numArms− 1 do
8: Na[i]← 0
9: Q[i]← 0

10: end for
11: end procedure
12: procedure CHOOSEARM()
13: N ← 0
14: for i← 0 to numArms− 1 do
15: count← Na[i]
16: if count = 0 then
17: Na[i]← 1
18: return i
19: end if
20: N ← N +Na[i]
21: end for
22: ucbQ[numArms] ← temporary array of UCB values
23: for i← 0 to numArms− 1 do
24: ucbQ[i]← Q[i] +

√
2∗ln(N)
Na[i]

25: end for
26: selectedArm← 0
27: for i← 1 to numArms− 1 do
28: newV alue← ucbQ[i]
29: if newV alue > ucbQ[selectedArm] then
30: selectedArm← i
31: end if
32: end for
33: Na[selectedArm]← Na[selectedArm] + 1
34: return SelectedArm
35: end procedure
36: procedure UPDATEARMVALUE(arm, task, success)
37: if success = False then
38: reward← 0
39: else
40: αA ← task.delaySensitivity
41: Ti ← task.responseT ime
42: Tmax ← task.maxDelayRequirement
43: Rmax ← 1
44: reward← result of equation 2
45: end if
46: Q[arm] = Q(arm) + 1

Na(arm) [reward−Q(arm)]
47: end procedure

2) Task offloading with application-dependent bandits:
This section presents the application-dependent MAB-based
task offloading algorithm. The basic idea behind this algorithm
is to ensure that the offloading decision for a particular task is
influenced by the offloading history of similar tasks i.e., tasks
originating from similar application type. Algorithm 4 gives
a pseudo-code of the application-dependent task offloading
algorithm. As shown, the algorithm proceeds (lines 3-6) by
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Algorithm 2 Soft-max Algorithm

Input: task
Output: selectedArm

1: numArms ← number of arms
2: Na[numArms] ← array of individual arm pulls
3: Q[numArms] ← array of action/arm values
4: τ ← temperature value
5: procedure INITIALIZE(n)
6: numArms← n
7: N ← 0
8: for i← 1 to numArms− 1 do
9: Na[i]← 0

10: Q[i]← 0
11: end for
12: end procedure
13: procedure CHOOSEARM()
14: sumQ ← 0
15: for i← 0 to numArms− 1 do
16: sumQ← sumQ+ eQ(i)/τ

17: end for
18: probabilities[numArms] ← temporary array of soft-

max probabilities
19: for i← 0 to numArms− 1 do
20: probabilities[i]← eQ(i)/τ

sumQ
21: end for
22: return categoricalDraw(probabilities)
23: end procedure
24: procedure CATEGORICALDRAW(probabilities)
25: rand← random double ∈ [0, 1]
26: cumulativeP ← 0. . cumulative probability
27: for i← 0 to numArms− 1 do
28: cumulativeP ← cumulativeP + probabilities[i]
29: if cumulativeP > rand then
30: return i
31: end if
32: end for
33: return numArms− 1
34: end procedure
35: procedure UPDATEARMVALUE(arm, task, success)
36: if success = False then
37: reward← 0
38: else
39: αA ← task.delaySensitivity
40: Ti ← task.responseT ime
41: Tmax ← task.maxDelayRequirement
42: Rmax ← 1
43: reward← result of equation 2
44: end if
45: Q[arm] = Q(arm) + 1

Na(arm) [reward−Q(arm)]
46: end procedure

initializing each offloading engine, associated with each appli-
cation type, as a 3-arm MAB. This MAB can be either a UCB
or a soft-max algorithm. In other words, the offloading agent
maintains a separate offloading engine for each application
type.

As shown, algorithm 4 implements three main procedures.
The selectOffloadingDestination procedure (lines 7-13) -
used for server selection will first identify the application type

Algorithm 3 Task Offloading Algorithm with Application-
dependent Rewards

Input: task
Output: Selected Offloading Destination

1: taskOffloder ←MAB
2: servers []={Edge,cloudRSU,cloudCN}
3: taskOffloder.Initialize(n = 3)
4: procedure SELECTOFFLOADINGDESTINATION(task)
5: arm← taskOffloder.chooseARM()
6: server ← servers[arm]
7: task.setAssociatedServer(server)
8: offload task to server
9: end procedure

10: procedure TASKCOMPLETED(task)
11: server ← task.getAssociatedServer()
12: if server = Edge then
13: arm = 0
14: end if
15: if server = cloudRSU then
16: arm = 1
17: end if
18: if server = cloudCN then
19: arm = 2
20: end if
21: taskOffloder.updateArmV alue(arm, task, True)
22: end procedure
23: procedure TASKFAILED(task)
24: server ← task.getAssociatedServer()
25: if server = Edge then
26: arm = 0
27: end if
28: if server = cloudRSU then
29: arm = 1
30: end if
31: if server = cloudCN then
32: arm = 2
33: end if
34: taskOffloder.updateArmV alue(arm, task, False)
35: end procedure

(line 8), utilize the associated MAB learner to select a partic-
ular server (lines 9-10), record the task-to-server association
(line 11) and then offload the task to the selected server (line
12). On the other hand, the taskCompleted procedure (lines
14-27) - invoked upon the receipt of the offloaded task’s results
will use that task’s type (line 15) and other meta-data (lines 16-
25 ) to ask the related MAB learner to update the value of the
server to which the task was offloaded (line 26). In addition,
the taskFailed procedure (lines 28-41) is responsible for
handling task failure; it identifies the task type and that task’s
associated server (lines 29-39) and updates the server value
accordingly (line 40). As algorithm 4 defines a dedicated
MAB learner for each application type, the updateArmV alue
procedure called in lines 26 and 40 is redefined to compute the
value of the reward as shown in equation 8 instead of equation
2; tasks with the same application type are assumed to have
the same value of delay sensitivity (αA).
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Algorithm 4 Task Offloading Algorithm with Application-
dependent MAB Learners

Input: task
Output: Selected Offloading Destination

1: numApps← Number of application types
2: servers []={Edge,cloudRSU,cloudCN}
3: for i← 0 to numApps− 1 do
4: taskOffloder[i]←MAB
5: taskOffloder[i].Initialize(n = 3)
6: end for
7: procedure SELECTOFFLOADINGDESTINATION(task)
8: type← task.getApplicationType()
9: arm← taskOffloder[type].chooseARM()

10: server ← servers[arm]
11: task.setAssociatedServer(server)
12: offload task to server
13: end procedure
14: procedure TASKCOMPLETED(task)
15: t← task.getApplicationType()
16: server ← task.getAssociatedServer()
17: if server = Edge then
18: arm = 0
19: end if
20: if server = cloudRSU then
21: arm = 1
22: end if
23: if server = cloudCN then
24: arm = 2
25: end if
26: taskOffloader[t].updateArmV alue(arm, task, True)
27: end procedure
28: procedure TASKFAILED(task)
29: t← task.getApplicationType()
30: server ← task.getAssociatedServer()
31: if server = Edge then
32: arm = 0
33: end if
34: if server = cloudRSU then
35: arm = 1
36: end if
37: if server = cloudCN then
38: arm = 2
39: end if
40: taskOffloader[t].updateArmV alue(arm, task, False)
41: end procedure

Ri =


0, if i has failed
0, if Ti ≥ 2Tmax
(1− Ti−Tmax

Tmax
), if Tmax ≤ Ti < 2Tmax

1, if Ti ≤ Tmax

(8)

3) Task offloading with incremental learning: This section
presents two variations of an algorithm in which incremental
(i.e., online) learning is used to guide task offloading agents.
The presented algorithm is inspired by the idea of contex-
tual bandits used in some domains such as recommendation
systems [27], [28]. As shown in [22], the main principle
in contextual bandits in to construct a linear model that

can be used to predict the expected reward of choosing a
particular action considering some contextual information. The
parameters of this model are continuously updated based on
the true observed reward. Hence, this work presents a new
algorithm that employs the idea of contextual bandits for task
offloading. The rationale behind this algorithm is to develop
and maintain an online model that predicts a task response
time based on contextual information such as task processing
requirements, server utilization and network latency, as shown
in equation 9 [22].

E[Tt|xt] = fθ(xt) = xtTθ =

n∑
j=0

θjxtj (9)

Where Tt is predicted response time, xt is the context
vector at time t and θ is the model coefficients vector and
n is the number of parameters in the context vector. The
vector xt contains contextual information related to application
characterises and the VEC environment status. Hence, the goal
of online learning process is to find the coefficients vector θ
that would minimize the error between the predicted response
time (i.e, Tt) - computed before task offloading and the actual
response time (Tat ) observed after offloading. In other words,
the learning process seeks to find the values of θ that would
minimize a particular cost function Cθ. As the model given in
equation 9 represents a liner regression model, the squared
loss function given in equation 10 is a suitable choice for
the cost function [29]. Evidently, this function computes the
squared error or difference between the predicted and observed
response times. The average cost per training instance can be
computed as given in equation 11, which computes the mean
squared error (MSE) [29].

Cθ =
1

2
(fθ(xt(i))− Tat

(i))
2

(10)

MSEθ =
1

m

m∑
i=1

1

2
(fθ(xt(i))− Tat

(i))
2

(11)

Where m is the number of training instances. Hence, the
goal of model training is to find the values of θ that would
minimize the MSE over the whole training set. In traditional
machine learning settings, the values of θ are usually com-
puted offline using some optimization techniques such the
gradient decent - assuming the presence of a static training
dataset. However, in the task offloading problem, a static
training dataset of offloading requests does not usually exist;
offloading requests appear as a dynamic stream of instances.
Hence, the model parameters (i.e., values of θ) should be
incrementally learned and adjusted based on the incoming
offloading requests. In this regard, stochastic gradient decent
(SGD) provides a viable tool to incrementally adjust the values
of θ based on individual training instances [30]. It can perform
a parameter update for each training instance (xt(i), Tat

(i)).
After each training instance, the values of θ will be updated
as shown in equation 12.

θj = θj − η∇θjCθ(xt(i), Tat
(i)) (12)
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Where η is the learning rate and ∇θj is the gradient
of the cost function with respect to θj . Hence, this work
employs SGD to dynamically fit and adjust linear models for
response time prediction. Apparently, as the VEC environment
contains different offloading options i.e., servers, a single linear
model would not suffice for all possible servers. Hence, the
first variant of the SGD-based offloading algorithm maintains
three separate linear models for response time predictions; a
model for edge server (SGDedge) and two other models for
cloud via RSU (SGDcRSU ) and cloud via CN (SGDcCN ),
respectively. Table I summarizes the contextual features used
by each model. Each model uses its own context vector
to make response time predictions. While different context
vectors contain some similar application characteristics such
as the task’s instruction count, each vector contains server-
specific features such as that server’s utilization level and
the upload and download latencies of the associated network
connection. It is worth noting that the SGDedge, unlike cloud-
related models, uses the current utilization of the edge server
to predict response time. In general, edge servers are not as
resource-enriched as cloud servers and their utilization levels
could have a significant impact on the response time.

TABLE I. CONTEXTUAL FEATURES OF SGD-BASED MODELS

Model Contextual features

SGDedge
Task instruction count (TIC ), edge server utilization (Ue),

WLAN upload latency (WLANu), WLAN download latency (WLANd)

SGDcRSU
Task instruction count (TIC ), WAN upload latency (WANu),

WAN download latency (WANd)

SGDcCN
Task instruction count (TIC ), CN upload latency (CNu),

CN download latency (CNd)

Algorithms 5 and 6 show pseudo-codes of the main parts
of the incremental learning-based task offloading algorithm.
These algorithms follow the notation of the WEKA API used
for implementing the algorithm in the used simulation tool
[31]. As show in algorithm 5, the algorithm initializes all
models as an SGD-based linear models (lines 1-3). These
models are initialized with arbitrary values of the model
coefficients θ.

In order to allow the constructed models to make educated
predictions of response time, the algorithm will first utilize
a round-robin-based offloading until a batch of instances, for
each server, with a predefined size is obtained. Each instance
of the batch records the server’s contextual features (Table I)
- at the time of offloading besides the observed response time
value under that context. Thereafter, a model, for each server, is
trained on the associated batch (lines 4-6). When an offload-
ing request is received, the selectOffloadingDestination
procedure (lines 7-15) is invoked. This procedure will first
observe the context associated with each possible offloading
option and call the constructed models to make response time
predictions, with a prediction per each offloading option (lines
8-10). Then, the offloading option with the least predicted
response time is chosen for task offloading. In addition, the
incremental learning-based algorithm maintains a dictionary
to keep track of the selected server’s context at the time of
offloading (lines 12-13). This dictionary will later be used for
updating the respective model parameters when the result of
offloading is disclosed.

On the other hand, when the results of offloading are suc-

Algorithm 5 Task Offloading Algorithm with Incremental
Learning - 1

Input: task
Output: Selected Offloading Destination

1: SGDedge ← new SGD()
2: SGDcRSU ← new SGD()
3: SGDcCN ← new SGD()
4: SGDedge.buildModel(Batchedge)
5: SGDcRSU .buildModel(BatchcRSU )
6: SGDcCN .buildModel(BatchcCN )
7: procedure SELECTOFFLOADINGDESTINATION(task)
8: tedge ← SGDedge.predict(Contextedge)
9: tcRSU ← SGDcRSU .predict(ContextcRSU )

10: tcCN ← SGDcCN .predict(ContextcCN )
11: server ← server with minimum predicted tserver
12: task.setAssociatedServer(server)
13: taskDictionary.put(task.id, Contextserver)
14: offload task to server
15: end procedure
16: procedure TASKCOMPLETED(task)
17: server ← task.getAssociatedServer()
18: id← task.getID()
19: to ← observed response time
20: if server = Edge then
21: Contextedge = taskDictionary.remove(id)
22: SGDedge.update(Contextedge, to)
23: end if
24: if server = cloudRSU then
25: ContextcRSU = taskDictionary.remove(id)
26: SGDcRSU .update(ContextcRSU , to)
27: end if
28: if server = cloudCN then
29: ContextcCN = taskDictionary.remove(id)
30: SGDcCN .update(ContextcCN , to)
31: end if
32: end procedure
33: procedure TASKFAILED(task)
34: server ← task.getAssociatedServer()
35: id← task.getID()
36: to ← observed response time
37: if server = Edge then
38: Contextedge = taskDictionary.remove(id)
39: SGDedge.update(Contextedge, tp)
40: end if
41: if server = cloudRSU then
42: ContextcRSU = taskDictionary.remove(id)
43: SGDcRSU .update(ContextcRSU , tp)
44: end if
45: if server = cloudCN then
46: ContextcCN = taskDictionary.remove(id)
47: SGDcCN .update(ContextcCN , tp)
48: end if
49: end procedure

cessfuly returned from the selected server, the taskCompleted
procedure (lines 16-32) will be called. This procedure will
first retrieve the associated task’s meta-data (i.e., the server
chosen for offloading and taskID) (lines 17-18). It also makes
use of the true observed response time (to) (line 19). Once
the associated server is identified, the task dictionary will be
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Algorithm 6 Task Offloading Algorithm with Incremental
Learning - 2

Input: task
Output: Selected Offloading Destination

1: numApps← Number of application types
2: for i← 0 to numApps− 1 do
3: SGDedge[i]← new SGD()
4: SGDcRSU [i]← new SGD()
5: SGDcCN [i]← new SGD()
6: SGDedge[i].buildModel(Batchedge[i])
7: SGDcRSU [i].buildModel(BatchcRSU [i])
8: SGDcCN [i].buildModel(BatchcCN [i])
9: end for

10: procedure SELECTOFFLOADINGDESTINATION(task)
11: type← task.getApplicationType()
12: tedge ← SGDedge[type].predict(Contextedge)
13: tcRSU ← SGDcRSU [type].predict(ContextcRSU )
14: tcCN ← SGDcCN [type].predict(ContextcCN )
15: server ← server with minimum predicted tserver
16: task.setAssociatedServer(server)
17: taskDictionary.put(task.id, Contextserver)
18: offload task to server
19: end procedure
20: procedure TASKCOMPLETED(task)
21: server ← task.getAssociatedServer()
22: id← task.getID()
23: to ← observed response time
24: type← task.getApplicationType()
25: if server = Edge then
26: Contextedge = taskDictionary.remove(id)
27: SGDedge[type].update(Contextedge, to)
28: end if
29: if server = cloudRSU then
30: ContextcRSU = taskDictionary.remove(id)
31: SGDcRSU [type].update(ContextcRSU , to)
32: end if
33: if server = cloudCN then
34: ContextcCN = taskDictionary.remove(id)
35: SGDcCN [type].update(ContextcCN , to)
36: end if
37: end procedure
38: procedure TASKFAILED(task)
39: server ← task.getAssociatedServer()
40: id← task.getID()
41: to ← observed response time
42: type← task.getApplicationType()
43: if server = Edge then
44: Contextedge = taskDictionary.remove(id)
45: SGDedge[type].update(Contextedge, tp)
46: end if
47: if server = cloudRSU then
48: ContextcRSU = taskDictionary.remove(id)
49: SGDcRSU [type].update(ContextcRSU , tp)
50: end if
51: if server = cloudCN then
52: ContextcCN = taskDictionary.remove(id)
53: SGDcCN [type].update(ContextcCN , tp)
54: end if
55: end procedure

accessed to obtain the context associated with the received
task. Then, the associated model will be updated using SGD-
based parameter update (equation 12) (lines 20-31). In order
to maintain a relatively small size of the task dictionary, the
entry associated with the returned task will be deleted from
dictionary upon the receipt of that task’s results. When the
offloaded task fails, the taskFailed procedure (lines 33-49)
is called. This procedure operates in a manner that resembles
that of the taskCompleted procedure. However, the associated
model is updated with a penalty value (tp). This value is
set such that the associated model is updated in a way
that forces it to predict a high value of response time for
upcoming offloading requests. Such a high predicted value
would potentially prevent the offloading engine from choosing
the respective server for subsequent tasks.

The other variant of the incremental learning-based algo-
rithm (algorithm 6) maintains, for each server, an array of
SGD-based models. Each model in the array can be used to
make response time predictions for a particular application
type. As shown, this algorithm initializes and fits preliminary
models for different application types (lines 2-9). On the
other hand, the three essential procedures in this algorithm are
similar to those of algorithm 5; the only distinction is that these
procedures will first identify the application type to which the
task belongs and then use the associated model accordingly.

IV. RESULTS AND ANALYSIS

In order to assess the performance of the proposed algo-
rithms, they have been implemented and evaluated using the
EdgeCloudSim simulation tool [32]. EdgeCloudSim provides
a simulation environment for Mobile Edge computing (MEC)
and VEC systems [33], [6]. It allows modeling of computa-
tional servers, network infrastructure and mobile vehicles. It
also allows users to defined different application types with
varying characteristics. The vehicular mobility model assumed
in this work is similar to that of [6]. In this model, its is
assumed that a 16 km road is divided into 40 400-meter
segments with each segment having a dynamic velocity value
and covered by a single RSU. Hence, the speed of a vehicle
dynamically varies based on the type of segment it moves
on. This allows to differentiate the traffic density on each
segment of the road and, consequently, the demand placed on
the associated vehicular resources especially the edge servers
(i.e., RSUs) covering different road segments and their asso-
ciated network connection’s bandwidth. When the simulation
is started, vehicles are assigned random locations on the road
and move in a single direction with a predefined segment-
dependent speed. In addition, the road is defined as a circular
route keeping the number of vehicles the same for the entire
simulation time. This work assumes a VEC system with three
representative application types, namely, traffic management,
danger assessment and infotainment applications. Application
characteristics are shown in Table II. Configuration parameters
of the computational servers and network resources are shown
in Table III.

The presented algorithms are compared to other existing
algorithms that include the MAB-based algorithm (MAB) [12],
game theory-based (Game-Theory) [15], machine learning-
based (ML based) besides the time series forecasting-based
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TABLE II. VEHICULAR APPLICATION CHARACTERISTICS

Traffic Danger Infotainment
Management Assessment Application

Vehicles percentage 30% 35% 35%
Input file size (KB) 20 40 20

Output file size (KB) 20 20 80
Inter-arrival time (second) 3 5 15
Instruction count (×109) 3 10 20

Utilization on Edge VM (%) 6 20 40
Utilization on Cloud VM (%) 1.6 4 8

Delay sensitivity (α) 0.6 0.90 0.35
Maximum delay 0.50 1.25 1.75requirement (second)

Penalty value (tp) 1.25 2.25 2.5

TABLE III. SIMULATION PARAMETERS

Parameter Value
Simulation time (minutes) 60

Number of vehicles 100 - 1700
Vehicles counter size 200

No. of virtual Machines(VMs) on cloud server 20
No. of VMs on edge server 2

Processing capacity of cloud VM (MIPS) 75000
Processing capacity of edge VM (MIPS) 20000

WLAN range (meter) 200
WLAN bandwidth (Mbps) 100
MAN bandiwdth (Mbps) 1000
WAN bandwidth (Mbps) 50

WAN propagation delay (second) 0.15
CN bandwidth (Mbps) 20

CN propagation delay (second) 0.16
Maximum reward (Rmax) 1

Pre-training batch size (instances) 100

(Predictive) algorithms [6]. Comparison results cover all pos-
sible implementations of algorithms 3 and 4. On the one hand,
there are two possible implementations of algorithm 3; using
either UCB or soft-max algorithms, denoted as ucbMAB
and smaxMAB, respectively. On the other hand, algorithm
4 can also be implemented using either UCB (denoted as
ucbMABApp) or soft-max (denoted as smaxMABApp). In
addition, algorithm 5 is denoted as SGDArm while algorithm
6 is denoted as SGDApp. In VEC systems, failure rate is an
important factor in assessing the performance of different task
offloading schemes. Typically, an offloaded task would fail if
a virtual machine (VM), on the selected server, has very high
utilization that prevents it from executing the offloaded task,
or if the available network bandwidth of the selected server
is not sufficient to upload/download the input/output of the
offloaded task. In other words, an offloaded task can fail due to
unavailability of computational or networking resources. Fig.
4 shows and compares the average task failure rate, among all
application types, under different offloading algorithms, as the
number of vehicles is increased from 100 to 1700. In general,
the failure rate increases as the number of vehicles is increased.
As shown in Fig. 4a, the proposed MAB-based offloading
algorithms with application-dependent reward (i.e., ucbMAB
and smaxMAB) perform reasonably well - in terms of failure
rate for small to moderate number of vehicles (≤ 700),
as compared to other competitor algorithms. However, their
associated failure rates increase significantly as the number of
vehicles increases beyond 700 vehicles. On the other hand, Fig.

4b compares the failure rate of the MAB-based offloading with
separate application-dependent MAB learners (i.e., algorithm
4) to that of other existing algorithms.
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Fig. 4. Failure Rate Comparison: (a) Algorithm 3, (b) Algorithm 4, (c)
Algorithms 5 and 6.
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As shown, the smaxMABApp has outperformed the vast
majority of other algorithms in terms of failure rate; having a
dedicated MAB learner per application type allows the agent
to devise an efficient offloading policy in which offloading
decisions are based on the offloading history of similar tasks.
While the ucbMABApp algorithm has achieved relatively low
failure rate when the number of vehicles is less than 900,
its performance has deteriorated in response to increasing the
number of vehicles. Furthermore, Fig. 4c compares the failure
rate under the proposed SGDArm and SGDApp algorithms
to that under other algorithms. As shown, the SGDArm algo-
rithm, in which an online SGD learner is maintained per each
offloading option, has outperformed all competitor algorithms
when the number of vehicles is less than 1300. However, its
performance has significantly dropped beyond 1300 vehicles;
as a single model is shared among all application types,
updating the SGD-based model with a penalty value associated
with a particular application type may adversely affect the
offloading decision for subsequent tasks with different types.
On the other hand, the SGDApp algorithm, in which an array
of SGD-based learners is maintained, has shown significant
improvement in failure rate especially under high number of
vehicles (i.e., ≥ 1500). This can be due to that fact that
SGDApp maintains an array of learners per each server with a
dedicated model for each application type and, consequently,
ensures that model updates are performed due to tasks with
similar characteristics. Hence, the SGDApp algorithm has
maintained consistent learning pattern achieving an efficient
utilization of available contextual information and previous
offloading history to steer current offloading decisions. For
the other competitor algorithms, the failure rate of ML Based
and the Predictive algorithms [6], MAB [12] have significantly
increased for high number of vehicles (i.e., ≥ 1500). On other
hand, the game theory-based algorithm [15] has witnessed
a noticeable linear increase in failure rate as the number of
vehicles is increased beyond 900 vehicles. As compared to
other algorithms especially in the more congested situation
(i.e., no. of vehicles = 1700), SGDApp has achieved a
failure rate reduction that ranges from 24.81%, as compared
to GAME Theory [15], to 73.43% as compared to MAB [12].
As for the other competitor algorithms, they tend to have
acceptable failure rate values when the number of vehicles
is less than 900. However, their associated failure rates start
increasing after 900 vehicles. For instance, the ML based
algorithm offloads tasks with small instruction count to the
nearby edge servers and the tasks with larger instruction
count to the remote cloud server. However, the ML based
algorithm relies on statically trained models that do not gain
any knowledge from the outcomes of the online offloading
decisions. Hence, as the VEC system becomes more congested,
its failure rate become worse. On the other hand, the MAB-
based algorithm in [12] is also aware of the task’s instruction
count. However, it falls short when the VEC system becomes
congested, and consequently, the failure rate starts increasing.
In addition, the game theory-based algorithm tends to offload
the majority of tasks to the edge servers regardless of their
type. Hence, the lack of computing capacity at the edge servers
lead to more task failure. Therefore, the task failure situation
is noticeable after 900 vehicles and increases linearly, with
respect to the number of vehicles. Furthermore, the predictive
algorithm does not consider task characteristics when making
offloading decisions; it increases the probability of selecting an

offloading destination that has recently provided better results.
Hence, such a strategy would become inadequate when the
VEC system becomes overloaded.

Admittedly, service time (a.k.a. response time) is another
important evaluation metric. It represents the total time re-
quired to offload a task and obtain its results. Fig. 5 shows
and compares the average service time values obtained under
different offloading algorithms, with respect to the number of
vehicles, for the successfully executed tasks.

In general, the average service time increases with respect
to the number of vehicles with the MAB algorithm [12] yield-
ing the lowest service time among all competitor algorithms.
As shown in Fig. 5a, the proposed ucbMAB algorithm has
outperformed all other counterparts when the number of vehi-
cles is less than 700 but its performance has dropped signifi-
cantly after 700 vehicles. Similarly, the proposed smaxMAB
algorithm has attained relatively acceptable service time values
for systems in which the number of vehicles is less than
700. On the other hand, Fig. 5b illustrates that the proposed
ucbMABApp and smaxMABApp algorithms have shown a
profound ability to minimize average service time values for
systems with less than 700 vehicles.

While the performance of ucbMABApp has dropped after
700 vehicles, smaxMABApp has consistently maintained a
comparable performance to that of its MAB counterpart in
[12]. Furthermore, Fig. 5c shows that the proposed SGDArm
and SGDApp algorithms surpass all their counterparts for
systems with at most 700 vehicles. However, as the VEC
system becomes more congested, their obtained service time
values increase. Nevertheless, the SGDApp algorithm has
maintained a steadily comparable service time to that of the
MAB algorithm in [12]. It is worth noting that although the
MAB algorithm presented in [12] has achieved low average
service time for the successfully executed tasks, it has suffered
significant increases in failure rate in congested VEC systems
as shown in Fig. 4.

Although the failure rate and average service time provide
adequate measures to evaluate task offloading algorithms,
considering them as individual metrics may provide misleading
results in systems where offloaded tasks may be lost. For
instance, it may not be acceptable to have a low average
service time for successfully executed tasks while having a
high failure rate. Therefore, this work utilizes the Quality of
Experience (QoE) formula proposed in [6], which combines
both the service time and task failure as shown in equation
13.

QoEi =


0, if i has failed
0, if Ti ≥ 2Tmaxi
(1− Ti−Tmaxi

Tmaxi
).(1− αA)× 100%, if Tmaxi≤ Ti< 2Tmaxi

100%, if Ti ≤ Tmaxi
(13)

where Ti is the response time of task i, Tmaxi is the
maximum delay requirement of that task and αA is that task’s
delay sensitivity. Evidently, the average QoE value decreases
when task i is completed later than its associated delay
requirement. If the observed service time exceeds twice the
tasks’ delay requirement or if task i fails, the QoE value is
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Fig. 5. Service Time Comparison: (a) Algorithm 3, (b) Algorithm 4, (c)
Algorithms 5 and 6.

set to 0. Hence, the QoE metric provides a unified metric to
match the observed service time to the delay requirements of
different tasks besides assessing the balance between service
time and failure rate. Fig. 6 depicts the average QoE values as
a function of the number of vehicles.
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Fig. 6. Quality of Experience (QoE) Comparison: (a) Algorithm 3, (b)
Algorithm 4, (c) Algorithms 5 and 6.

As shown in Fig. 6a, the proposed ucbMAB and its MAB
counterpart have provided the maximum QoE (100%) when
the number of vehicles is low i.e., less than 700; because of
their low response time and failure rate. Similarly, the proposed
ucbMAXApp and smaxMABApp algorithms besides the
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MAB algorithm in [12] have outperformed other algorithms
in terms of QoE when the number of vehicles is less than
700, as shown in Fig. 6b. In addition, the smaxMABApp
algorithm has maintained a reasonably higher QoE values for
more congested systems i.e., when the number of vehicles
exceeds 700. Furthermore, Fig. 6c demonstrates the ability of
the proposed SGDArm and SGDApp algorithms to achieve
a 100% QoE for systems with up to 1100 vehicles, with
the SGDApp algorithm maintaining its superiority over other
algorithms beyond 1100 vehicles. As shown in Fig. 6b and
6c, the proposed smaxMABApp and SGDApp algorithms
have achieved 12.05% and 21.70% improvement in QoE as
compared to their MAB counterpart, respectively, when the
number of vehicles is equal to 1700.

Considering the competitor algorithms, the ML based, pre-
dictive and game-theory-based algorithms provide the lowest
QoE values. On the one hand, the ML based algorithm is not
able to respond to the dynamic changes of the VEC environ-
ment such as network bandwidth and server utilization. In other
words, it is not able to dynamically adjust its offloading policy
as it depends on statically trained models that would yield
poor performance if the run-time conditions differ from those
observed during offline model building. On the other hand, the
game theory-based provides poor QoE readings because the
main objective of the game model is neither to minimize the
service time nor to improve failure rate but rather to attain
a stable equilibrium. For the predictive algorithm, its QoE
values never exceed 90% even with no task failure as it does
not essentially minimize service time. Furthermore, The MAB-
based algorithm (i.e., MAB [12]) does not guarantee the delay
requirements of different task types as the number of vehicles
exceeds 900. This can be due to the mismatch between the
offloaded task’s processing demand and the selected offloading
destination violating that task’s delay requirements.

Apparently, the failure rate, service time and QoE results of
the proposed SGDApp algorithm prove the ability of the pro-
posed contextual incremental learning scheme to handle task
offloading in VEC systems with diversified application charac-
teristics. In fact, incremental learning allows the task offloading
algorithm to dynamically construct a robust offloading policy
that efficiently utilizes the available contextual information and
offloading history to guide subsequent offloading decisions.
In other words, incremental learning allows the constructed
models to gain new knowledge at run-time and vary model
parameters in accordance with recently observed offloading
outcomes. In order to prove the ability of the SGDApp
algorithm to behave in a VEC system with different application
type, its behaviour has further been analyzed and compared
to its MAB counterpart [12], as the later has shown almost
the best performance among other competitor algorithms. In
this regard, Fig. 7 shows the task offloading distribution,
considering all application types, under the SGDApp and the
MAB algorithms. It shows the percentage of tasks offloaded
to each of the edge and cloud servers. As shown, the proposed
SGDApp algorithm has maintained more balanced utilization
of edge and cloud units (Fig. 7a) as compared to its MAB
counterpart (Fig. 7b); it has offloaded an almost identical
proportion of tasks to each of the edge and cloud servers.

In order to gain further insight about the offloading be-
havior for different application types. Fig. 8 and 9 show the
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Fig. 7. Offloaded Tasks Distribution - all Application Types: (a) SGDApp,
(b) MAB [12].

task offloading distributions for the traffic management and
infotainment applications, respectively, under the SGDApp
and the MAB algorithms. As shown in Table II, the traffic
management application is characterized by having small tasks
i.e., tasks with lower instruction count and average input/output
file sizes. On the other hand, the infotainment application has
larger tasks i.e., tasks with higher instruction count and average
input/output file size, as compared to other application types.

As shown in Fig. 8a, the SGDApp algorithm tends to send
the vast majority of the small tasks - generated from the traffic
management application to the nearby edge servers. However,
the MAB algorithm sends an almost equal proportion of the
small tasks to each of the edge and cloud servers, as shown in
Fig. 8b. On the other hand, Fig. 9a illustrates that the SGDApp
algorithm sends the vast majority of the large infotainment
tasks to the cloud server as opposed to MAB algorithm that
sends all infotainment tasks to the cloud server, as shown in
Fig. 9b.

Therefore, it can be observed that SGDApp is able to
construct for each application type a model that would utilize
the available contextual information to better steer that ap-
plication’s offloading decisions. In other words, the relatively
small instruction count and file size of the traffic management
tasks align with the processing and bandwidth capabilities
of the edge servers. Consequently, sending these tasks to
the edge servers has saved more cloud’s processing capacity
and network bandwidth for the processing- and bandwidth-
hungry tasks such as infotainment tasks. On the other hand,
sending small tasks to the cloud server in case of the MAB
algorithm was harmful for all applications; it has caused
higher service times for the small tasks and resulted in more
resource contention with the large tasks on the cloud resources.
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Fig. 8. Offloaded Tasks Distribution - Traffic Management: (a) SGDApp, (b)
MAB [12].
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Fig. 9. Offloaded Tasks Distribution - Infotainment: (a) SGDApp, (b) MAB
[12].

Ultimately, the offloading decision made for each application
type has a direct consequence on that application’s failure
rate and QoE metrics. As shown in Fig. 10, the proposed
SGDApp algorithm has obtained noticeable improvement in
failure rate as compared to its counterpart. It has achieved
better failure rate values for both the small traffic management
tasks (Fig. 10a) and the large infotainment tasks (Fig. 10b).

The SGDApp algorithm has achieved up to 87.5% and 55.4%
improvement in failure rate for the traffic management and
infotainment applications, respectively, when the number of
vehicles is 1700.

Similarly, the proper offloading decisions made by the
SGDApp algorithm has achieved better QoE for both small
and large tasks especially in more loaded VEC systems with
the number of vehicles exceeding 1300, as shown in Fig. 11.
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Fig. 10. Failure Rate of Different Applications: (a) Traffic Management, (b)
Infotainment.
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The proposed SGDApp algorithm has consistently main-
tained higher QoE values for both application types, with
respect to the number of vehicles. As depicted in Fig. 11a, the
SGDApp algorithm has achieved up to 18.7% improvement
in QoE, as compared to its counterpart, in a VEC system with
1700 vehicles. On the other hand, Fig. 11b illustrates the supe-
riority of the SGDApp algorithm; its QoE improvement has
reached 29.02% as the VEC system becomes more congested,
with 1700 vehicles.

V. CONCLUSION

Vehicular Edge Computing (VEC) systems have recently
been introduced to provide a seamless integrated computing
platform to execute various kinds of vehicular applications. In
these systems, computational tasks generated from in-vehicle
applications are offloaded to either the edge or the cloud
servers. In addition, VEC systems are characterized by a
dynamically changing resource utilization besides having to
handle diversified application types. Hence, an efficient task
offloading scheme is required to ensure appropriate selec-
tion of offloading destinations, considering both application
characteristics and the status of VEC resources. Therefore,
this paper has presented a number of Multi-Armed Bandit
(MAB) algorithms for task offloading in VEC systems with
a representative set of applications. The rationale behind the
proposed algorithms is to utilize contextual information such
as application type and current resource utilization to achieve
efficient application-specific offloading decisions. The pro-
posed algorithms were implemented based on either a single
MAB learner with application-dependent reward formulation,
multiple dedicated MAB learners with a specific learner for
each application type or a contextual bandits approach - based
on incremental learning methods. The proposed algorithms
were thoroughly analyzed and compared to other closely
related task offloading algorithms. Simulation results proved
the ability of the proposed contextual bandits-based algorithm
to surpass all other algorithms under the failure rate and QoE
metrics besides achieving adequately comparable service time
values. In addition, it demonstrated the ability to efficiently
utilize the available VEC resources and make the most appro-
priate decision for each application type, considering the inter-
play between application characteristics, timing requirements,
server’s computational capacity and network status. Hence,
utilizing contextual information to dynamically construct and
adjust incremental learning models has proved its feasible
applicability for task offloading in VEC systems.
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