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Abstract—The Autonomous Underwater Vehicles (AUVs) in-
dustry is still awaiting its Henry Ford to bring to the market
solutions that are well adapted to the challenge of underwater
exploration. This will certainly be done by the advent of small
connected drones equipped with small sensors and embedded
devices, allowing AUVs to operate in a coordinated swarm, at a
unit price so affordable that we can consider deploying hundreds,
or even thousands simultaneously, to be able to observe the ocean
with an instrument of a size finally adapted to its immensity.
The scope of this work is to build a high performance and low-
cost embedded device easy to mount onboard small AUVs and
implementing energy-based spectrum sensing algorithms in order
to detect targets underwater using acoustic waves. The principle
of design, hardware architecture and real-time implementation
of the acoustic signal processing chain are described in this
paper. Simulations and sea experiments have been conducted
successfully and qualified the performance of the realized system
to detect acoustic pings underwater depending on the signal-
to-noise ratio (SNR). Moreover, this paper proposes methods to
improve the measured detection range and accuracy.

Keywords—Autonomous Underwater Vehicles (AUVs); acoustic
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I. INTRODUCTION

Many questions have been raised after the mission failure
of BlueFin-21 (Fig. 1), a super-equipped AUV costing more
than million dollars deployed in March 2014 by the U.S. Navy
to spot black boxes of Boeing 777 of Malaysian Airlines flight
MH370, crashed into the empty vastness of the southern Indian
Ocean, killing all 239 passengers and crew onboard.

Fig. 1. From Left to Right : the Bluefin-21, Bluefin-12, and Bluefin-9
Autonomous Underwater Vehicles (AUVs) [1].

To successfully capture the last acoustic signals transmitted
by the black boxes, it would probably have been necessary to
deploy a multitude of coordinated ”swarm”, forming a listening
network deployed in the column of water over several square
kilometers (see Fig. 2). But with AUVs costing tens or even
hundreds of thousands of dollars, this concept is economically
unrealistic.

Fig. 2. Schematic Showing the Proposed Solution to Detect Targets
Underwater using Small AUVs Operating in Swarm.

In recent years, as covered by [2], [3], oceanic based
research is gradually growing across the globe trying to
solve the major challenges of Underwater Acoustic Sensor
Networks (UWASNs) like limited bandwidth, propagation,
power constraint, localization and spectrum utilization, which
is challenging compared to terrestrial applications due to the
unavailability of GPS and to the unique physics of sensing in
the marine environment where the search zone is immense, and
the bad weather and rough seas hamper efforts to find objects
underwater. However, the majority of research works are
limited to theoretical studies and lack of real implementation
with week contribution in the technical development of AUV
industry.

The motivation behind this work arises from an absence of
open architectures and easy-to-use solutions that give access to
the physical variables of underwater acoustic systems, which,
in turn, will allow the research community to design novel
acoustic spectrum sensing algorithms. In this scope, the present
paper presents a proof of concept and major steps required to
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design and develop a low volume acoustic device that can be
installed onboard AUVs in order to detect targets underwater.
These three main challenges will be investigated:

1) Addressing the ”Underwater spectrum sensing chal-
lenge” : where the AUV should be able to sense
acoustic signals transmitted by subsea targets.

2) Addressing the ”Acoustic ranging challenge”: pro-
viding the AUV with its relative distance to the
transmitter of acoustic waves.

3) Addressing the ”accurate detection challenge”: Im-
proving the detection performance especially in term
of maximum range and Time-of-Arrival (ToA) mea-
surement accuracy.

The paper is organized as follows. Section II reviews
the acoustic spectrum sensing techniques. In Section III, the
proposed methods are described by specifying the hardware
architecture of the pinger and the transceiver, implementation
of the acoustic signal processing chain and its simulation
in MATLAB. Section IV presents the sea trial results and
discusses solutions to improve the performance of the realized
system. Conclusions are given at the end.

II. SPECTRUM SENSING METHODS REVIEW

A. Overview

Above water, most autonomous systems rely on radio
or spread-spectrum communications and global positioning.
However, electromagnetic signals attenuate rapidly underwater,
and therefore acoustic waves are needed because they are less
attenuated and travel further in water, as detailed in [4] and [5].
The use of electromagnetism remains possible at ”very low” or
”extra low” frequencies, but their implementation to establish
a subsea communication will require large antennas in general,
incompatible with the small size of an AUV and will at most
allow a few bits per second to be exchanged, which remains
too limited for the operational use that is generally required
with AUVs.

The terms ”Spectrum sensing” and ”detection” are nom-
inally interchangeable. They denotes the process to identify
the presence or absence of transmitters in a specific spectrum;
see[6]. Spectrum sensing techniques can be classified into two
main categories :

• Non-cooperative [7], [8]: where receivers must inde-
pendently have the ability to determine the presence
or absence of a transmitter in a specific spectrum.

• Cooperative [9], [10], [11]: where a group or network
of receivers exchange information in order to enhance
the detection performance.

This paper focuses on Non-cooperative category allowing each
AUV to detect and recognize transmitters pinging in a specific
spectrum. For reason of simplicity, the following comparison
focuses on the two popular techniques (covered here [12]) that
are matched-filtering and energy based detection.

B. Matched Filtering based Detection

The matched filtering based spectrum sensing technique,
as detailed in [13], [14], uses the transmitted signal as a

template to which the received signal is compared. The better
match between the template and the received signal, is the
greater amplitude of the matched filter’s output. The received
signal and pilot signal are convoluted and averaged over N
samples to obtain the matched filter decision statistic, which
is then compared to the matched filter threshold TMF to get
the sensing decision. TMF is calculated by:

TMF =
1

N

N∑
n=1

(y(n) ∗ xp(n)) (1)

Where the received signal stream is denoted by y(n), the
known pilot signal is indicated by xp(n), and N is the number
of samples acquired in a sensing cycle Under H0, the decision
statistic, TMF , is obtained by the averaged convolution of the
Gaussian noise and the pilot signal. On the other hand, under
H1, TMF results from the convolution of the transmitted signal
contaminated with the Gaussian noise and the pilot signal
averaged over N samples. The matched filter threshold, λMF

is taken from the ”quiet time approach”. Therefore, the noise
is merely present in the received signal, y(n). As a result, the
matched filter threshold, λMF is identical to the matched filter
decision statistic, TMF during the quiet time period. If λMF

is determined, the binary hypothesis is given as:

H0 : TMF > λMF

H1 : TMF < λMF
(2)

C. Energy based Detection

Energy detection (also called non-coherent detection; in
reference to [15], [16]) is very popular and performed by
simply comparing the output of the energy of the received
signal energy with a predefined threshold . The decision
statistic of an energy detector can be calculated from the
squared magnitude of the FFT averaged over N samples of
the received signal. The detector output is the received signal
energy as given by:

TED =

N∑
n=0

y(n)2 (3)

Where n = 1....N , N is the number of samples, and y(n) is
the received signal, and TED denotes the energy of the received
signal. The detection decision can be expressed as:

H0 : TED >λED

H1 : TED <λED
(4)

Where λED denotes the energy detection threshold.

Our design will be based on energy detection mechanism
which is easy to implement with moderate computational
complexities and can be performed on both time and frequency
domain. In addition, compared to the matched filtering, Energy
detection does not require a prior information of the transmit-
ted signal to operate. However, the detection threshold has to
be selected carefully, as described in the next section.

D. Detection Threshold

The detection threshold is a decibel number that essentially
incorporates the AUV acoustic transceiver ability to decide
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that a detection is made or not made. The detection process
generally includes the following probabilities:

• The probability of detection (Pd): the probability that
a signal is detected if it is present;

• 1-PD: the probability the signal will not be detected
if it is present;

• The probability of false alarm (PFA): the probability
that a signal is detected when it is not present;

• 1-PFA: the probability that the signal will not be
detected when it is not present

As described in [17], [18], the detection threshold DT with a
Gaussian signal for a given Pfa:

DT = 10 log
Q−1.(Pfa)−Q−1.(Pd)2

2
(5)

Where Q(λED) = Proba(Z > λED) is the error function that
validates the probability where a gaussian signal Z of variance
σ and average M reaches a threshold λED.

The problem exposed here corresponds to a frequent ques-
tion in a detection chain: how to adjust the threshold to control
the false alarm rate? In the ideal case, the statistics of the noise
alone are known and the threshold can be calculated (analyti-
cally or by simulation) from the desired false alarm rate, but
in practice the characteristics of the noise are variable and it
is therefore necessary to estimate the noise in permanently to
have an correct estimation of the threshold. We consider here
the case of a quadratic detection chain fed by Gaussian noise,
the variance of which is known as detailed in [17], [18]. In
this case the decision variable consists of the square of the
input Gaussian variable and is therefore distributed according
to an exponential law of density :

p(x) =
1

2σ2
. exp

−x
2σ2

.U(x) (6)

Where U(x) designates the function which is worth 1 for x
positive and 0 elsewhere (HEAVISIDE [19]). We can easily
set the detection threshold from the desired Pfa, for example,
which Pfa = 10−10 is not abnormal in an automatic detection
device. We have :

Proba(X > η) = exp
−η
2.σ2

= 10−10 (7)

Thus,
η = 10. ln 10.2σ2 (8)

We can therefore write the detection condition in the form:

X − 10. ln 10.2.σ2 > 0 (9)

In practice 2.σ2 is unknown and must therefore be replaced by
an estimator noted Y . The detection condition then becomes:

X − λY > 0 (10)

As result, the detection threshold will be biased and the value
of λ will be different from 10. ln 10 due to the presence of Y
instead of 2.σ2.

III. PROPOSED METHODS

A. Acoustic Pinger Design

Refer to Fig. 3 for the next discussion. The acoustic
pinger incorporates a PIC18 Micro-controller (MCU) [20]
offering high computational performance at an economical
price – with the addition of high-endurance, Flash program
memory and introducing design enhancements that make these
Microcontrollers a logical choice for many high performance,
power sensitive applications. The Flash MCU outputs acoustic
pulses in 8-bits digital format, the pulse is converted to an
analog format by a Digital to Analog Converter (DAC), then
amplified to high amplitude (around 24 volts) by means of an
analog converter. A transformer is installed after the amplifier
to raise the voltage of the acoustic pulse to a high amplitude
voltage, which will attack an acoustic transducer ceramic that
convert the electrical wave to an acoustic wave propagating in
the water.

Fig. 3. Schematic Diagram Showing the Acoustic Pinger Architecture.

The DAC circuit was designed to interface between PIC
MCU that are generating the acoustic pulse in digital format
and the analog amplifier. It is rated as single, 8-bit, voltage out
DAC that operates from a single 2.7 to 5.5 Volts supply and
has a parallel microprocessor and DSP compatible interface
with high speed registers and double buffered interface logic.
Its on-chip precision output buffer allows the DAC output to
swing rail to rail. The low power consumption of this part
makes it ideally suited to portable battery operated equipment.
The transmitter amplifier power supply is boosted to 24 Volts.

B. Acoustic Transceiver Design

The transceiver boards presented in Fig. 4 contains all the
necessary circuits to condition and process signals received by
the acoustic hydrophone.
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Fig. 4. Picture of the Acoustic Transceiver Board.

This section scrutinizes the blocks from Fig. 5, as well
as their relations. The transceiver board can receive its power
supply from the AUV and operate from 3.7 to 14 Volts. The
power consumption of the board is about than 60 mA when
fed under 12 Volts. The option to have an additional separate
24 Volts supply directly feeding the acoustic transmitter is also
offered. With this option, the two large electrolytic capacitors
are no longer necessary. A mezzanine for custom IOs or
functions can be installed on the board as a MCU peripheral.
many wireless on-chip modules were integrated through the
mezzanine allowing the board to communicates via Radio
868MHz / 912MHz, Lora, or WiFi.

Fig. 5. Schematic Diagram Showing the Acoustic Transceiver Architecture.

The board incorporates a Texas Instruments TM320C5x
Digital Signal Processor (DSP) [21] and MSP430F5xx MCU
[22]. The DSP is a fixed-point processor based on an advanced
modified Harvard architecture which provides an arithmetic
logic unit (ALU) with a high degree of parallelism, application-
specific hardware logic, on-chip memory, and additional on-
chip peripherals. The MSP430F5 family features a powerful
16-bit RISC CPU, 16-bit registers, and constant generators
that contribute to maximum code efficiency. These MCUs
include a high-performance 12-bit analog-to-digital converter
(ADC), up to four universal serial communication interfaces,
hardware multiplier, DMA, real time clock module with alarm
capabilities, and I/O pins. Onboard the transceiver, this MCU
manages the RF transceiver, the communication to the DSP
using Host Port Interface (HPI), and communication to an
external host and sensors. Furthermore, this MCU supports
TI RTOS based software and open to custom applications.
Inter-processor communications were implemented between

the Flash MCU and the DSP based on the Host Port Interface
link (HPI): A high speed parallel port through which the Flash
MCU can directly access to DSP memory space.

Before being digitally processed, the hydrophone acoustic
signals are first passed through a low pass filter and converted
to digital format using a stereo ADC, that perform sampling,
analog to digital conversion, and anti-alias filtering.

C. Acoustic Chain

As illustrated in Fig. 6, each received signal (a pure
tone sine wave of constant frequency) is first amplified and
filtered, then sampled through the ADC converter. The time-
of-arrival of incoming pulses on the transceiver antenna is
mainly measured by the DSP which implements an energy
detector testing continuously if the pulse is present or not,
and a high precision timer marking the detection timestamp.
If we consider that the pinger and the transceiver share the
same time reference [23], [24], the ToA of the incoming pulses
can be estimated and the distance between the pinger and the
transceiver will be determined.

Fig. 6. Block Diagram Showing the Implementation of the Acoustic Signal
Processing Chain. The Output is the Distance Between the Pinger and the

Transceiver.

The transmitted pulse is a pure tone sine wave pulse,
shaped in a balckman window: The pulse is combined from a
blackman window multiplied by a sine wave. Equations (11)
and (12) define respectively the mathematical formulas of the
Blackman window and the transmitted pulse [25].

w(k) = 0.42− 0.5 cos(
2π.k

N − 1
) + 0.08. cos(

4π.k

N − 1
) (11)

Where 0 ≤ k ≤ M − 1, N is the length of the blackman
window. M is N/2 when N is even and (N + 1)/2 when N is
odd.

S(k) = A. sin(2π.f/fe).w(k) (12)

Where A is the signal amplitude peak, f is the signal frequency,
fe is the sampling rate. The acoustic pulse form was simulated
in Matlab and implemented in the real platform. The real
output of the transmitter was measured and qualified by using
an oscilloscope. Fig. 7 shows the used waveform, for a signal
frequency of 22 KHz, a sampling frequency of 48 KHz and a
pulse length of 12 milliseconds.
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Fig. 7. Hydrophones Input Signals. Pure Tone Sine Wave Shaped in 12 ms
blackman Window Without Noise. SNR = 100 dB, Frequency = 22 kHz,

Amplitude = 20 mV, Pulse width = 12 ms, Sampling Rate = 48 kHz.
Horizontal Axis is the Time in Samples (20.8 µs). Vertical Axis is the

Amplitude in Volts.

This pulse was implemented on the Flash MCU of the
acoustic pinger. Oscilloscope measurement of the pulse at the
output of amplifier is illustrated in Fig. 8.

Fig. 8. Pulse Measured at the Output of the Acoustic Pinger Amplifier.
Oscilloscope Configuration: Vertical Axis is the Amplitude in Volts

(1.5V/div). horizontal Axis is the Time (2ms/div).

D. Energy Detector

The energies of the hydrophone channel can be calculated
using the following formula:

Energy =

N∑
n=0

yh(n)
2 (13)

Where yh is the received signal from the hydrophone and N
is the number of samples.

1) Pulse energy: The short integrator is set to measure the
pulse energy during a short period. By analogy with an RC
filter [26], the equation of an RC integrator is as follows:

Y (n) =
X(n)

α
+ Y (n− 1), RC α = α.Te (14)

The z transfer function of this integrator is:

H(z) =
1

α− (α− 1).Z−1
(15)

This is a first order low pass filter and cutoff frequency:

Fc =
1

2.π.RC α
(16)

The short Integrator is updated with a new energy sample as
follows:

IntgC(n) =
Energy antenna− IntgC(n− 1)

RC α
+IntgC(n−1)

(17)

2) Noise energy: The long integrator aims at estimating
the noise level in a long period. Similar to the short integrator,
the long integrator is updated with a new energy sample as
follows:

IntgL(n) =
En− IntgL(n− 1)

RC β
+ IntgL(n− 1) (18)

3) Detection contrast: The detection contrast can be then
estimated:

Detection Contrast =
IntgC(n)

IntgL(n)
(19)

E. MATLAB Simulation

The acoustic chain and energy detector described above
were implemented in MATLAB. The objective of this simula-
tion is to qualify the capability of the designed chain to detect
acoustic properly. The test signals are considered as pure tone
sine waves shaped in blackman window and combined with
white gaussian noise. Fig. 9 shows the frame used for the
test, which is combined from pulses with 200 ms time-spaced
simulating the reception of acoustic pulses by the transceiver.

Fig. 9. Acoustic Pulses Frame Showing the form of Pulses Received by the
Transceiver. SNR = 40 dB, Frequency = 22 kHz, Amplitude = 20 mV, Pulse

width = 12 ms, Sampling Rate = 48 kHz. Horizontal Axis is the Time in
Samples (20.8 µs). Vertical Axis is the Amplitude in Volts.

Fig. 10 gives the received pulses pass through a low pass
filter of 330 coefficients (6.8 ms). This filter is able to attenuate
adjacent channels with up to -80 dB at 500 Hz which allows
the acoustic chain to process multi-channels pulses in the range
between 18 and 22 kHz.
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Fig. 10. Low Pass Filter Design in MATLAB. 330 Coefficients (fixed-point
conversion Q21), Cutoff Frequency at -3db: 129 Hz, Adjacent Channel

Attenuation : -80 dB at 500 Hz.

Fig. 11 gives a comparison of the integrators measurements
in response to the acoustic frame. In blue is the 5.33 ms short
integrator following the shape of the pulse. The long integrator,
in red, gives the estimation of noise.

Fig. 11. Integrators Measurements. Horizontal Axis is the Time in Samples
(20.8 µs). Vertical Axis is the Amplitude in dB.

The energy detection profile for the existing system (IntegL
= 1366 ms, IntegC = 5.33 ms, 12 dB detection threshold) is
also presented in Fig. 12. The blue solid line is the 12 dB
detection threshold. The energy detection level, in red color,
(= IntgC

IntgL ) exceeds the detection threshold when pulses are
received.

Fig. 12. Energy Detection Profile of the Acoustic Chain. Horizontal Axis is
the Time in Samples (20.8 µs). Vertical Axis is the Amplitude in dB.

IV. RESULTS AND DISCUSSION

A. Sea Experiments

This section presents two sets of experimental results. The
developed system was first tested in the Marina Bouregreg
harbor, located at the mouth of the Bouregreg River, on
the shore of SALE, Morocco. Then we reproduced tests in
Guerlédan lake, France (Fig. 13).

Fig. 13. Map Images Showing the Location of the Pinger (Tx) and the
Transceiver (Rx) Installed in (a) Marina Harbor and (b) Guerlédan Lake.

1) Experimental platform: A schematic diagram of the
experimental platform is shown in Fig. 14. The experiments
reported herein rely on a transmitter electronic board that was
set on the deck, while its watertight ceramic was immersed at
2 meters depth. The receiver electronic board, connected to a
Laptop, was also set on the deck, with a distance to up to 280
meters far away from the transmitter. The receiver hydrophone
antenna was immersed at a depth 2 meters. The transmitter and
the receiver were put in line of sight.

Fig. 14. (a) Image of the Experimental Platform at Marina Harbor. (b)
Schematic Diagram Showing the Acoustic Pinger and the Acoustic

Transceiver Boards.

2) Results: The acoustic pinger was programmed to send
20 kHz pure tone acoustic pulses at every second. The acoustic
transceiver is receiving acoustic pulses through the acoustic
antenna immersed in water. The digital signal processor detects
pulses (at 20 kHz frequency) and computes the time of arrival.
The Flash MCU of the transceiver reads data from DSP
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memory through HPI link and outputs the computed distance
to a laptop through serial USB. The sea trial results have been
obtained by first synchronizing the pinger and the transceiver
by radio to have the same time reference. Then by varying the
distance between the pinger and the transceiver and measuring
the time-of-arrival (ToA) of acoustic pulses at the transceiver.
The recorded ToAs are logged into the Laptop PC in reference
to the appropriate position. The DSP firmware parameters were
set to: (a) Short Integrator period of 5.33 ms. (b) A Long
Integrator period of 1.366 s. (c) Detection threshold of 12 dB.
(d) The sound velocity was taken equal to 1500 m/s.

Fig. 15 shows an example of experiments data recorded in
Guerlédan lake with pinger deployed 45m far away from the
transceiver. This graph shows a minimum error of 0.003m, a
maximum error of 1.48m, an average error of 0.62m and a
peak-to-peak variance of 1.47m.

Fig. 15. Measured Distance at 45m. In Blue is the True Value (45m). In
Orange is the Measured Distance by the Transceiver. Horizontal Axis is the

Measurement Number. Vertical Axis is the Distance in Meters.

Table I summarizes the obtained performances. The detec-
tion contrast at Marina harbor conditions (low depth, noisy
environment) was estimated to be very low (less than 20
dB at 280m), which explains the low performance (520m
maximum range, +/-9m error at 280m). A better performance
was obtained (1.2 km detection range, +/-4m error at 300m)
when we reproduced the same experiments in the Guerlédan
lake (France) with better conditions: the detection contrast was
measured around 32 dB at 300 meters.

TABLE I. SEA EXPERIMENTS PERFORMANCE. PINGER PULSE WIDTH =
12 MS, SAMPLING RATE = 48 KHZ. TRANSCEIVER DETECTION

THRESHOLD = 12 DB

Environment Water depth Distance accuracy detection range
Marina harbor 4m +/- 9m measured at 280m 520m
Guerlédan lake 30m +/- 4m measured at 300m 1.1 km

B. Improving the Noise Estimation

1) Observation: During sea trial experiments, we have no-
ticed that the channel noise measurements given by transceiver
onboard the vehicle considerably increase with the reception
of acoustic pulses from transmitters as presented in Fig. 16.

Fig. 16. Long Integrator Noise Buffer Recorded During Sea Trial
Experiments at Guerlédan Lake, France. Vehicle Navigating in Free Run.

Acoustic Pulses Received Every 200 ms.

This obtained records show that the presence of the signal
in the acoustic chain leads to an overestimation of the noise
which has a significant “blanking” effect. Furthermore, the
chain has a memory that is intentionally adjusted to obtain
a correct estimate of the noise ( a long memory). This
phenomena can be proven using formulas in Section ??. The
present context is rather favorable since the expected signal is
known. We can therefore inhibit the calculation of the variance
of noise during the pulse presence: (1) Either by delaying the
long integration calculation quite enough to make sure the
signal does not pollute the noise. (2) Or by simply freezing the
long integrator at the first sign of the presence of the signal,
as described in the next section.

2) Proposed solution: Refer to Fig.17 for the next discus-
sion. The algorithm of freezing the long integrator (IntgL)
is proceeded as follows: In the absence of pulses, the Long
Integrator is calculated as before where the short integrator
(IntgC = 5.33ms) is considered to check the evolution
of pulses energies. If the difference between the IntgC and
the IntgL exceeds 3 dB, we stop feeding the IntgL. These
simulations were made with an IntgL always frozen if the
difference between the IntgCp and the IntgL is more than 3
dB, and de-frozen if the difference is less than 3 dB. Fig. 18
shows the new noise profile (Long integrator).
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Fig. 17. Freezing IntgL Flowachart. Proposed to Remove the Sea Noise
Estimation bias Caused by the Presence of the Pulses.

Fig. 18. Long Integrator Profile. In Blue, is the 5.33 ms Short Integrator. In
Red, the Old Long Integrator with Value Increased in the Middle of Pulses.

The New Long Integrator (in green) Maintains the Noise Level and Got
Frozen when Pulses are Presents.

From the obtained results, we notice that the long integrator
is sensible to the acoustic pulses reception which makes the
estimation of noise level biased with an offset of more than
10 dB after some seconds of navigation. Means that the real
detection threshold is biased with 10 dB and becomes 22 dB
instead of 12 dB. The existing design where the long integrator
is fed in permanence is working well with systems receiving
pulses with low frequency (1 Hz or less). Otherwise, if we
receive continuous pulses every 200 ms (5Hz or more), this
conducts to a biased estimation of the noise level because of
the high presence of pulses in noise estimation. So the way we
are handling the long integrator is not optimal anymore. This
was fixed by freezing the long integrator during the presence
of the pulse which will increase the SNR and improve the
detection range.

C. Improving the Distance Accuracy

As reported in the sea trial results shown in I, a limitation
of the realized system appears in term of inaccuracy of ranging

(up to +/-9m were measured with low SNR configuration). This
is explained by the fact that the existing chain is not optimized
for accurate distance measurement because of the large width
of the acoustic signal (12 ms). The objective of this section is
to review the existing chain and propose solutions to improve
its distance accuracy. Basically, decimetric accuracy on the
distances is obtained by reducing the width of the acoustic
pulses [27]: (1) Either by physical means, by shortening
the transmission time in water or (2) by pulse compression
methods (not studied in this paper). The following solutions
were proposed for investigation: (1) The existing chain : First,
we need to qualify the distance accuracy of the the classic
processing chain with 12 ms blackman pulses that turns today
in the transceiver. (2) An experimental processing chain: based
on the existing chain, with implements a tiny square pulse
of 208 µs width instead of blackman pulse. In addition to
increasing the sampling rate to to 96 kHz, we will need to
adapt the short integrator to this pulse width. At this stage,
we will keep the low pass filtering as is. (3) A high resolution
processing chain: identical to the experimental chain, but with
a low pass filtering well adapted to the width of the pulse.

1) Qualification of the existing chain: MATLAB simu-
lations have been performed using a simple frame of pure
tone acoustic pulses with 2 s time-spaced. Each pulse is a
blackman sine wave combined with white gaussian noise as
shown previously in Fig. 7. The measurement of detection
ToA was performed by varying the energy of the input signal
from high SNR (more than 100 dB) to low SNR (12 dB). An
example showing the ToA of an acoustic pulse of 67 dB is
illustrated in Fig. 19. The status of detection goes high when
the contrast (difference between the pulse energy and the noise)
reaches threshold of 12 dB.

Fig. 19. Detection ToA Measurement with the Existing Chain. In Blue is the
Acoustic Pulse. In Red is the Status of Detection (0=no detection, 1=

detection). Blackman Pulse width = 12 ms, Sampling Rate = 48 Khz, Short
Integrator = 6 ms, Low Pass Filter = 330 Coefficients. Horizontal Axis is the

Time in Samples (20.8 µs). Vertical Axis is the Amplitude in Volts.

The detection ToA and delays measurements, summarized
in Table II, were obtained depending the variation of the
detection contrast (SNR). The measurements show that the
detection delay depends on the contrast level : with high
SNR, the detection is at the beginning of the pulse, while the
detection time is delayed to up to 8.916 ms (13,375 m distance
accuracy) at the limit of detection (12 dB).
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TABLE II. EXISTING CHAIN DETECTION DELAY MEASURED AS
FUNCTION OF THE CONTRAST. BLACKMAN PULSE WIDTH = 12 MS,
SAMPLING RATE = 48 KHZ, SHORT INTEGRATOR = 6 MS, LOW PASS

FILTER = 330 COEFFICIENTS

Contrast (dB) Detection delay (ms) Distance accuracy (m)
more than 100 dB reference -

87 dB 1,458 ms 2,187 m
67 dB 2,354 ms 3,531 m
47 dB 3,583 ms 5,374 m
27 dB 5,625 ms 8,437 m
17 dB 7,354 ms 11,031 m
12 dB 8,916 ms 13,375 m

2) Qualification of the experimental processing chain:
Similar to the qualification of the existing chain, the pulse
frame contains acoustic pulses with 2 seconds time-spaced.
However, the format of the pulse was to square sine wave
instead of blackman, and the pulse width was reduced to 208
µs instead of 12 ms. Fig. 20 illustrates the pulse format used
and a ToA measurement when the SNR is around 82 dB.

Fig. 20. Detection ToA with the Experimental Processing Chain. In Blue is
the Acoustic Pulse. In Red is the Status of Detection (0=no detection, 1=
detection). Square Sine Pulse width = 208 µs, Sampling Rate = 96 Khz,
Short Integrator = 96 µs, Low Pass Filter = 330 Coefficients (3.4 ms).
Horizontal Axis is the time in Samples (10.4 µs). Vertical Axis is the

Amplitude in Volts.

The detection ToA and delays of the experimental pro-
cessing chain were measured depending the variation of the
detection contrast level. The obtained results are presented in
Table III. The measurements show that the maximum detection
delay was reduced to up to 1.145 ms (around 1,718 cm distance
accuracy compared to 13,375 m obtained previously with the
existing processing chain).

TABLE III. EXPERIMENTAL PROCESSING CHAIN DETECTION DELAY
MEASURED AS FUNCTION OF THE DETECTION CONTRAST. SQUARE SINE
PULSE WIDTH = 208 µS, SAMPLING RATE = 96 KHZ, SHORT INTEGRATOR
= 96 µS, LOW PASS FILTER = 330 COEFFICIENTS (3.4 MS). HORIZONTAL

AXIS IS THE TIME IN SAMPLES (10.4 µS). VERTICAL AXIS IS THE
AMPLITUDE IN VOLTS

Contrast (dB) Detection delay (ms) Distance accuracy (m)
more than 100 dB reference -

82 dB 0,052 ms 0,078 m
62 dB 0,187 ms 0,281 m
42 dB 0,437 ms 0,656 m
22 dB 0,822 ms 1,234 m
12 dB 1,145 ms 1,718 m

3) Qualification of the high resolution processing chain:
Now, with the high resolution processing chain, we are going

to adapt the filter window to the tiny pulse. By analogy to
the low pass filter of the existing chain, the filter window was
taken as the half of pulse width ( 2082 = 104 µs). Which is set
with 10 coefficients at 96 KHz sampling rate. Fig. 21 illustrates
the low pass filter profile in MATLAB Filter Design Tool [28].
This filter is of course not very selective and not robust against
adjacent channels, nevertheless it allows to reject out-of-band
noises. Therefore, the high resolution processing chain will be
limited to one-channel instead of eight.

Fig. 21. Low Pass Filter Simulated with the High Resolution Processing
Chain. 10 Coefficients FIR. Sampling Rate = 96 Khz. Rejection -15 dB at 7

KHz.

The detection ToA and delays of the high resolution
processing chain were measured depending the variation of
the contrast level. The obtained results are presented in Table
IV. A very good performance was obtained with a maximum
detection delay of 72.91 µs (around 10,93 cm distance accu-
racy) at the limit of detection (12 dB).

TABLE IV. ONE-CHANNEL HIGH RESOLUTION PROCESSING CHAIN
DETECTION DELAY MEASURED AS FUNCTION OF THE DETECTION

CONTRAST. SQUARE SINE PULSE WIDTH = 208 µS, SAMPLING RATE = 96
KHZ, SHORT INTEGRATOR = 96 µS, LOW PASS FILTER = 10

COEFFICIENTS (104 µS)

Contrast (dB) Detection delay (ms) Distance accuracy (m)
more than 100 dB reference -

86 dB 0 ms 0 m
66 dB 0 ms 0 m
46 dB 0 ms 0 m
26 dB 0,052083 ms 0,03124 m
12 dB 0,072916 ms 0,1093 m

V. CONCLUSIONS

In this paper, we presented the design of device able to
detect acoustic signals underwater. We built prototypes that can
be mounted onboard AUVs allowing them to detect and find
targets that are sending acoustic waves. The proposed hardware
architecture of the pinger is based on an ultra-low-power Flash
Micro-controller sending pure tone acoustic pulses at narrow
band frequency. The transceiver hardware onboard the AUVs
incorporates a Digital Signal Processor implementing energy
based spectrum sensing mechanism to detect the acoustic
pulses sent by the pinger.

The acoustic chain was designed to process pure tone
sine waves shaped in 12 ms blackman window at 48 kHz
sampling rate, 6 ms short integrator and 330 coefficients (6.8
ms) of low pass filter. In addition, it supports multi-channels
operation with the capability to recognize pulses from eight
different pingers transmitting at different frequencies. The
time-of-arrival of incoming pulses is then measured and the
pinger position can be estimated.
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Experiments with the realized system were carried out at
sea with two different configurations: (a) at Marina harbor
(considered as noisy environment), a very shallow waters
(maximum depth ¡5 m) where the transceiver was able to detect
pingers at 520m range, (b) at Guerlédan lake (considered as
clean environment) with up to 30 m depth where more than 1
km range was obtained. During sea trials, two limitations of
were identified: (1) The noise estimator was biased with more
than 10 dB in the case where the receiver detects continuous
pulses with a rate of 200 ms or less. We fixed this issue by
freezing the long integrator at the beginning of pulse detection,
which removed the bias and improved the detection range.
(2) The distance accuracy was evaluated around 2 m in high
SNR and 14 m at limit of detection. This performance can
be improved to around 10 cm by using the one-channel high
resolution processing chain with tiny square pulses of 208
µs processed at 96 kHz sampling rate. As a consequence,
the system will loose the feature of multi-channels operation.
For future works, pulse compression technique should be
investigated with matched filtering in order to enhance the
performance of our system, especially in noisy environments.
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