
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

476 | P a g e

www.ijacsa.thesai.org

Generating Test Cases using Eclipse Environment:

A Case Study of Mobile Application

Rosziati Ibrahim1, Nurul Ain Aswini Abdul Jan2, Sapiee Jamel3, Jahari Abdul Wahab4

Department of Software Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia1, 2

Department of Information Security, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia3

Engineering R&D Department, SENA Traffic Systems Sdn. Bhd, Kuala Lumpur, Malaysia4

Abstract—In Software Development Life Cycle (SDLC), there

are four phases involved. They are analysis, design, implement

and testing. Testing is done to ensure the functionalities of the

system are correct. There are many approaches to software

testing. It is usually divided into two approaches: manual testing

or automatic testing. However, these days, with the rapidly

advanced technology, performing software testing manually has

become hugely laborious but still doable. Therefore, experts of

the software development field are beginning to go for automatic

testing. This paper presents a case study of mobile application

and discusses how test cases can be generated automatically from

the application using different automatic tools. Three software

testing tools have been used to generate test cases automatically.

The results from generating test cases automatically from these

three tools are then being compared together with the results of

generating test cases using manual testing technique.

Keywords—Software testing; automation testing; test cases;

Eclipse environment

I. INTRODUCTION

In Software Development Life Cycle (SDLC), software
testing is explained as the phase where a program is executed
to be evaluated with the intention to find faults [1]. Although
the SDLC is considered as an approach of efficient system
development, software testing plays an important role as it
assists in finding system deficiencies [2]. As such, testing is
done to any software components, making it a vital process
considering it aids in discovery of how good it works,
validating the quality of the software system. To ensure that
developed software components are in good quality, it is
crucial to do software testing for the verification and
validation to be done properly [3]. Considering how costly a
software development project can amount to, testing becomes
even more important, as prevention of even more highly cost
of the software development. Therefore, it is important that
the process is began at early stage during development [4]
instead of being carried out by the end of the project
development.

Software testing can be accomplished in two ways; either
manually or automatically [5]. Manual testing is carried out by
software testers without the help of any tools; it is a testing
method which is most primitive compared to its peers [6]. On
the other hand, contrary to manual testing, automatic testing is

performed with assistant from automated testing tool whereby
test cases will be generated [7]. The performance capability
and functionality of all test cases are to be justified. Testing
tools are highly required to perform automatic testing. It plays
a crucial role during the testing phase of the SDLC [8].
Several known tools include Robotium [9], Appium and
Selenium [10].

This research study main aim is to generate test cases
automatically from the existing tools and compared the time
taken to generate test cases automatically among the tools.
The case study is based on an existing Android mobile
application called MyNetDiary [11]. The research shall be
able to automate the process of generating test cases. There
will be three tools used in the research which are JUnit4 [12],
TestNG [13], and EPiT [14]. The results of time taken for
each tool to generate test cases automatically will be
compared together with the time taken to generate test cases
using manual testing.

II. TECHNIQUES OF SOFTWARE TESTING

Generally, there are two ways to achieve software testing
and those are by manual testing or automatic testing. The idea
of manual testing is hugely primitive where the tests are
executed in the absence of any tools [7]. Differing with
manual testing is the automatic testing by which it is done
with the help of automatic testing tools [14]. It is believed that
by using automatic tools, the trend of automation testing has
managed to have better usability, robustness, and correctness
[8].

Software testing levels have been categorized into four
levels [15]. These four levels include unit testing, integration
testing, system testing, and acceptance testing which is shown
in Fig. 1. Unit testing focuses on a software system’s smallest
element which is also known as modules; they are tested
independently. Following after the unit testing is the
integration testing where the main concept of it is testing the
different integrated modules together. For most software
project, the value of system testing being carried out is
approximately up to 90 percent [16]. And then the last level of
testing is the acceptance testing, performed by targeted end
users [17]; it has variants of types which include alpha testing,
beta testing, business acceptance testing, and the user
acceptance testing.

This work was supported by SENA Project from MTUN under RMC,

UTHM under Vote No. K234.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

477 | P a g e

www.ijacsa.thesai.org

Fig. 1. Software Testing Level [15].

Fig. 2. Software Testing Methodology [17].

Fig. 2 shows the visualisation of three common software
testing approaches [17]. Over the time period of rapid
software development expansion, the common software
testing techniques known to most are the black-box testing,
white-box testing, and the grey-box testing methods. The
grey-box method is a combination of the black-box and white-
box testing methods [18].

A. Black-box Testing

Going by many other names such as behavioral testing and
functional testing, black-box testing is usually driven without
test models or even precise formal documented specifications
[18]. The idea of black-box testing is the software testers do
not know which of the system's component is being tested. As
shown in Fig. 2, the idea of black-box testing is where the
users or testers are without knowledge of the system's
internals. The testing method concept is accepting inputs and
producing expected outputs; black-box testing method borders
on the foundation aspects of the system [19].

B. White-box Testing

There are many other nicked names to white-box testing
method. Some of them include clear-box testing and glass-box
testing. Just as the visual on Fig. 2 suggests, it is a testing
method whereby the internals of the system are fully known
[20]. As its nickname (clear-box testing), the back end of the
system (or its components) is known to testers making it
highly efficient in bugs-detection [21]. However, in large-
scale software systems, this method is seldom used.

C. Grey-box Testing

Being the combination of black-box testing and white-box
testing is the grey-box testing technique [22]. Fig. 2 shows the
internals of the system is relevant to the testing being carried

out known by the testers. The concept of grey box is
commonly known of testers having bits of internal working
but going against its specifications [17]. The method typically
applies reverse engineering but is not categorized as biased
and intrusive; therefore the testers are not inclined to gain
access on the internal source code.

III. RELATED WORK

Li et al. [23] present DroidBot, an automatic software
testing tool which is compatible to most Android mobile apps.
DroidBot is said as something that is lightweight and test on
UI-guided input generators. It does not require any
instrumentation. DroidBot also makes use of malware analysis
as it uses a model-based generator that has information about
app under test (AUT) from device at runtime, enabling it to
trigger sensitive behaviours.

Alotaibi, & Qureshi [10] discuss a new framework to be
used for automation testing on mobile application which will
be using the Appium framework. According to them, in order
to ensure high performance application within a short-given
time, the automation of software testing is highly necessary.
They specifically discuss Appium as it is considered as a
power tool that helps in delivering features. What Appium
does, to be precise, is the direct automation on mobile devices.
It supposedly works for almost all of hybrid, native,
applications of mobile-web for iOS and even Android.

Mao, Harman, & Jia [24] introduce Sapienz which is an
Android testing approach that has significantly performed
better than even the widely-used tool known as Android
Monkey. According to them, Sapienz is better than Monkey is
due to the fact that Monkey does automation testing in a
deliberate unintelligent way of randomness. Sapienz, on the
other hand, is a new automated testing that combines
traditional automated testing with the quirks of expanding it to
Android testing.

Dolan-Gravitt et al. [25] focus on PANDA's four principal
criterion; the system's ability to record/replay, the system's
plugin architecture, the system's capability in single analysis
execution process on multiple architectures, and lastly the
ability of Android systems emulation. PANDA is versatile and
has simplicity, allowing support of new myriad of
architectures and devices with no extra labour. The replay
method itself is able to overcome the complexity of operating
systems as it is able to record boot for myriads of operating
systems. The system is more widely received considering its
full repeatability features, a big convenience for dynamic
analysis. Hence, considering PANDA is not focused solely on
record and replay, it is adequately different than QEMU
2.1.0's numbers just as shown on the table below. However,
PANDA takes almost the same amount of time as QEMU
2.1.0.

Hussain, Razak, & Mkpojiogu [26] discuss the perceived
usability sentiments regarding the automated testing tools that
exist for mobile testing. They discuss that many mobile
application developers are using automated testing tools these
days and that include MonkeyTalk, Robotium, and more.
They state how it is no longer foreign that automated testing
tools are gaining trend as it greatly reduces the time taken to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

478 | P a g e

www.ijacsa.thesai.org

conduct the process of testing, excluding errors, and even
omitting possible errors due to human factor. They argue how
it has become highly important for automated testing tools to
be of good usability as automated testing tools should not only
support either native or hybrid, but they shall be able to do
both. And that includes for Android and iOS.

Rosziati Ibrahim et al. [14] discuss the automatic testing
tool called EPiT for generating test cases automatically. EPiT
is a plug-in tool that can be installed in Eclipse environment.
EPiT has a parser that reads the source codes line by line and
then extracts all the attributes and functions from the classes
and finally generates the test cases of all functions
automatically.

Salihu et al. [27] propose a model to generate test cases
from mobile application based on GUI. AMOGA framework
is used for the generation of test cases with two important
algorithms embedded within the framework. They are greedy
algorithm and crawler algorithm.

IV. UML SPECIFICATION

UML diagrams are considered as the de-facto standard tool
being used for the documentation of object-oriented modelling
[28]. Two diagrams have been used for this project. They are
use-case diagram and class diagram.

A. Use-case Diagram

Fig. 3 shows the use-case diagram of the research study.
Based on Fig. 3, the actor is a user who can execute the tool in
order to read the source code files of the case study. After
doing so, it will be able to extract the classes and interface
information, as well as checking the functions dependency. At
last, it will generate the test cases.

B. Class Diagram

The class diagram portraits the classes that are going to be
implemented during the development cycle. Fig. 4 shows the
class diagram of this research study.

Fig. 3. Use-Case Diagram.

Fig. 4. Class Diagram.

Based on Fig. 4, it shows the specific of which methods
belong either to the user, tool or the Eclipse IDE itself. The
diagram does not exactly illustrate the directional work flow
of the testing but it shows the classes that are being used for
the implementation.

V. RESEARCH METHODOLOGY

The research study follows a specific process that consists
of four stages to be carried out in order. For this research
study, it will include a total of four major stages, the first stage
being the requirement analysis. Next, it is followed by the
design, implementation, and testing stages in an orderly
manner. These four phases are illustrated in Fig. 5.

Based on Fig. 5, the requirements analysis stage is critical
to this research study. As stated by Shukla, Pandey, & Shree
[29], many other phases depend on requirements engineering
and that includes the design, coding and testing. In this
research study, this phase includes identifying the necessary
tools and requirements needed. After identification, the
requirements needed have been noted. The case study of the
research is based on an Android mobile application which is
MyNetDiary [11]. From MyNetDiary, the scope is further
narrowed down to its 3 modules. The platform used for the
research development is Eclipse IDE with the implementation
of the Java programming language. Several other software and
plugins are required for this research. As the codes of
MyNetDiary mobile application cannot be fully obtained, it is
determined that the software testing technique used is grey-
box testing.

As the analysis phase, design phase is also included in
SDLC. On a generic sense, during the design phase, the
technical details of a software project are discussed, and this
usually comprises of several aspects such as the technologies
to be used, constraints, design approach, and so forth [30].

For the implementation phase, Fig. 6 shows the steps for
implementing the tool.

Based on Fig. 6, the implementation process begins with
first reading the source code file of the case study. Once the
source codes are obtained, the automated testing tools which
are running on Eclipse IDE will identify the classes and
functions to be extracted. After that, the automated testing
tools will begin generating the test cases automatically and the
time taken for each of the tools and techniques will be
observed, and recorded. For each software, testing methods,
both manual testing and automation testing; the tests will be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

479 | P a g e

www.ijacsa.thesai.org

run a total of 5 times for each Module 1, Module 2, and
Module 3. This was done in order to get the optimal and most
accurate data for the research. Lastly, the evaluation of time
taken between the manual and automated testing will be made.

A. Manual Testing Flowchart

There are three basic activities to be done during the
manual testing process as shown in Fig. 7(a). The case study
file will first be run and executed, and then software tester will
start inserting inputs. The time taken for the process to
generate test cases will be recorded.

B. Automatic Testing Flowchart

Similar to the previous process of manual testing,
automatic testing also follows several steps on generating test
cases as shown in Fig. 7(b). The flowchart consists of four
activities. The step begins with source code files of the case
study being read. Its classes and interface information will be
extracted, and the functions dependency will also be checked.
Lastly, the test cases will be automatically generated by the
selected tools.

Fig. 5. Research Process.

Fig. 6. Implementation Process.

Fig. 7. (a) Steps for Manual Testing ; (b) Steps for Automatic Testing.

VI. RESULTS AND DISCUSSION

Based on MyNetDiary [11], three modules have been used
in order to generate the test cases. Table I shows the details of
these three modules.

The data recorded from all the tests run during the research
have been tabulated as each module is run at least five times
for each respective automatic testing tools. The formula used
to calculate the average time taken of tests run is:

∑

 (1)

where ∑ indicates the summation of the time taken to run
for each module.

A. Manual Testing Results

Table II shows the calculation of data on the results of
time taken to manually generate the test cases for all three
modules.

Fig. 8 is the graphical diagram from Table II. It depicts the
value of the average time taken to generate test cases manually
for Module 1, Module 2, and Module 3. It took 21.884s,
13.672s, and 15.642s to generate the test cases for Module 1,
Module2, and Module 3, respectively.

TABLE I. DETAILS MODULES FOR THE CASE STUDY

Module Details

Module 1 Module of Calorie, BMI and Water

Module 2
Module to calculate the amount of calorie consumed from

the different meals

Module 3
Module to calculate the amount of calorie burn f1rom

different exercises

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

480 | P a g e

www.ijacsa.thesai.org

TABLE II. MANUAL TEST RUN ON THE CASE STUDY

Module No. of Test Time Taken (s)
Average Time

Taken (s)

1

1 23.490

21.884

2 22.080

3 20.920

4 21.710

5 21.220

2

1 13.220

13.672

2 13.720

3 13.600

4 14.240

5 13.580

3

1 15.770

15.642

2 15.600

3 15.590

4 15.570

5 15.680

Fig. 8. Average Time Taken to Generate Test Cases Manually.

B. JUnit4 Testing Results

Table III shows the calculation of data on the results of
time taken for Junit4 [12] to generate the test cases
automatically for all the three modules.

Fig. 9 is the graphical diagram from Table III. It depicts
the value of the average time taken to generate test cases
automatically for Module 1, Module 2, and Module 3. It took
1.363s, 1.093s, and 0.598s to generate the test cases for
Module 1, Module2, and Module 3, respectively.

C. TestNG Testing Results

Table IV shows the calculation of data on the results of
time taken for TestNG [13] to generate the test cases
automatically for all three modules.

Fig. 10 is the graphical diagram from Table IV. It depicts
the value of the average time taken to generate test cases
automatically for Module 1, Module 2, and Module 3. It took
0.016, 0.014s, and 0.020s to generate the test cases for Module
1, Module2, and Module 3, respectively.

TABLE III. TEST RUN ON CASE STUDY USING JUNIT4

Module No. of Test Time Taken (s) Average Time Taken (s)

1

1 1.731

1.363

2 1.361

3 1.191

4 1.460

5 1.070

2

1 1.288

1.093

2 1.099

3 1.054

4 1.080

5 0.943

3

1 0.690

0.598

2 0.553

3 0.578

4 0.625

5 0.544

Fig. 9. Average Time Taken to Generate Test Cases Automatically using

Junit4.

TABLE IV. TEST RUN ON CASE STUDY USING TESTNG

Module No. of Test Time Taken (s) Average Time Taken (s)

1

1 0.013

0.016

2 0.021

3 0.013

4 0.022

5 0.013

2

1 0.014

0.014

2 0.012

3 0.012

4 0.019

5 0.013

3

1 0.020

0.020

2 0.020

3 0.020

4 0.017

5 0.022

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

481 | P a g e

www.ijacsa.thesai.org

Fig. 10. Average Time Taken to Generate Test Cases Automatically using

TestNG.

D. EPiT Testing Results

Table V shows the calculation of data on the results of
time taken for EPiT [14] to generate the test cases for all the
three modules.

Fig. 11 is the graphical diagram from Table V. It depicts
the value of the average time taken to generate test cases
automatically for Module 1, Module 2, and Module 3. It took
0.003s, 0.001s, and 0.003s to generate the test cases for
Module 1, Module2, and Module 3 respectively.

Fig. 12 shows one of the runtime on Module 2 using EPiT.
It took only 0.0001s to generate the test cases automatically
from Module 2.

E. Comparative Analysis

Table VI and Fig. 12 are the tabulated data and graphical
diagram representation of all testing methods. The time taken
to generate the test cases using manual testing takes a
significantly longer time than the time taken for the automatic
testing tools to generate the test cases. This is clearly shown in
Table VI.

TABLE V. TEST RUN ON CASE STUDY USING EPIT

Module No. of Test Time Taken (s) Average Time Taken (s)

1

1 0.005

0.003

2 0.002

3 0.002

4 0.002

5 0.005

2

1 0.001

0.001

2 0.001

3 0.001

4 0.001

5 0.001

3

1 0.007

0.003

2 0.001

3 0.003

4 0.001

5 0.001

Fig. 11. Average Time Taken to Generate Test Cases Automatically using

EPiT.

Fig. 12. EPiT Time Elapse for Module 2

TABLE VI. MANUAL VS AUTOMATIC TEST RUN ON CASE STUDY

Module
Manual

Testing
JUnit4 TestNG EPiT

1 21.884s 1.363s 0.016s 0.003s

2 13.672s 1.093s 0.014s 0.001s

3 15.642s 0.598s 0.020s 0.003s

 51.198s 3.054s 0.050s 0.007s

Fig. 13. Time Taken to Generate Test cases using Automatic Testing Tool.

From Table VI and Fig. 13, the time taken to generate test
case using manual testing takes a significantly longer time
than the time taken for the automatic testing tools to generate
test cases. Among the three automation tools used, JUnit4
took the significantly greatest time which total reached more

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

482 | P a g e

www.ijacsa.thesai.org

than 3s. Meanwhile TestNG only took 0.05s to generate all
test cases for all modules. Meanwhile, EPiT took the shortest
time at only 0.007s.

Regarding the differences in time taken to generate test
cases of the modules, this can be justified on the code lines of
the case study. While the case study has simple time
complexity of O(1), the total number of lines for each modules
significantly differs with Module 1 having the most number of
lines written, followed by Module 2, and Module 3. This
causes for the time taken to generate test cases to differ from
each of the respective modules. Beside from that, we can
conclude that automatic testing is definitely better than manual
testing. However, it needs to be noted that manual testing
cannot be simply abandoned as it is still necessary for several
tasks in any software development projects.

From Table VI, it is noted that manual testing has the
biggest time difference compared to the others, which is just
as expected. This is because manual testing demands a lot of
resources which is one of them is the time resource [31].
Among the three automated testing tools, it is noted that the
differences of time taken to generate test cases between JUnit4
and TestNG, as well as EPiT; JUnit4 takes the longest time. In
one paper, Kumbhar, Gavekar, & Kulkarni [32] stated that
JUnit is quite a lacking tool in generating test result compared
to other testing tools. Meanwhile, it is no surprise that TestNG
took shorter time than JUnit4 in generating the test cases, as
according to Jacob and Karthikevan [33]. EPiT [14] is the
latest software testing tool that has the shortest time to
generate test cases automatically for the three modules. EPiT
uses the algorithm in [34] in order to reduce the redundancy of
test cases generated.

VII. CONCLUSION

This paper has discussed and compared the three automatic
tools namely Junit4, TestNG and EPiT for generating test
cases automatically. All three tools are plugged into Eclipse
IDE. The time taken to generate the test cases has been
compared among the tools. After the tests are run, it has been
observed that JUnit4 took the longest time to generate all test
cases, the time taken being almost up to 3s. Meanwhile
TestNG only took 0.05s to generate all test cases for all
modules. On the other hand, EPiT took the shortest time at
only 0.007s. Therefore, EPiT gives the shortest time in order
to generate test cases automatically. Beside from that, we can
conclude that automatic testing is definitely better than manual
testing. However, it needs to be noted that manual testing
cannot be simply abandoned as it is still necessary for several
tasks in any software development projects.

ACKNOWLEDGMENT

This project is funded by the Ministry of Higher Education
Malaysia (MOHE) under the Malaysian Technical University
Network (MTUN) grant scheme Vote K234 and SENA Traffic
Systems Sdn. Bhd.

REFERENCES

[1] Myers, G. J., Sandler, C., & Badgett, T. (1979). The art of software
testing, JohnWiley & Sons. Inc, Canada.

[2] Jindal, T. (2016). Importance of Testing in SDLC. International Journal
of Engineering and Applied Computer Science (IJEACS), 1(02), 54-56.

[3] Souza, É. F. D., Falbo, R. D. A., & Vijaykumar, N. L. (2017). ROoST:
reference ontology on software testing. Applied Ontology, 12(1), 59-90.

[4] Bertolino, A., & Marchetti, E. (2005). A brief essay on software testing.
Software Engineering, 3rd edn. Development process, 1, 393-411.

[5] Afrin, A., & Mohsin, K. (2017). Testing approach: Manual testing vs
automation testing. Global Sci-Tech, 9(1), 55-60.

[6] Patidar, R., Sharma, A., & Dave, R. (2017). Survey on Manual and
Automation Testing strategies and Tools for a Software Application.
International journal of advanced research in computer science and
software engineering, 7(4), 10.

[7] Anjum, H., Babar, M. I., Jehanzeb, M., Khan, M., Chaudhry, S., Sultana,
S., ... & Bhatti, S. N. (2017). A comparative analysis of quality
assurance of mobile applications using automated testing tools.
International Journal of Advanced Computer Science and Applications,
8(7), 249-255.

[8] Kochhar, P. S., Thung, F., Nagappan, N., Zimmermann, T., & Lo, D.
(2015, April). Understanding the test automation culture of app
developers. In 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST) (pp. 1-10). IEEE.

[9] Zhu, Y., Hou, Y., & Wang, B. (2015). Application of automatic test tool
Robotium for Android [J]. Information Technology, 10, 198-200.

[10] Alotaibi, A. A., & Qureshi, R. J. (2017). Novel Framework for
Automation Testing of Mobile Applications using Appium.
International Journal of Modern Education & Computer Science, 9(2).

[11] MyNetDiary.com. (2021) “Calorie Counter - MyNetDiary, Food Diary
Tracker”. Retrieved December 2020, from: https://play.google.com/
store/apps/details?id=com.fourtechnologies.mynetdiary.ad&hl=en&gl=
US

[12] Junit4 (2021). Retrieved December 2020 from: https://junit.org/junit4/

[13] TestNG (2020). Retrieved December 2020 from: https://testng.org/doc/
index.html

[14] Rosziati Ibrahim, Ammar Aminuddin Bani Amin, Sapiee Jamel, Jahari
Abdul Wahab (2020). EPiT: A Software Testing Tool for Generation of
Test Cases Automatically. SSRG International Journal of Engineering
Trends and Technology, 2020, 68(7), 8-12. DOI:10.14445/22315381/
IJETT-V68I7P202S

[15] Software Testing Levels. (2020). Software Testing Fundamentals.
Retrieved December 2020 from: https://softwaretestingfundamentals.
com/software-testing-levels/

[16] Jan, S. R., Shah, S. T. U., Johar, Z. U., Shah, Y., & Khan, F. (2016). An
innovative approach to investigate various software testing techniques
and strategies. International Journal of Scientific Research in Science,
Engineering and Technology (IJSRSET), Print ISSN, 2395-1990.

[17] Kassab, M., DeFranco, J. F., & Laplante, P. A. (2017). Software testing:
The state of the practice. IEEE Software, 34(5), 46-52.

[18] Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A. (2016,
November). Software testing techniques: A literature review. In 2016
6th International Conference on Information and Communication
Technology for The Muslim World (ICT4M) (pp. 177-182). IEEE.

[19] Lawanna, A. (2014). The theory of software testing. AU Journal of
Technology, 16(1), 35-40.

[20] Sneha, K., & Malle, G. M. (2017, August). Research on software testing
techniques and software automation testing tools. In 2017 International
Conference on Energy, Communication, Data Analytics and Soft
Computing (ICECDS) (pp. 77-81). IEEE.

[21] Mailewa, A., Herath, J., & Herath, S. (2015, April). A Survey of
Effective and Efficient Software Testing. In The Midwest Instruction
and Computing Symposium. Retrieved from http://www.
micsymposium. org/mics2015/ProceedingsMICS_2015/Mailewa_2D1_
41. pdf.

[22] Poulova, P., & Klimova, B. (2018). Automated Software Testing—A
Case Study. Advanced Science Letters, 24(4), 2578-2581.

[23] Li, Y., Yang, Z., Guo, Y., & Chen, X. (2017, May). Droidbot: a
lightweight ui-guided test input generator for android. In 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C) (pp. 23-26). IEEE.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 4, 2021

483 | P a g e

www.ijacsa.thesai.org

[24] Mao, K., Harman, M., & Jia, Y. (2016, July). Sapienz: Multi-objective
automated testing for Android applications. In Proceedings of the 25th
International Symposium on Software Testing and Analysis (pp. 94-105).

[25] Dolan-Gavitt, B., Hodosh, J., Hulin, P., Leek, T., & Whelan, R. (2015,
December). Repeatable reverse engineering with PANDA. In
Proceedings of the 5th Program Protection and Reverse Engineering
Workshop (pp. 1-11).

[26] Hussain, A., Razak, H. A., & Mkpojiogu, E. O. (2017). The perceived
usability of automated testing tools for mobile applications. Journal of
Engineering, Science and Technology (JESTEC), 12(4), 89-97.

[27] Salihu, I.A., Ibrahim, R., Ahmed, B.S., Zamli, K.Z. Usman, A. (2019).
―AMOGA: A Static-Dynamic Model Generation Strategy for Mobile
Apps Testing‖. IEEE Access. 2019. DOI:10.1109/ACCESS.2019.
2895504.

[28] Pender, T. (2003). UML 2 Bible. John Wiley & Sons.

[29] Shukla, V., Pandey, D., & Shree, R. (2015). Requirements Engineering:
A Survey. Requirements Engineering, 3(5), 28-31.

[30] Rani, U., Barjtya, S., & Sharma, A. (2017). A detailed study of Software
Development Life Cycle (SDLC) models. International Journal Of
Engineering And Computer Science, 6(7).

[31] Garousi, V., & Mäntylä, M. V. (2016). When and what to automate in
software testing? A multi-vocal literature review. Information and
Software Technology, 76, 92-117.

[32] Kumbhar, M., Gavekar, V., Kulkarni, A. (2020). Performance Testing
Tools: A Comparative Study of QTP, Load Runner, Win Runner and
JUnit.

[33] Jacob, A., & Karthikevan, A. (2018, March). Scrutiny on Various
Approaches of Software Performance Testing Tools. In 2018 Second
International Conference on Electronics, Communication and
Aerospace Technology (ICECA) (pp. 509-515). IEEE.

[34] Ibrahim, R., Ahmed, M., Nayak, R., Jamel, S. (2020). ―Reducing
redundancy of test cases generation using code smell detection and
refactoring‖. Journal of King Saud University – Computer and
Information Science, Volume 32, Issue 3, March 2020, pp 367-374.
DOI:10.1016/j.jksuci.2018.06.005.

