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Abstract—Consumer-Grade global positioning system (GPS) 

is widely used in many domains. The obvious issue of this 

consumer-grade device is low accuracy and reading fluctuation 

results. In terms of using an application that requires a more 

precise location, the output could be difficult. In this study, the 

authors deploy various methods to reduce the global positioning 

system data fluctuation and present field test results. Two main 

types of the device worked together to collect data from global 

positioning systems, such as Microcontroller for algorithm 

processing and presenting data and global positioning system 

receivers for receiving data from a satellite. We combine three 

global positioning system modules to received signals in a single 

device and test calculated data compared with the Kalman 

filtering methods in many cases, including moving and static 

devices. Implementing the Standard Kalman Filter to multiple 

global positioning system Modules has improved the constancy of 

cheap global positioning system equipment. The experiment 

algorithm is presented significant improvement to overcome the 

retrieved data fluctuation problem. This study's contribution will 

enable creating a cheap global positioning system locator device 

for various applications that require more accuracy than the 

standard consumer-grade receiver. 
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I. INTRODUCTION 

It is widely known that Global Positioning System or GPS 
[1], which was invented during the 1960s–1970s, has been 
broadly used in several sectors such as service, academics, 
economics, and development. It can safely be said that GPS is 
a fundamental technology commonly found in our daily lives. 

Even though the positioning system of GPS is relatively 
new and has been further developed into numerous inventions 
in the past five decades, it does not particularly mean that GPS 
is the most accurate system, especially when compared to 
GNSS (Global Navigation Satellite Systems), which is a more 
expensive specialized navigation system [2,3]. 

Although, a consumer-grade GPS is less accurate, and 
current computer technology can improve its precision with 
algorithm commands. Kalman Filter is an algorithm used to 
estimate possible variables and lower the discrepancy of GPS. 
In consequence, it is making the inexpensive GPS locator for 
many projects that limited fund is complicated, for example, 

the guidance device in entree level drone, personal location 
device, and forest fire locator for the rescue team. 

However, there can still be an unsatisfying discrepancy if 
Kalman Filter is solely applied to just one device [4]. On the 
other hand, if several GPS devices are integrated with Kalman 
Filter to determine a more reliable statistical means, the results 
can be more efficient compared to using only one GPS device 
[5,6]. The prototype also has the limitation of hardware 
durability due to using a prototype grade sensor and Universal 
printed circuit board (PCB). 

This experiment aspires to present a new concept derives 
from combining two calculation techniques using different 
algorithms but sharing the same objectives. This innovation 
can elevate the efficiency of the system using only one of the 
calculation techniques. It is expected that this innovation is an 
alternative to better technological development. 

II. BACKGROUND 

For technological development, consumer-grade smart 
devices typically contained parts or sensors that could easily be 
found in the market due to cheap costs and accessibility while 
still generating acceptable precision. For example, a 
Quadcopter drone could solely control the Hover Control 
System by itself using the Microcontroller and Inertial 
Measurement Unit (IMU), which could be found in general 
markets [7]. 

Lower prices and convenient accessibility came with lower 
efficiency compared with other more expensive specialized 
devices. Moreover, there have been many times that the 
instability of the devices results in inaccuracy. One of the most 
encountered problems was the instability of GPS in navigating 
and positioning. The accuracy of 95% of the reviewed 
literature was approximately 10 – 15 meters from the 
designated location, both Latitude and Longitude [8]. This was 
since several environmental factors were affecting the accuracy 
of the results of consumer-grade GPS devices; for example, 
there was a Doppler Shift phenomenon where the increased 
speed of GPS devices generated very low discrepancy [9], and 
the weather during a clear sky generated 0 – 2 meter 
discrepancy, while during a closed canopy condition, the 
discrepancy could be up to 9 meters [10]. 
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It is common that the minor discrepancy the device 
generated, the more reliable it was. Nevertheless, the 
acceptable discrepancy of GPS devices has never been 
determined. Instead, it differed according to the objectives and 
the application of each device. For example, ground vehicles' 
navigation system needed few-meter accuracy, whereas the 
land surveying drone needs centimeter accuracy because the 
pictures should be in high resolution. When the pixels were 
smaller, less discrepancy was essential. Therefore, for 
Waypoint Tracking and Stich Image, which needed more 
precision, Real-Time Kinematic (RTK) devices with more 
accuracy were used instead [11]. 

After many problems with instability GPS signals were 
reported, many inventors have developed algorithms to be used 
with such devices to increase their efficiency for the most 
satisfying results [12]. Upon further literature reviews, there 
have been many published articles on hardware development 
via algorithms. Among those, there were three interesting 
experiments that were in accordance with the mentioned 
principle. The first experiment was the estimation and 
improvement of GPS coordinates in UAV to be more stable via 
an algorithm called Kalman Filter (a command set estimating 
possible data via variance variables (noise covariance) of 
sensors [13]) with GPS and Barometer based on Position-
Velocity-Acceleration model [14]. From this experiment, it 
was found that the PVA method using Kalman Filter generated 
relevant results for further studies related to Extended Kalman 
Filter (the further research of the owner of this experiment). 

Kalman Filter was also further developed for more specific 
purposes; for example, Extended Kalman Filter (EKF) was 
further developed from Standard Kalman Filter to estimate 
variant data as Non-Linear [15,16]. The second experiment 
presented here was the integration of EFK with small UAV, 
UWB (Ultra-Wild Band), cheap MUI devices, and indoor 
vision-based sensors [17]. The result of this experiment 
showed that the EKF application generated approximately a 
10-centimeter discrepancy from actual positions. This result 
proved that hardware GPS positions could be improved by 
optimizing results via a software algorithm and further 
improved efficiency. 

In addition to using Kalman Filter to stabilize GPS devices, 
the other interesting method was averaging outcomes from 
more than one GPS device for more statistically accurate 
results and for the inaccuracy distribution to be nearer to 
Normal Distribution compared with using only one GPS device 
[18]. The third experiment was using Extended Kalman Filter 
with several Low-cost GPS receivers to increase the efficiency 
of GPS devices on UAVs by installing one u-box GPS receiver 
on each arm of the quadrotor, and one more on the center 
point, totaling five receivers. This experiment showed that the 
outcomes were more reliable than using only one GPS 
device [19]. 

III. METHODOLOGY 

A. Structure 

For this experiment, two types of equipment were used to 
collect data from GPS: a Microcontroller for processing and 
presenting data and GPS receivers for receiving data from a 

satellite with Arduino Mega 2560 R3 and GY-GPS6MV2 [20]. 
GPS modules were divided into three serials and received 
signals via Rx Tx pin, as shown in Fig. 1. 

Data were collected by running commands via Arduino 
IDE and then logged into a Serial Monitor. Each round of data 
collection lasted approximately 2 – 3 seconds. There were 3 
sets of data collected. Each set composed of Latitude, 
Longitude, and True Altitude (the height above mean sea level) 
collected from each GPS receiver. 

After 30 seconds of GPS sensor calibration, the GPS 
receivers then started to collect data from the satellite. Each 
loop started after a 2-second delay since the average time 
measured before the experiment was 2 seconds. 

There were two main scenarios for data collection; one was 
when the sensors were completely still (no movement), and the 
other was when the sensors were moving for at least 30 
seconds. All data were later used for average calculation and 
Kalman Filter implementation in order to decrease 
discrepancy, as shown in Table I. The results from all six 
methods were analyzed to determine the most efficient method 
for data stability, while all three GPS receivers were entirely 
still with no sensor movement. 

 

Fig. 1. Circuit Diagram Chart for GPS Signal Receiver. 

TABLE I. CALCULATION METHODS FOR DATA EFFICIENCY 

IMPROVEMENT 

N

o. 
Method 

No 

Movement 
Moving 

1 Implementing Kalman Filter  

2 Measuring for an average  

3 
Implementing Kalman Filter and then 

measuring for an average 
 

4 

Implementing Kalman Filter and then 

measuring for an average for every 2 to N 

term 

 

5 
Measuring for an average and then 

implementing Kalman Filter 
 

6 

Measuring for an average and then 

implementing Kalman Filter for every 2 to N 

term  

 
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B. Standard Kalman Filter Approach 

Kalman Filter is a set of computer commands used to 
predict possible outcomes of linear equations based on 
estimations from Mean Square Error from historical data. 

This experiment also used Kalman Filter with the same 
algorithm as the previous study [21], which consisted of three 
steps: 1) Initialization: initialed the variables used in 
prediction, 2) Prediction: calculated data for the possible 
outcomes, and 3) Update: currently collected data for the 
prediction of the next set of data. Prediction and Update 
functioned together recursively for data prediction using 
Kalman Gain as variables determining the future's possible 
outcomes would be according to the current data. The 
equations for Standard Kalman Filter Data Prediction were: 

Initial  ̂    and                  (1) 

 ̂ 
    ̂                    (2) 

  
        

                (3) 

      
       

                    (4) 

 ̂    ̂ 
          ̂ 

               (5) 

            
              (6) 

The objective of these equations was to find an estimated 
value of the data at time K, aka  ̂ , based on data collected 
from the current time (  )  according to    (Kalman Gain), 
This was a crucial variable that varied directly with data from 
the past (1). Equation (2) and (3) were Prediction State where 
roughly estimated data were stored in  ̂ 

 (Prior estimate) and 
  

 (Prior error covariance) before being used later in Update, 
which was related to (4), (5), and (6) to finally yielding results 
in the estimate called  ̂ . 

IV. EXPERIMENT 

Upon turning on the signal receivers, the calibration took 
30 seconds before data collection started. Every collected GPS 
data would be displayed on the Serial Monitor of Arduino IDE. 
The data collection lasted at least 30 minutes, timed by a time 
switch. Every read needed approximately 2 – 3 seconds, and 
after which, all collected data were stored for further 
calculation. 

The first experiment was to collect GPS data while the 
sensors were completely still. This experiment's location was 
the open space near the reservoir with no high buildings within 
a 100-meter radius from the receivers' position. The experiment 
was conducted at around 5.30 pm, during a clear sky with no 
visible cloud. The total time spent was 33 minutes and 2 
seconds. 

The following experiment was to collect GPS data while 
the sensors were continually moving. The location for this 
experiment was in the city, surrounded by no higher than 4-
story buildings. The experiment was conducted at around 5.32 
pm, during a clear sky with no visible cloud. The GPS 
receivers were sticking out from a backpack while the 
backpack carrier walked for 2.76km with the average speed at 
7 – 8 m/hr, referring to Nike Run Club Application. The total 
time spent was 41 minutes and 30 seconds. 

There were two rounds of data collection, one when the 
sensors were completely still and the other when the sensors 
were continually moving. For the one when the sensors were 
completely still, there were 663 sets of data collected, while for 
the one when the sensors were. 

The picture on the left of Fig. 2 showed the location of 663 
sets of GPS data read from all three sensors with no movement 
after visualizing on Grafana Application. This data collection 
lasted 1,982 seconds, or 33 minutes and 2 seconds. On average, 
each read took 2.99 seconds. 

The GPS data read from each of the moving sensors was 
shown in the right picture of Fig. 2. This data collection 
contained 839 sets of GPS data and lasted 2,326 seconds, 3 
minutes, and 46 seconds. On average, each read took 2.77 
seconds. 

The altitude above sea level read when the sensors were 
completely still and when they were constantly moving were 
represented by red, green and blue lines, respectively. On the 
left of Fig. 3, the range of the sensors with no movement was at 
16.5 meters, with the lowest at 316.7 meters and the highest at 
343.2 meters. Meanwhile, the range of the moving sensors was 
at 39.8 meters, with the lowest at 267.6 meters and the highest 
at 307.4 meters, as shown on the right of Fig. 3. 

The collected data would then be calculated for the 
distribution of data, namely the Maximum, Minimum, Range, 
Standard Deviation, Mean Deviation, and Variance, derived 
from each sensor. 

The distribution of Latitude and Longitude were shown in 
Table II, and True Altitude (Altitude Above Sea Level) was 
shown in Table III. However, the experiment with moving 
sensors was not calculated for the distribution of data because 
the actual position was changed continuously, meaning that all 
data could not be used to find the current location's distribution. 

 

Fig. 2. GPS Positioning of all Three Sensors when the Equipment was 

Entirely Still (Left) and when the Equipment was Constantly Moving (Right). 

 

Fig. 3. Altitude above Sea Level Received from all Three Sensors when the 

Equipment was Completely Still (Left) and when the Equipment was Moving 

(Right). 
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TABLE II. STATISTICAL DATA OF LATITUDE AND LONGITUDE MEASURED FROM MULTIPLE GPS RECEIVERS WHILE THE RECEIVERS WERE COMPLETELY 

STILL 

  
GPS#1 GPS#2 GPS#3 

LAT LNG LAT LNG LAT LNG 

Max 18.805810 98.951019 18.805807 98.951034 18.805820 98.951011 

Min 18.805789 98.950973 18.805782 98.951019 18.805765 98.950981 

Range (m) 2.34 5.12 2.78 1.67 6.12 3.34 

S.D. 0.0000046 0.0000088 0.0000049 0.0000041 0.0000119 0.0000064 

Variance 2.08E-11 7.79E-11 2.39E-11 1.70E-11 1.43E-10 4.05E-11 

TABLE III. STATISTICAL DATA OF ALTITUDE ABOVE SEA LEVEL FROM THREE RECEIVERS IN BOTH NON-MOVING AND MOVING CONDITIONS (METER) 

 
No Movement Moving 

 
GPS#1 GPS#2 GPS#3 GPS#1 GPS#2 GPS#3 

Max 340.70 343.20 337.50 301.30 299.30 307.40 

Min 333.80 336.90 326.70 270.00 267.60 272.30 

Range 6.90 6.30 10.80 31.30 31.70 35.10 

S.D. 1.47 1.19 2.04 4.65 4.63 3.73 

Variance 2.17 1.41 4.17 21.64 21.46 13.89 

Latitude, Longitude and True Altitude were calculated to 
improve the stability of data using six methods. From all of the 
six methods, there were three interesting methods when applied 
to all ten scenarios as presented here. 

A. Implement Kalman Filter to Data at a Certain Time and 

then Measure the Averages 

This method conducted two calculations. The first 
calculation was implementing Kalman Filter to data from each 
sensor since it was found in previous studies that Kalman Filter 
could lower discrepancy to a certain level. However, the results 
were not efficient enough to stabilize the data [11]. Therefore, 
the second calculation for this method aimed to elevate the data 
improvement by measuring the averages using (9). 

        
∑      
 
   

 
             (1) 

        
∑      

 
   

 
             (8) 

        
∑      

 
   

 
             (9) 

The results from (7), (8), and (9) were the GPS locations 
and altitudes when the sensors were completely still as shown 
in Fig. 4. 

The purple area was the one where Kalman Filter was 
implemented before measuring the averages. It was noticeable 
that the area was narrower compared to the other three sets of 
unprocessed data from three sensors due to the decreased data 
distribution. Table IV showed the statistical data with 
significantly decreased deviation compared with unprocessed 
data in Table II and Table III. 

B. Measure the Averages, and then Implement Kalman Filter 

This method was similar to the first method, and the 
difference was only that each set of data from all three 

receivers were used to calculate the averages before 
implementing Kalman Filter. 

Even though the Ranges of latitude, Longitude, and True 
Attitude of this method were the same as the first method, this 
method's statistical variance was significantly lower. As shown 
in Fig. 5, the second method's data distribution was remarkably 
similar to that of the first method, making it hard to distinguish 
via observation. From Table V, the variances of the GPS 
positions of both methods were slightly different, while the 
altitudes bore no difference at all at two decimal places. 

 

Fig. 4. GPS Positions and Altitude above sea Level Received from all 3 GPS 

Receivers after Implementing Kalman Filter and then Measuring the Averages 

when the Equipment was Completely Still. 

TABLE IV. STATISTICAL DATA OF LATITUDE, LONGITUDE, AND ALTITUDE 

ABOVE SEA LEVEL FROM THREE RECEIVERS AFTER IMPLEMENTING KALMAN 

FILTER AND MEASURING THE AVERAGES WHILE THE SENSORS WERE 

COMPLETELY STILL 

                                  

Max 18.805804 98.951013 338.76 

Min 18.805785 98.950998 334.44 

Range (m) 2.11 1.67 4.32 

S.D. 0.0000041 0.0000035 1.01 

Variance 1.72252E-11 1.24139E-11 1.02 
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Fig. 5. GPS Positions and Altitude above Sea Level from all 3 GPS 

Receivers after Measuring the Averages and then Implementing Kalman Filter 

when the Equipments were Completely Still. 

TABLE V. STATISTICAL DATA OF LATITUDE, LONGITUDE AND TRUE 

ALTITUDE AFTER MEASURING THE AVERAGES AND THEN IMPLEMENTING 

KALMAN FILTER WHILE THE SENSORS WERE COMPLETELY STILL 

                                  

Max 18.805804 98.951013 338.76 

Min 18.805785 98.950997 334.44 

Range (m) 2.11 1.78 4.32 

S.D. 0.0000041 0.0000035 1.01 

Variance 1.70901E-11 1.25134E-11 1.02 

C. Use the Data to Measure the Averages and then 

Implementing Kalman Filter for Every 2 to N Terms 

It was found that using GPS data to calculate for averages 
before implementing Kalman Filter yielded better results; 
therefore, for this third method, every N Term was measured 
for averages before Kalman Filter was implemented, N being 
the Interval Number of data calculated for averages. For 
example, if N = 3, the system would read GPS data 3 times and 
then used these three values for calculation. The average 
gained from each GPS receiver were then added together and 
divided by the number of receivers (3 in this particular case) to 
find the average of Multiple Sensors, which were then 
implemented with Kalman Filter. This method aimed to 
observe the tendency of data in the case that the Interval of 
finding averages kept increasing while the GPS receivers bore 
no movement. 

Table VI found that data distribution tended to keep 
decreasing when N (average Interval) increased. Upon 
checking the range of distribution, when Interval equaled 2, 3, 
and kept going to the total number (N), it could be seen that for 
every increasing N, the standard deviation decreased and 
tended to keep decreasing. The change of the graph's trend was 
noticeable in Fig. 6, which showed the comparison of data 

calculated with this method with average calculation at 2, 3 
intervals and from 1 to 663 terms. 

For the case that the equipment was constantly moving, this 
method calculating for averages from 1, 2, to 663 terms would 
not be used. This was due to the fact that, when the Interval of 
the averages were increased, the data would start moving 
towards the center of the data as shown in Fig. 7 where the 
path of data at Interval 1 to the total number at 663 sets for the 
case that the equipment was continually moving. The Purple 
Line and the Blue line represented calculations with both 
Kalman Filter and Average Measurement. It is evident that 
when time passed, the path was compressed towards the center 
of the data. Therefore, this method was not used for moving 
equipment. 

 

Fig. 6. GPS Positions and Altitude above Sea Level from all 3 GPS 

Receivers after Measuring the Averages of Every n Term Interval then 

Implementing Kalman Filter while Sensors bore no Movement. 

 

Fig. 7. GPS Positions after all Three Sensors were Measured for Averages 

and Implemented with Kalman Filter Every N Term, and after Data from all 

Three Sensors were Implemented with Kalman Filter and then Measured for 

Averages in the Case that the Equipment was Continually Moving. 

TABLE VI. STATISTICAL DATA OF LATITUDE, LONGITUDE, AND ALTITUDE AFTER MEASURING FOR THE AVERAGES OF EVERY N TERM INTERVAL THEN 

IMPLEMENTING KALMAN FILTER WHILE SENSORS BORE NO MOVEMENT 

  
Measurement Interval = 2 terms Measurement Interval = 3 terms Measurement Interval = 1, 2, …, 663terms 

LAT LNG ALT LAT LNG ALT LAT LNG ALT 

Max 18.805803 98.951012 338.66 18.805802 98.951011 338.58 18.805803 98.951006 337.62 

Min 18.805786 98.950998 334.58 18.805786 98.950998 334.72 18.805796 98.951001 336.56 

Range (m) 1.89 1.56 4.08 1.78 1.45 3.86 0.78 0.55 1.06 

S.D. 0.0000040 0.0000033 0.98 0.0000038 0.0000031 0.95 0.0000011 0.0000011 0.29 

Variance 1.57E-11 1.07E-11 0.96 1.43E-11 9.48E-12 0.91 1.28E-12 1.21E-12 0.08 
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V. RESULT ANALYSIS 

This experiment demonstrated three methods used to lower 
the distribution of data: 1) Implementing Kalman Filter, 
2) Finding Averages and 3) Implementing Kalman Filter and 
Finding Averages. From the distribution data shown in 
Table VII, the least effective method was solely implementing 
Kalman Filter. The Standard Deviations of GPS Coordinates 
(Latitude, Longitude) while the GPS receivers were completely 
still were decreased by 3.39% and 10.7% on average; whereas 
the Standard Deviations of True Altitude were decreased by 
2.99% and 6.23% for the non-moving equipment and the 
moving equipment, respectively. Even though it is evident that 
Kalman Filter could help reduce the distribution of data, but its 
efficiency was too low to be used with projects which needed 
data stabilization, as previously mentioned in earlier studies 
regarding Kalman Filter [11]. 

Next up was the method where data were used to find 
averages. This method significantly increased the stability and 
decreased data distribution better than the one implementing 
only Kalman Filter. The Standard Deviation of Latitude and 
Longitude for non-moving equipment were decreased by 49% 
and 75.21%. The Standard Deviation of True Altitude for non-
moving equipment and moving equipment was decreased by 
65.45% and 40.94%, respectively. They were resulting in more 
stability compared to the method solely implementing Kalman 
Filter. 

Implementing both Kalman Filter and average measuring to 
improve data stability could be further divided into four sub-
methods: 1) They were using results after implementing 
Kalman Filter to find averages, 2) using Kalman Filter results 
to find averages of every data from 1 to N loop, 3) using data 
after finding averages to implement Kalman Filter, and 4) 
using the averages of every data from 1 to N loop to implement 
Kalman Filter. Based on all these sub-methods statistical data, 
it was found that implementing Kalman Filter and average 
findings could better stabilize the data compared to applying 

only one method. From Table VII, in the case that Kalman 
Filter was implemented before average measuring with non-
moving equipment, it was found that the Ranges of Latitude, 
Longitude, and Altitude for this particular method was 
narrower at 0.23, 0.55, and 0.38 meters, respectively, when 
compared with the method with average measuring only. The 
tendency of lower data distribution was similar for the case 
with moving equipment. For the case with non-moving 
equipment, using more loops to find data averages yielded 
more stability. As time passed, every increasing Interval of 
average finding statistically significantly lowered the 
distribution of data. However, the method of finding averages 
before implementing Kalman Filter yielded more stable data 
distribution when N increased compared to implementing 
Kalman Filter before finding averages. However, statistics 
showed that when the equipment was entirely still, finding 
averages and then implementing Kalman Filter at any N, the 
variances were so close to solely implementing Kalman Filter 
at any N that the differences were unnoticeable with bare eyes. 
Similarly, with moving equipment, data measuring for 
averages before implementing Kalman Filter yielded slightly 
higher variances compared to the other method; therefore, 
hardly bearing any effect upon implementation. Nevertheless, 
the method of implementing Kalman Filter together with 
measuring for averages with increasing loops was incompatible 
with the case of moving equipment since the average of a 
specific position at any time required data from that particular 
position; otherwise, the results would be incorrect as shown in 
Picture 7. For example, every loop required 10 meters of a 
straight line. If data from the current position were combined 
with data from the previous position 10 meters away and 
calculated for an average, the result would be the 5-meter 
average between these two positions, which was 5 meters away 
from where it was supposed to be. This was the reason why 
calculations with average loops were unsuitable to be used with 
moving equipment to lower the variances of GPS positioning 
data. 

TABLE VII. STANDARD DEVIATION AND RANGE OF DATA FROM EACH CALCULATION METHOD 

Method 

No Movement Moving 

GPS Coordinate True Altitude True Altitude 

S.D. (Lat,Lng) Range (m) S.D. (m) Range (m) S.D. (m) Range (m) 

Raw data 0.0000084, 0.0000159 6.12, 6.78 3.01 16.50 4.66 39.80 

KF 0.0000082, 0.0000156 5.67, 6.23 2.97 15.18 4.41 25.44 

Find average 0.0000043, 0.0000039 2.34, 2.22 1.04 4.70 2.75 19.50 

KF+Average 0.0000042, 0.0000035 2.11, 1.67 1.01 4.32 2.59 17.18 

KF+Average every 2 terms 0.0000042, 0.0000035 2.11, 1.67 1.01 4.30 - - 

KF+Average every 3 terms 0.0000041, 0.0000035 2.11, 1.67 1.01 4.28 - - 

KF+Average every 1…663 terms 0.0000012, 0.0000011 0.78, 0.55 0.28 0.97 - - 

Average+KF 0.0000041, 0.0000035 2.11, 1.78 1.01 4.32 2.59 17.18 

Average+KF every 2 terms 0.0000040, 0.0000033 1.89, 1.56 0.98 4.08 - - 

Average+KF every 3 terms 0.0000038, 0.0000031 1.78, 1.45 0.95 3.86 - - 

Average+KF every 1…663 terms 0.0000011, 0.0000011 0.78, 0.55 0.29 1.06 - - 
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VI. CONCLUSIONS 

It can be concluded from this experiment that measuring for 
averages together with implementing Standard Kalman Filter 
to three sets of GY-GPS6MV2 Modules to improve the 
stability of cheap GPS equipment can indeed help reduce the 
variances of data both when the equipment is constantly 
moving and when they are completely still. The most effective 
method is measuring for averages before implementing 
Standard Kalman Filter. For the case with non-moving 
equipment, the increasing average loops can lower the 
variances, whereas, for the case with moving equipment, the 
increasing average loops reduce data reliability. Even though 
the increasing loops for average measuring help reduce data 
variance, it directly varies with time spent collecting data; in 
other words, the more loops for average measuring, the more 
time needed for data gathering for return output. From the 
result, there are limitations of moving measurement. The 
algorithm will slow down the reding cycle to calculate an 
average and filter of each reding. That would be the primary 
direction for future research to overcome these limitations. 

In conclusion, this experiment has proved that integrating 
Standard Kalman Filter with average finding for multiple 
consumer-grade GPS equipment is another suitable alternative 
for projects that need to reduce variances from GPS equipment 
at a lower cost. This innovation can elevate data management 
with variance through computer commands for technological 
science and geoinformatics. For example, it can be used with 
the guidance system searching for missing persons, improving 
the small projects with customer-grade sensors, or being used 
to develop future technology and so on continuously. 
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