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Abstract—With the rapid development of remote sensing
technology, our ability to obtain remote sensing data has been
improved to an unprecedented level. We have entered an era of
big data. Remote sensing data clear showing the characteristics
of Big Data such as hyper spectral, high spatial resolution, and
high time resolution, thus, resulting in a significant increase in
the volume, variety, velocity and veracity of data. This paper
proposes a feature supporting, salable, and efficient data cube
for time-series analysis application, and used the spatial feature
data and remote sensing data for comparative study of the water
cover and vegetation change.The spatial-feature remote sensing
data cube (SRSDC) is described in this paper. It is a data cube
whose goal is to provide a spatial-feature-supported, efficient, and
scalable multidimensional data analysis system to handle large-
scale RS data. It provides a high-level architectural overview
of the SRSDC.The SRSDC offers spatial feature repositories for
storing and managing vector feature data, as well as feature
translation for converting spatial feature information to query
operations.The paper describes the design and implementation
of a feature data cube and distributed execution engine in the
SRSDC. It uses the long time-series remote sensing production
process and analysis as examples to evaluate the performance of
a feature data cube and distributed execution engine. Big data
has become a strategic highland in the knowledge economy as a
new strategic resource for humans. The core knowledge discov-
ery methods include supervised learning methods data analysis
supervised learning, unsupervised learning methods data analysis
unsupervised learning, and their combinations and variants.
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I. INTRODUCTION

In recent decades, the remarkable developments in Earth
observing(EO) technology provided a significant amount of
remote sensing(RS) data openly available [1]. This large
observation dataset characterized the information about the
earth surface in space, time, and spectral dimensions [2][3].
Apart form these dimensions, these data also contain many
geographic features, such as forests, cities, lakes and so on, and
these features could help researchers to locate their interested
study areas rapidly. Now these multidimensional RS data with
features have been widely used for global change detection
research such as monitoring deforestation [4] and detecting
temporal changes in floods [35]. However, the conventional
geographic information system (GIS) tools are inconvenient

for scientists to process the multidimensional RS data, because
they lack appropriate methods to express multidimensional
data models for analysis. And researchers have to do additional
data organization work to conduct change detection analysis.
For a more convenient analysis, they need a multidimensional
data model which could support seamless analysis in space,
time, spectral and feature [5].

Recently, many researchers have proposed using a multi-
dimensional array model to organize the RS raster data [6][7].
Subsequently, they achieved the spatio-temporal aggregations
capacity used in spatial on-line analytical processing (SOLAP)
systems [8][9], as a data cube. Using this model, researchers
can conveniently extract the desired data from the large dataset
for analysis, and it reduces the burdens of data preparation
for researchers in time-series analysis. However, in addition to
extracting data with simple three-dimensional (3D) space-time
coordinates, researchers occasionally need to extract data with
some geographic features [10][11][12], which are often used
to locate or mark the target regions of interest. For example,
flood monitoring often needs to process multidimensional RS
data which have the characteristics of large covered range,
long time series and multi bands [13]. If we built all the
analysis data as a whole data cube which has the lakes or
river features, we could rapidly find the target study area we
need by feature and analyse the multi bands image data to
detect the flood situation with the time series. That makes
researchers focus on their analysis work without being troubled
by the data organization. This study aims to develop the
spatial-feature remote sensing data cube(SRSDC), a data cube
whose goal is to deliver a spatial feature-supported, efficient,
and scalable multidimensional data analysis system to handle
the large-scale RS data. The SRSDC provides spatial feature
repositories to store and manage the vector feature data, and a
feature translation to transform the spatial feature information
to a query operation. To support large-scale data analysis, the
SRSDC provides a work-scheduler architecture to process the
sliced multidimensional arrays with dask [14].

The remainder of this paper is organized as follows. Section
2 describes some preliminaries and related works. Section 3
presents an architectural overview of the SRSDC. Section 4
presents the design and implementation of a feature data cube
and distributed execution engine in the SRSDC. Section 5
uses the long time-series remote sensing production process
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and analysis as examples to evaluate the performance of a
feature data cube and distributed execution engine. Section 6
concludes this paper and describes the future work prospects.

II. PRELIMINARIES AND RELATED WORK

A. Knowledge Discovery Categories

In the following, we discuss four broad categories of ap-
plications in geosciences where knowledge discovery methods
have been widely used and have aroused impressive attention.
For each application, a brief description of the problem from
a knowledge discovery perspective is presented.

Detecting objects and events in geoscience data is impor-
tant for a number of reasons. For example, detecting spatial
and temporal patterns in climate data can help in tracking the
formation and movement of objects such as cyclones, weather
fronts, and atmosphere rivers, which are responsible for the
transfer of precipitation, energy, and nutrients in the atmo-
sphere and ocean. Many novel pattern mining approaches have
been developed to analyze the spatial and temporal properties
of objects and events, e.g., spatial coherence and temporal
persistence that can work with amorphous boundaries. One
such approach has been successfully used for finding spatio-
temporal patterns in sea surface height data, resulting in the
creation of a global catalogue of Mesoscale Ocean eddies. The
use of topic models has been explored for finding extreme
events from climate time series data. Given the growing
success of deep learning methods in mainstream machine
learning applications, it is promising to develop and apply
deep learning methods for a number of problems encountered
in geosciences. Recently, deep learning methods, including
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) have been used to detect geoscience objects
and events, such as detecting extreme weather events from a
climate model.

Knowledge discovery methods can contribute to estimat-
ing physical variables that are difficult to monitor directly,
e.g., methane concentrations in air or groundwater seepage
in soil, using information about other observed or simulated
variables. To address the combined effects of heterogeneity and
small sample size, multi-task learning frameworks have been
explored, where the learning of a model at every homogeneous
partition of the data is considered as a separate task, and the
models are shared across similar tasks.

The sharing of learning is able to help in regularizing the
models across all tasks and avoid the problem of over fitting.
Focusing on the heterogeneity of climate data, online learning
algorithms have been developed to combine the ensemble
outputs of expert predictors and conduct robust estimates of
climate variables such as temperature. To address the paucity
of labeled data, novel learning frameworks such as semi-
supervised learning, active learning, have huge potential to
improving the state-of-the-art in estimation problems encoun-
tered in geoscience applications. Forecasting long-term trends
of geoscience variables such as temperature and greenhouse
gas concentrations ahead of time can help in modeling future
scenarios and devising early resource planning and adaptation
policies. Some of the existing approaches in knowledge discov-
ery for time-series forecasting include exponential smoothing
techniques, the auto regressive integrated moving average

model and probabilistic models, such as hidden Markov mod-
els and Kalman filters. In addition, RNN-based frameworks
such as long-short-term-memory (LSTM) have been used for
long-term forecasting geoscience variables.

An important problem in geoscience application is to un-
derstand the relationships in geoscience data, such as periodic
changes in the sea surface temperature over the eastern Pacific
Ocean and their impact on several terrestrial events such as
floods, droughts and forest fires. One of the first knowledge
discovery methods in discovering relationships from climate
data is a seminal work, where graph-based representations
of global climate data were constructed. In the work, each
node represents a location on the Earth and an edge represents
the similarity between the eliminated time series observed
at a pair of locations. The high-order relationships could
been discovered from the climate graphs. Another kind of
method for mining relationships in climate science is based
on representing climate graphs as complex networks, including
approaches for examining the structure of the climate system,
studying hurricane activity. Recently, some works have devel-
oped novel approaches to directly discover the relationships as
well as integrating objects in geoscience data. For example, one
work has been implemented to discover previously unknown
climate phenomena. For causality analysis, the most common
tool in the geosciences is bivariate Grange analysis, followed
by multi-variate Granger analysis using vector auto regression
(VAR) models.

B. Knowledge Discovery Methods

As a new strategic resource for human beings, big data
has become a strategic highland in the era of knowledge
economy. It is a typical representative of the data-intensive
scientific paradigm following experience, theory and compu-
tational models, since this new paradigm mainly depends on
data correlation to discover knowledge, rather than traditional
causality. It is bringing about changes in scientific methodol-
ogy, and will become a new engine for scientific discovery.

Knowledge discovery of remote sensing big data lies at the
intersection of earth science, computer science, and statistics,
and is a very important part of artificial intelligence and data
science. Its aims at dealing with the problem of finding a
predictive function or valuable data structure entirely based
on data and will not be bothered by the various data types
and, is suitable for comprehensively analyzing the Earth’s big
data.

The core knowledge discovery methods include supervised
learning methods, unsupervised learning methods, and their
combinations and variants. The most widely used supervised
learning methods use the training data taking the form of a
collection of (x, y) pairs, and aims to produce a prediction y’
in response to a new input x’ by a learned mapping f(x), which
produces an output y for each input x (or a probability distri-
bution over y given x). There are different supervised learn-
ing methods based on different mapping functions, such as
decision forests, logistic regression, support vector machines,
neural networks, kernel machines, and Bayesian classifiers. In
recent years, deep networks have received extensive attention
in supervised learning. Deep networks are composed of mul-
tiple processing layers to learn representations of data with
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multiple levels of abstraction, and discover intricate structures
of the big earth data by learning its internal parameters to
compute the representation in each layer. Deep networks have
brought about breakthroughs in processing satellite image data,
forecasting long-term trends of geoscience.

Unlike supervised learning methods, unsupervised learning
involves the analysis of unlabeled data under assumptions
about structural properties of the data. For example, the
dimension reduction methods make some specific assumptions
that the earth data lie on a low-dimensional manifold and aim
to identify that manifold explicitly from data, such as principal
components analysis, manifold learning, and auto encoders.
Clustering is another very typical unsupervised learning algo-
rithm, which aims to find a partition of the observed data,
and mine the inherent aggregation and regularity of data. In
recent years, much current research involves blends across
supervised learning methods and unsupervised learning. Semi
supervised learning is a very typical one, which makes use
of unlabeled data to augment labeled data in a supervised
learning context considering the difficulty of obtaining some
geoscience supervision data. Overall, knowledge discovery
of the big earth data needs to leverage the development of
artificial intelligence, machine learning, statistical theory, and
data science.

C. Related Work

With the growing numbers of archived RS images for
Earth observation, an increasing number of scientists are
interested in the spatiotemporal analysis of RS data. Many
researchers proposed combining online analytical processing
(OLAP) [15] technology with the GIS [16] to build a data cube.
They built the multidimensional database paradigm to manage
several dimension tables, periodically extracting the dimension
information from the data in GIS, and achieved the ability
to explore spatiotemporal data using the OLAP spacetime
dimension aggregation operation. Sonia Rivest et al. deployed
a spatial data warehouse based on GIS and spatial database
to acquire, visualize, and analyze the multidimensional RS
data [17]. Matthew Scotch et al. developed the SOVAT tool
[18], using OLAP and GIS to perform the public health theme
analysis with the data composed of spatiotemporal dimensions.
These tools can facilitate researchers extracting data with
spatiotemporal dimensions; however, their multidimensional
data model is unsuitable for complicated scientific computing.
Further, they did not adopt an appropriate architecture for large
data processing [19][20]. Therefore, their ability to handle
large-scale data is limited.

Owing to natural raster data structure of Earth observation
images, the time-series imagery set can be easily transformed
to multidimensional array. For example, a 3D array can
represent the data with spatiotemporal dimensions. This data
type is suitable for parallel processes, because a large array
can be easily partitioned into several chunks for distributed
storing and processing. In addition, the multidimensional array
model enables a spatiotemporal auto-correlated data analy-
sis; therefore, researchers need not be concerned about the
organization of discrete image files. Thus, much research is
focused on developing new analysis tools to process the large
RS data based on the multidimensional array model; e.g.,
Gamara et al.[21] tested the performance of spatiotemporal

analysis algorithms on array database architectures - SCIDB
[22], which described the efficiency of spatiotemporal anal-
ysis based on the multidimensional array model, Assis et
al.[23] built a parallel RS data analysis system based on
the MapReduce framework of Hadoop [24], describing the
3D array with key/value pairs. Although these tools have
significantly improved the computation performance of RS
data analysis, they also contain some deficiencies. First, many
of them focused only on analyzing the RS raster image data
located by geographic coordinates, and did not provide the
support of spatial feature, thereby limiting their ability to use
these geographic objects in the analysis application. Next,
some of these tools require analysers to fit their algorithms
into specialised environments, such as Hadoop MapReduce
framework [25]. This will be user unfriendly to researchers
who only desire to focus on their analysis application.

Fig. 1. The Architecture of the SRSDC.

III. ARCHITECTURE OVERVIEW

A. Target Data and Environment

The SRSDC system is designed for providing the services
of large RS data time-series analysis with spatial features,
and it aims to manage and process the large-scale spatial
feature data and satellite images seamlessly. Based on the
open data cube (ODC) [26], which is a popular data cube
system used for spatial raster data management and analysis,
we archived large amounts of satellite data within China. These
data came from different satellites including Landsat, MODIS,
GaoFen(GF) and HuanJing(HJ). In addition, the SRSDC also
contains many features data within China, such as lakes, forests
and cities. These spatial vector data were downloaded from
the official web site of OpenStreetMap [27]. Before obtaining
these satellite images in the SRSDC, the geometric correction
and radiometric correction for these images must be ensured.
This can ensure the comparability between the images in dif-
ferent time, space and measurements; subsequently, the global
subdivision grid can be used to partition the data into many
tiles(grid files). These tiles were stored as the NetCDF format
[28], which supports many analysis libraries and scientific
toolkits.

B. FRSDC Architecture Overview

The SRSDC system adopted the relational database and
file system to manage the spatial data. It is designed to be
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scalable and efficient and provide feature support for time-
series analysis. Compared with the ODC system [29], which
only supports spatial raster data management and analysis as a
data cube, the SRSDC supports the extraction of target satellite
data as a multidimensional array with the geographic object.
It could perform the spatial query operation with geographic
objects, instead of locating data with only geographic coordi-
nates. Therefore, the dataset built for analysis has geographic
meaning. Thus, if researchers desire to obtain the target dataset,
they only need to query data with the geographic meaning
of the analysis themes, without knowing specific geographic
coordinates. As shown in Fig. 1, the system is primarily
composed of the data management and distributed execution
engine (DEE). Data management consists of two parts, raster
data management and vector data management. For the raster
data, the SRSDC will archive it into a shared network file
system and extract its metadata information automatically;
these metadata will be stored into the metadata depository
managed by ODC. For the vector data, the SRSDC stores them
as geographic objects in the spatial database. After the data
management, an N-Dimensional array interface is responsible
for transforming the raster data and vector data to an N-
Dimensional array that has the spatial feature information.
Xarray [28] is used for array handing and computing. DEE
is responsible for providing the computing environment and
resources on high performance computing(HPC) clusters. The
SRSDC use dask [24], which is a parallel computation library
with blocked algorithms, for the task scheduling, distributed
computing, and resource monitoring. It could help researchers
to execute the analysis tasks in parallel.

IV. DESIGN AND IMPLEMENTATION

A. Feature Data Cube

1) Spatial feature object in FRSDC: Spatial feature is a
geographic object that has special geographic meaning. It is
often important for RS application, because researchers occa-
sionally need to process the RS image dataset with geographic
objects, such as the classification of an RS image with spatial
features [30][31][32]. However, many RS data cube systems
only provide the multidimensional dataset without features.
Hence, researchers are required to perform additional work to
prepare the data for analysis. For example, the ODC system
[24] and the data cube based on SCIDB [22] could only query
and locate the study area by simple geographic coordinates,
so researchers must transform their interested spatial features
to coordinate ranges one by one if they want to prepare the
analysis ready data. To solve this problem, the SRSDC com-
bined the basic N-Dimensional array with geographic objects
to provide the feature N-Dimensional array for researchers,
and researchers could easily organise the analysis ready N-
Dimensional dataset by their interested features. Within the
SRSDC, now we primarily archive the forest and lake features
of China, and store them as geographic objects in a PostGIS
database [33][34]. The unified modeling language(UML) class
diagram in the SRSDC is shown in Fig. 2, and the description
of these classes is as follows:

1) The feature class is provided for users to define their
spatial feature of interest with a geographic object. It
contains the feature type and the geographic object.

2) The feature type class represents the type of geo-
graphic object, such as lakes, forests, cities and so
on. It contains the description of the feature type
and analysis algorithm names that are suitable for
the feature type.

3) The geographic object class describes the concrete
vector data with geographic meaning, such as Poyang
lake (a lake in China). It contains the vector data type
to illustrate its geometry type.

4) The raster data type class is used to describe the
type of satellite data. It contains the satellite platform,
product type, and bands information.

5) The feature operation class is used to extract the
feature data-cube dataset from the SRSDC. It contains
the feature object, raster data type, and time horizon
to build the target feature N-Dimensional array. It also
provides some operation functions for users.

2) Data management: As mentioned above, data manage-
ment consists of raster data management and vector data
management. Because of satellite data’s large volume and
variety, the SRSDC uses the file system to store the raster data
and manage the metadata by a relation database that contains
NoSQL fields.

In the metadata depository, the SRSDC uses NoSQL fields
to describe the metadata information instead of a full relation
model. This is because the number of satellite sensors is
increasing rapidly, and if the full relation model is used, the
database schema must be expanded frequently to meet the new
data sources. In contrast, NoSQL fields are more flexible in
describing the metadata of satellite data that originate from
different data sources. The NoSQL fields contain the time,
coordinate, band, data URL, data type, and projection. Among
these fields, some are used for data query, such as the time,
band, coordinates, and data type. Some other fields are used
for loading the data and building the multidimensional array
in memory, such as data URL and projection. In addition,
comparing the vector data volume (GB level) we download
from the OpenStreetMap [26] with the raster data volume (TB
level) we archived from several satellite data centers [32], we
found that most spatial features that are represented by the
vector data are not as large as the raster images; therefore we
established a feature depository instead of file system to store
and manage them as geographic objects. These objects may
contain different geographic meanings, and we defined them
as feature types.

The runtime implementation of feature data cube building
and processing is shown in Fig. 3. First, the SRSDC receives
the user’s data request from the web portal and obtains the tar-
get geographic object by querying the feature depository. Next,
it conducts a feature translation to transform the geographic
object into a mask array and obtains the minimum bounding
rectangle(MBR) of the feature. Subsequently, with the vertex
coordinates of MBR and time horizon, the SRSDC searches
for the required raster data’s metadata to locate physical URLs
of the raster data. Next, ODC’s N-Dimensional array interface
will load the raster data set from the file system and build
a multidimensional array in memory. Subsequently, the mask
array will be applied to masking the multidimensional array,
and a new multidimensional array with features for analyzing
and processing will be obtained. Finally, the SRSDC will
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Fig. 2. Large-scale RS Analysis Processing with Distributed Executed Engine.

Fig. 3. The UML Class Diagram in the SRSDC.

process the data with the relevant algorithm and return the
analysis results to the user.

B. Distributed Executed Engine

As an increasing number of RS applications need to process
or analyze the massive volume of RS data collections, the
stand-alone mode processing can not satisfy the computation
requirement. To process the large-scale RS data efficiently, we
built a distributed executed engine using the dask a distributed
computing framework focusing on scientific data analysis.
Compared with the popular distributed computing tools such

as Apache Spark, dask supports the multidimensional data
model natively and has a similar API with pandas and numpy.
Therefore, it is more suitable for computing an N-Dimensional
array. Similar to Spark, dask is also a master-slave system
framework that consists of one schedule node and several
work nodes. The schedule node is responsible for scheduling
the tasks, while the work nodes are responsible for executing
tasks. If all the tasks have being performed, these workers’
computation results would be reduced to the scheduler and
the final result would be obtained.

In the SRSDC, we could index the satellite image scenes
by adding their metadata information to the database, and
then obtain the data cube dataset (N-Dimensional arrays) from
the memory for computing. However, to compute the large
global dataset, we should slice the large array into the fixed-
size sub-arrays called chunks for computing in the distributed
environment. The SRSDC partitions these native images into
seamless and massive tiles based on a latitude/longitude grid.
The tile size is determined by the resolution of satellite images.
For example, in the SRSDC, the Landsat data (each pixel
0.00025°) was partitioned into tiles of size 1°x 1°, and the
tiles (4000x4000 pixels array) can be easily organized as a
data chunk, which is suitable for the memory in the worker
node. By configuring the grid number and time horizon, the
chunk could be built. Further, with these data chunks, the
SRSDC can transform the big dataset (N-Dimensional arrays)
to several sub-arrays loaded by different worker nodes. After
all the data chunks have been organized, the scheduler will
assign the chunks to the workers and map the functions for
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Fig. 4. Runtime Implementation of Feature Data Cube Building.

computing.

As shown in Fig. 4, the processing of large-scale time series
analysis by the distributed executed engine is as follows:

1) Organize the data cube dataset by multidimensional
spatial query.

2) Configure the appropriate parameters (grid number
or time horizon) to organized the data chunks for
workers, manage the chunks’ ids with a queue.

3) Select the analysis algorithm and data chunks to
compose the tasks, and assign these tasks to the
worker node.

4) Check the executing state of each task in the workers;
if failure occurs, recalculate the result.

5) Reduce all the results to the scheduler and return the
analysis result to the client.

V. EXPERIMENTS

To verify the ability of multidimensional data management
and large-scale data analysis in the SRSDC, we conducted the
following time-series analysis experiments focusing on spatial
feature regions and compared the performance of GEE and
stand-alone mode processes on the target dataset.

In this experiment, two RS application algorithms for time-
series change detection have been used: NDVI for vegetation
change detection and water observation from space (WOfs) for
the water change detection. We built the distributed executed

engine with four nodes connected by a 20 GB Infiniband
network; one node for the scheduler and tree nodes for the
workers. Each node was configured with Inter(R) Xeon(R)E5-
2460 CPU(2.0GHz) and 32GB memory. The operating system
is CentOS 6.5, and the python version is 3.6. To test the
performance of the feature data cube, we selected two study
regions with the special features as examples. One region
for the NDVI is Mulan hunting ground, Hebei Province,
China(40.7°-43.1°N, 115.8°-119.1°E), and another region for
WOfs is Poyang Lake, Jiangxi Province, China. We built
two feature data cube datasets for 20 years(1990-2009) with
Landsat L2 data and the geographic objects. The data volume
for Mulan hunting ground is approximately 138 GB and the
data volume for Poyang Lake is about 96 GB. Figure 5 shows
the percentage of observations detected as water for Poyang
Lake over the 20-year time series. The red area represents the
frequent or permanent water, and the purple area represents
the infrequent water. From the result, the shape area of Poyang
Lake can be observed clearly. Fig. 6 shows the annual average
NDVI production on the Mulan hunting ground; Fig. 7 shows
the NDVI time series result of the sampling site(41.5620°N,
117.4520°E) over 20 years. As shown, the values during 2007-
2008 were abnormally below the average. This is because the
average annual rainfall during this time is lower than that in
normal years.

To test the processing performance of the DEE for different
amounts of data, we tested time consumed by processing
6.3 GB, 12.8 GB, 49.6 GB, 109.8 GB, 138.6GB input data
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for NDVI production. These data have been partitioned into
4000x4000 pixels tiles mentioned above, with which we com-
pared the performances of the stand-alone model and DEE
models:

1) stand-alone model: organize the dataset as data
chunks, and process these data chunks serially with
a single server.

2) DEE model: organize the large dataset as data chunks,
and assign

Fig. 5. Water Area of Poyang Lake over 20-year Time Series.

different workers to read these data chunks to process them in
parallel with the distributed executed engine, which consists
of one schedule node and three work nodes. As shown from

Fig. 6. The Annual Average NDVI of Mulan Hunting Ground for 20 Years.

the experimental results in Fig. 8, the DEE mode is much
faster than the stand-alone mode because it can use the
shared memory of clusters nodes and process the large dataset
in parallel. As the process data amount increases, we also
observed that the time consumed will grow nonlinearly.

This is due to the IO limit of the shared network file system
and scheduling overhead. The speedup performance when gen-
erating the NDVI production with increasing numbers of work
nodes also proved this point, as shown in Fig. 9. Therefore,

Fig. 7. A NDVI Time Series of Sampling Site on Mulan Hunting Ground.

we conclude that the SRSDC has a certain capacity to process
the massive data, which is unsuitable for the memory.

Fig. 8. Runtime of NDVI with the Increase of Data Volume.

VI. CONCLUSIONS

We have designed and tested a feature supporting, scalable,
and efficient data cube for time-series analysis application, and
used the spatial feature data and remote sensing data for com-
parative study of the water cover and vegetation change. In this
system, the feature data cube building and distributed executor
engine are critical in supporting large spatiotemporal RS data
analysis with spatial features. The feature translation ensures
that the geographic object can be combined with satellite
data to build a feature data cube for analysis. Constructing a
distributed executed engine based on dask ensures the efficient
analysis of large-scale RS data. This work could provide a
convenient and efficient multidimensional data services for
many remote sensing applications [33][34]. However, it also
has some limitations; for example, the image data is stored in
the shared file system, and its IO performance is limited by
the network.

In the future, more work will be performed to optimize
the system architecture of the SRSDC, such as improving the
performance of the distributed executed engine, selecting other
storage methods which could ensure the process data locality,
adding more remote sensing application algorithms, etc.
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Fig. 9. Speedup for the Generation of NDVI Products with Increasing Nodes.
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