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Abstract—Many algorithms were developed to perform visual 

localization and mapping (SLAM) for robotic applications. These 

algorithms used monocular or stereovision systems to solve 

constraints related to the navigation in unknown or dynamic 

environment. The requirement of SLAM systems in terms of 

processing time and precision is a factor that limits their use in 

many embedded applications like UAVs or autonomous vehicles. 

Meanwhile, trends towards low-cost and low-power processing 

require massive parallelism on hardware architectures. The 

emergence of recent heterogeneous embedded architectures 

should help design embedded systems dedicated to Visual SLAM 

applications. It was demonstrated in a previous work that bio-

inspired algorithms are competitive compared to classical 

methods based on image processing and environment perception. 

This paper is a study of a bio-inspired SLAM algorithm with the 

aim of making it suitable for an implementation on a 

heterogeneous architecture dedicated for embedded applications. 

An algorithm-architecture adequation approach is used to 

achieve a workload partitioning on CPU-GPU architecture and 
hence speeding up processing tasks. 
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I. INTRODUCTION 

The robot navigation is not always possible in some special 
circumstances, due to the unavailability of a map or because 
the environment keeps changing. Hence, for its localization, 
the robot needs to know its pose accurately which is not 
possible without a map, which brings us back to the initial 
issue. The dilemma of what should come first the map, or the 
pose is complex to solve, because it needs to calculate the pose 
and construct the map at the same time. A solution to this 
navigation problem is a Visual Simultaneous Localization and 
Mapping system also called V-SLAM [1]. The implemented 
algorithms use data inputs from different sensors mounted on 
the mobile robot, like cameras since they provide much more 
information about the environment. 

To run a Visual SLAM algorithm, the minimum hardware 
requirement is a CPU based architecture and a monocular 
camera. Usually, as depth cannot be observed with one camera, 
most of systems use multi-view techniques to allow map 
reconstruction. Camera data is used to perform the scene 
photogrammetry and rebuild the trajectory map. This sensor 

presents several advantages (price, availability of a high 
amount of information) compared to other sensors it also has 
constraints such as the need for calibration, and sensitivity to 
light changes and intensity. 

Bio-inspired approaches are based on learning concepts 
from nature and applying them to design an enhanced real time 
SLAM system. Hence most of these algorithms are aiming to 
simulate the biological retina and brain-based methods for 
features detection and description, which make the model 
complex and also its parallelization a real challenge. 

Eyes represented by cameras are used to provide inputs 
data for front-end operations, but images are processed in a 
different way compared to classic methods. It can be 
categorized into simple eyes with one concave photoreceptor 
lens like for humans, and compound eyes like for some insects 
with multiple lenses [2]. This study is limited to simple eyes 
because it is the most feasible to be simulated in a mobile 
robot. Binocular and stereo vision systems can be then 
considered as a reference. 

Simple eyes are grouped into two known categories based 
on their photoreceptor's cellular construction. Therefore, 
human and rodent were selected because they are both on the 
top of each group, since they are representing the best visual 
acuity (VA) [3]. 

In previous studies [4 - 5], bio-inspired approaches were 
proved to be very competitive methods, in term of accuracy 
and execution time compared to classic ones. This paper is 
sharping these results by studding two different models: the 
retina model HOOFR-SLAM [6] and hippocampal model for 
rodent RAT-SLAM [7]. 

The contribution is: 

 an efficient partitioning model of a bio-inspired 
algorithm on a heterogeneous CPU-GPU architecture to 
improve the processing time performance. 

 the evaluation of this model on a dedicated architecture 
based embedded application. 

The aim is to be able to determine if bio-inspired V-SLAM 
methods can be used on a real-time application, despite their 
algorithmic complexity. 
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The reported resulting values are given based on the mean 
of 20 run results for at least 1000 timestamps. Datasets used are 
from the well-known KITTI benchmark [8] and Oxford New 
college opensource dataset [9]. Calibration and other algorithm 
parameters were adapted accordingly to each dataset to always 
have the maximum performance. 

II. BACKGROUND 

One of the advantages of Rat-SLAM navigation system is 
its ability to run in dynamic environment using cheap camera 
sensor, due to the nature of Rat retina that has a low Visual 
acuity (VA) compared to the human one [3]. From another 
hand the use of odometrical data in this algorithm is mandatory 
in order to combine visual scene matching and a semi-metric 
topological map representation. The used image model is a 
simulation of a biological rat retina perception. HOOFR-
SLAM doesn’t need any odometrical data and can rely only on 
inputs provided by a well calibrated camera. 

Human vision is trichromatic because it has three types of 
color cones: long-wavelength “red”, middle-wavelength 
“green”, and short-wavelength “blue”. Rat's vision is 
dichromatic because, they have only two wavelengths: a 
shorter blue wavelength than human but shifted toward and 
middle "green". Therefore, rats can see into the ultraviolet, this 
doesn’t mean that they are color blind, they just have different 
color perception compared to human. 

It is very important to understand how images are seen by 
each bio-inspired system. So, based on above, RAT-SLAM 
have to spend less time to convert images to gray scale than 
HOOFR-SLAM, with better adaptation to lower light 
environment, but accuracy is also lower, since human Visual 
Acuity (VA) is higher, this is why the use of an additional 
sensor (odometer) is needed. 

Since Rats have eyes on both sides of the head, the vision is 
binocular, the field is large and panoramic. So, a representation 
in a simple flat screen will distort the image, since computer 
screens are flat and adapted to human forward-facing eyes 
which have a smaller visual field and more binocular vision. 
Due to these facts, running the same dataset on HOOFR-
SLAM and RAT-SLAM will be a real challenge due to the 
difference in image perception and cameras position, and must 
be converted and adapted to each bio-inspired system before 
use, also the dataset will never have the same length, making a 
direct comparison simply not possible. 

Now, after standing up on all the differences related to 
visual performance and image perception, the next sections are 
describing the Rat-SLAM and HOOFR-SLAM algorithm 
concept and the details of each model front end, back-end, 
kernels and evaluate their algorithmic complexity. 

Finally, a parallelization and an implementation on a single 
CPU, multi-cores CPU and CPU-GPU on laptop, then a Jetson 
TX1 system on ship (SoC) architecture. 

III. THE RAT-SLAM 

A. Algorithm Inputs 

The Rat-SLAM system as defined by [7] use a self-motion 
sensor data to create a representation known as experience 

map, also used to facilitate the exploration. This technic is used 
in robotic when the human intervention is not or low needed. 
This navigation system has two goals, short term goals using a 
local obstacle map, and long-term goals relaying on experience 
map, with the aim to reach the desired destination. These two 
steps can be resumed to Matching [10] and mapping processes, 
if compared to HOOFR-SLAM as per Fig. 1. 

The RAT-SLAM algorithm uses two different sensors, as a 
main data input source; a camera and an odometer. If a robot 
operating system (ROS) is used, both inputs will be then 
received as ROS messages. Also, for simulations reasons, both 
inputs camera and odometrical messages derived from the 
mobile robot wheels encoders are provided together in a 
dataset file (*.bag file), therefore in this case a visual odometry 
functional block will not be used, this data is included in the 
opensource dataset benchmark from [9]. 

Cameras are placed on both sides of the robot to simulate 
rat eyes position, the vison is binocular, so the depth is 
calculated using information on head direction, calibration, 

functional regions of the hippocampus and surrounding areas. 
The camera motion is limited to the translational and rotational 
speed and it is estimated via an image comparison process, 
more details on how it is done are provided by [11]. 

The rotational velocity estimation is done by minimizing 
horizontal offset of two consecutive scanline profiles that are 
generated by summing the images in the vertical direction 
represented by f as follows: 

𝑓(𝑆, 𝐼𝑗 , 𝐼𝑘) =
1

𝑤−|𝑠|
(∑ |𝐼𝑛+max(𝑠,0)

𝑗
− 𝐼𝑛+min(𝑠,0)

𝐾 |
𝑤−|𝑠|

𝑛=1
)      (1) 

where S is the profile shift, Ij and Ik are the scanline 
intensity profiles to be compared, and w is the image width. 
The pixel shift 𝑆𝑚  in consecutive images Ij and Ik is the value of 
s that minimizes f for those two profiles. 

𝑆𝑚 = argmin
𝑠 𝜖|𝜌−𝑤,𝑤−𝜌|

𝑓(𝑆, 𝐼𝑗 , 𝐼𝑘)            (2) 

 

Fig. 1. Rat-SLAM Vision System Diagram with Inputs and Outputs Related 

to each Functional Block (FB), Local view Cells and Pose Cells are the Font-

end and can be Considered as the Tracking Process, using Camera Image Data 

Plus Odometry as Inputs to Extract Features (Neural Approach) and Provide 

Actions as Output to the Experience Map. The Mapping Process uses Both 

Pose Cells Cumulated Odometry Outputs and Links to Avoid Infinity and to 

Close the Loop. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 5, 2021 

223 | P a g e  
www.ijacsa.thesai.org 

where ρ is the offset that ensures that there is enough 
overlap between the profiles. The translational velocity 
estimation is limited to a maximum value to prevent large 
changes in illumination and done by multiplying the minimum 
difference by a scaling factor. Two ROS message are then 
provided to the system: sensor_msgs::CompressedImage and 
nav_msgs:Odometry. 

B. Main Functional Blocks 

RAT-SLAM is a robust bio-inspired navigation algorithm, 
used when dependence on human assistance is not or low 
needed, based on sensor inputs message data described above. 
The algorithm has three main functional blocks and sub-
functional blocks as per Fig. 2. They are identified as follows: 

Local view cells: This node uses image data from camera, 
to make a matching process, by using a comparison technique 
in order to determine if the visualized scene is familiar or 
novel. The block algorithm sequence is the following: 

Local view cells algorithm: 

Image Conversion, Cropping, sizing and Matching (FB1) 
{ 

 Convert image to gray scale ()  

/* For Rat-SLAM the input image is already converted Remove 

visually bland features like roads */ 

 Cropping image ()  

 Convert_view_to_view_template () 

/* cropping to specified region of the original camera image */ 

 Do patch normalization () 
 Create_template () 

/* Calculate the sum of absolute difference between current view 
template that represents the current camera image, and all 

previously learnt templates*/ 

  
 Compare () 

} 

Pose Cells: as per Fig. 1, it uses the odometric data, visual 

template from local view cell, to provide actions to make 

decisions used by experience map node. This node has two 

inputs and one output that are processed as follows: 

 Template: is the output of the local view cell image 
comparison process, if the templates already exist it is 
directly injected into associated location in the pose 
cells, if not a new a local ID is associated to the pose 
cell network. Also, in case of a successive detection of 
the same template for a long period of time, it could be 
understood as the robot is not moving. 

 Odometric: inputs are processed in Pose Cells; the 
functional block algorithm sequence is described as 
follow: 

Pose Cells Algorithm: 

Check templates and update template database (FB2) 
{ 

 if (New Template)  

 create_view_template ()  

 else (Template exist) 
 give a local template ID () 

 } 

Local and global excitation, path integration, action and energy 

management (FB3) 
{ 

 Local excitation () 

/*Add energy around each active pose cell */ 

 Local inhibition ()  
 /*Remove energy from around each inactive pose cell */ 

 Global inhibition () 

 /*Remove energy from all active pose cells above zero */ 

 Network energy normalization () 

 Path integration using odometrical information () 

 Get_current_exp_id ()  

/* Identify the centroid of the dominant activity packet in the 

network */ 

 Get_action ()  
 Update_scene () 

 } 

Experience Map: Manage based on both local view and 
pose Cells outputs, the graph building, relaxation and path 
planning. This block has three main outputs: 

1) A path message with information on the trajectory to 

the goal. 

2) A list of nodes and edges that makes a representation of 

the experience map.  

3) The robot poses in the experience map. 

4) Get the goal way point 

The experience map algorithm is the following: 

Experience Map algorithm: 

Update experience map get new target (FB4)  

{ 
 Update Experience map () 

/* update the current position of the experience map since the last 
experience*/ 

 Calculate_path_to_goal () 
 Get_goal_waypoint () 

 } 

 Map Converging, add new goal (FB5)  

{ 
 CREATE_NODE 

 CREATE_EDGE 
 SET_NODE 

 iterate () 
 /* iterate the experience map. Perform a graph relaxing algorithm 

to allow the map to partially converge */ 
Set_goal_pose_callback ()  

Add_goal () 
/* Setting and handling goals */  

 } 

According above description, RAT-SLAM software 
architecture allows a multithread processing; therefore it can be 
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parallelized in an heterogenous System on chip (Soc). 
However, the proposal is to proceed with the code profiling 
first, to stand on every function block use rate, calculate 
accurately the number of times each function is called and get 
an overview on the memory usage for each block. 

C. Code Profiling and Workload Identification 

In order to have better understanding about how the 
algorithm is behaving once run on a CPU, the source code has 
been profiled using a profiling tool to measure the processing 
time of the functional blocks, the parameters dependencies and 
hence the functional blocks that could be parallelized. 

Profilers are designed tools for analyzing and improving 
performance of code execution. They allow analyzing the 
algorithm, to measure, while the code is running, how long a 
routine takes to execute, how often it is called, where it is 
called from and how much of total time at some spot is spent 
executing that routine. 

By using the opensource Callgrind profiling tool [12], 
which is considered as a binary instrumentation profiler, the 
call history could be recorded among functions for every main 
functional block. Data collected and represented in Table I, 
correspond to the CPU and memory workloads using an Intel® 
core i7 @1.8 GHZ CPU with 8 GB RAM. Also, the cache 
memory usage for reading and writing operations is given. This 
information is important because it reveals about congestion in 
different memory buses. 

A fast information is then given about the algorithm 
behavior, to target where the code parallelization can be more 
efficient, of course an adequation architecture algorithm 
analysis is mandatory to have a deeper understanding and make 
the maximum optimizations that can be done. 

TABLE I. RAT-SLAM C++ WORKLOAD ON A CPU 

FB 
CPU 

workload % 

Cache memory 

reads % 

% Cache memory 

writes % 

Pose cells 28.98 28.30 29.99 

Local View Cells 41.61 42.77 39.70 

Experience Map 29.41 28.93 30.31 

D. CPU-GPU Parallelization 

Computing architectures have known the generalization of 
the concept of parallelism thanks to their significant 
technological evolution in recent years. Parallelization has 
spread to the level of processor architectures, notably with 
multicore processors and superscalar computers. In this 
context, founders and manufacturers of graphics processors 
have developed their architectures to be able to use them in 
applications with generic processing by designing GPGPU 
(General Purpose Graphic Processing Unit). Development 
languages like CUDA, OpenCL or OpenGL have been 
designed to use the potential of these processors for massively 
parallel computing purposes. 

To our knowledge, in the state of the art, there is no study 
on the performance evaluation of a bio-inspired SLAM 
algorithm on GPU-based architectures. 

The interest here is to explore hybrid architectures based on 
CPU-GPU for the implementation and parallelization of a bio-
inspired SLAM algorithm. A first challenge lays in the 
complex data structure which results in the nature of the 
studied algorithm. Another interest lies in the specificity of the 
parallelization and programming of CPU-GPU architectures, 
which differs from conventional methods of parallel 
programming requiring mapping optimization and processing 
synchronizing with different coprocessors and shared 
memories. 

Hence, the RAT-SLAM algorithm was divided into blocks 
with well-defined inputs and outputs (in number, type and size 
of data). An algorithm consists of a processing description, so 
it is the same for the blocks composing it. 

The modeling in this work is based on a graph 
representation that illustrates the dependencies between the 
different blocks of the algorithm. 

In the case of a heterogeneous architecture, the execution 
time of each functional block and therefore of the algorithm 
strongly depends on the mapping, otherwise on the way in 
which the functional blocks are distributed between the 
different processing units. The goal of the mapping 
optimization is to find one or more implementations allowing 
to reach defined constraints of real-time. 

Given the results about the workload of each functional 
block, knowing the cache memory number of read/write 
accesses, measuring the execution time of each block and sub-
functions, and taking into consideration the algorithmic 
complexity analysis, the nature of interaction between 
functional blocks can be understood. So, functions that needs 
to be sent to GPGPU for a parallel processing are separated 
from the ones that need to remain on the host, because 
processing them on CPU will be adequate due to the sequential 
processing and to make benefit from the higher frequency of 
CPU. 

So, based on the above, this study propose an optimized 
parallelization targeting a CPU-GPGPU heterogenous 
architecture, where all time-consuming functional blocks 
related to image processing, visual template generation, 
intermediate map creation, pose cell experience and matching, 
have been transferred to the GPGPU device as explained in 
Fig. 2. The CPU is then managing the sequential processes and 
acting as a host. 

As per Fig. 2, the selected functions for a parallel 
computing were converted to CUDA. Also, for evaluation 
purposes, the algorithm is executed first on a laptop (see 
Table II for hardware specifications), then on a Jetson TX1 
which is often used in automotive applications due its better 
performance compared to its predecessor TK1 (see Table III 
for Jetson Tegra X1 hardware specifications). 
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Fig. 2. Rat SLAM Algorithm flow Diagram: Interactions between main 

Functional Blocks and Sub-functions. Odometric Data and Image Inputs are 

Consecutively given by an IMU and a Camera from [9]. Buses in Red 

Represents the Bottleneck in Terms of Data Transfer. Bidirectional Arrows 
Represent Data Transferred between CPU and GPU. 

TABLE II. HARDWARE SPECIFICATIONS OF THE CPU-GPU LAPTOP 

CPU: Intel® core i7 @1.8 GHZ 

GPU: NVIDIA GeForce MX110 

RAM: 8035640 KB 

TABLE III. HARDWARE SPECIFICATIONS OF JETSONTX1 

CPU: Quad-Core ARM® Cortex®-A57 MP Core 

GPU: 256-core NVIDIA Maxwell™ GPU 

Memory: 4GB 64-bit LPDDR4 Memory 

IV. HOOFR-SLAM 

HOOFR is a bio-inspired binary detector, inspired from 
human retina. As introduced by Nguyan et al. [6], it is a novel 
model inspired from Hessian ORB - Overlapped FREAK 
(HOOFR) and based on the combination of the ORB detector 
[13-14] and the FREAK bio-inspired descriptor [15]. HOOFR 
use a similar method as ORB except that for filtering features it 
uses, instead of Harris filter, a Hessian Matrix represented by 
equation 3, together with Gaussian represented by equation 4 
for smoothing. 

𝐻 = [

𝜕2𝐼

𝜕𝑥²

𝜕2𝐼

𝜕𝑥𝜕𝑦

𝜕2𝐼

𝜕𝑥𝜕𝑦

𝜕2𝐼

𝜕𝑦²

]             (3) 

Where I is the pixel intensity and 𝜕𝑥, 𝜕𝑦 are the derivative 
in x and y direction, respectively. 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎²
𝑒𝑥𝑝 (−

𝑥2+𝑦²

2𝜎²
)            (4) 

Where G(x,y) is a Gaussian 2D distribution and 𝜎 is the 
standard deviation of the distribution. 

Because the human retina has a better visual acuity, the 
rotation estimation is done based on the sum of gradients over 
a selected pair, by using long pairs to compute the global 
orientation, whereas select pairs are mainly with symmetric 
receptive fields with respect to the center, as per Fig. 3. 

The set of selected pairs is done according to the following 
equation 5: 

𝑂 =
1

𝑀
∑ (𝐼(𝑃0

𝑟1) − 𝐼(𝑃0
𝑟2))

𝑃0
𝑟1− 𝑃0

𝑟2

‖𝑃0
𝑟1− 𝑃0

𝑟2‖
𝑃0∊𝐺

           (5) 

where M is the number of pairs in G and P is the 2D vector 
of the spatial coordinates of the center of receptive field. 
However, compared to classical binary descriptor (like 
BRISK), HOOFR retinal pattern has more error in the 
orientation due to a larger receptive field allowing more 
estimation error, but this issue is solved by discretizing the 
space of orientations in much bigger steps, leading to more 
than 5 times smaller memory load (about 7 MB against 40 
MB), and therefore a smaller execution time. 

The main difference between Rat-SLAM and HOOFR-
SLAM matching method, is that the first algorithm is 
comparing the template image against the source image by 
sliding it, then a sum of square is calculated to give the 
movement direction, so this method is operating directly on the 
pixel value, while HOOFR, from the other hand, use a feature 
matching method. In general, for this kind of techniques, the 
accuracy and efficiency are strongly dependent on the used 
detector and descriptor. An evaluation has been done in [4-5] 
show the impact of execution time and accuracy by using 
different feature detectors/descriptors combination. Fig. 4 is 
schematizing the flow of each algorithm front-end process. 

Unlike RAT-SLAM, HOOFR-SLAM has been parallelized 
in a previous work [16] and implemented in different 
heterogenous architectures, so it is re-evaluated on a laptop, in 
order to determine the acceleration rate in a the same hardware 
architectures, and to have a fear comparison with results 
obtained for Rat-SLAM. 

Since both bio-inspired algorithms has different images 
perception and since the camera position in HOOFR is frontal 
but lateral for RAT, any comparison using the same dataset 
will not be equitable, even after a modification, because the 
number of evaluated templates will not be the same. Therefore, 
a corresponding dataset is used for each algorithm in order to 
get time spent per iteration, images examples are given by 
Fig. 5. 

 

Fig. 3. Illustration of the Pairs Selected to Compute the Orientation. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 5, 2021 

226 | P a g e  
www.ijacsa.thesai.org 

 

Fig. 4. Front End Process flow Diagram Showing differences between 

HOOFR-SLAM Feature Matching (Right) and RAT-SALM Template based 
Matching Method (Left). 

 
(a)             (b)        (a)                 (b) 

 
 (a)           (b)       (a)  (b) 

Fig. 5. Left and Right Images taken at different Lighting Conditions, by a 

RealSense Stereo Camera System, Simulating Rat Eyes and Placed in Lateral 

Position to have Similar Visual Perception as for a Rat. Right (a) and Left (b) 

Images used for RAT-SLAM, Images are Panoramic and May Appear 
Distorted to Human Eyes. 

The evaluation was based on outdoor sequences where 
different lighting conditions are applied for better 
performances check. 

V. EXPERIMENTAL RESULTS 

A first evaluation for both selected bio-inspired algorithms 
is done based on a Multi-core Intel CPU and an NVIDIA 
GPGPU with a high-end 64-bit implementation. This 
configuration shown previously in Table II, allows the 
evaluation of different run modes on a CPU, multi-cores CPU 
and CPU-GPGPU combined. All presented results are the 
mean values of 20 runs. 

Tables IV and V gives the processing times per iteration 
when the functional blocks are transferred to GPGPU as shown 
in Fig. 6. 

TABLE IV. AVERAGE PROCESSING TIME (MS) EVALUATION FOR RAT-
SLAM WITH PARALLEL IMPLEMENTATION ON A MULTI-CORE CPU, AND A 

CPU-GPGPU LAPTOP 

    
Intel® core 

i7  

NVIDIA GeForce 

MX110 Acceleratio

n % 
    

Multi Core 

CPU 
CPU-GPGPU 

Local 

View 
FB1 183.17 31.93 82.57 

Pose cells  
FB2 0.75 0.22 70.67 

FB3 38.49 22.32 42.01 

Experience 

Map 

FB4 133.93 84.81 36.68 

FB5 0.16 0.08 50.00 

TABLE V. AVERAGE PROCESSING TIME (MS) EVALUATION FOR RAT-
SLAM WITH PARALLEL IMPLEMENTATION ON AN ARM CPU, AND CPU--

GPGPU USING ARM-NVIDIA TX1 

    
ARM®Cortex

-A57  

 NVIDIA 

Maxwell™  Acceleratio

n% 
  

 

Multi Core 

CPU  
CPU-GPGPU 

Local View FB1 111.76 32.24 71.15 

Pose cells  
FB2 0.75 0.29 61.33 

FB3 26.59 20.94 21.25 

Experience 

Map 

FB4 113.82 86.86 23.68 

FB5 0.13 0.09 30.73 

 

Fig. 6. Simplified Schematic Representation of Functional Blocks Sent to 

GPU and the One Remaining on CPU for Rat-SLAM. 

The evaluation was achieved using the well-known open-
source dataset Oxford New College, 2008 [9], settings and 
camera calibration parameters are shared by the same source. 
Images are panoramic and were converted to gray scale to 
match the most the rodent eyes perception to comply with the 
template matching process requirement. 
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Based on above results, the processing time of the most 
time-consuming functional blocks is drastically reduced using 
a parallel implementation by 36.68% on the laptop and 23.68% 
for TX1, this is due to the higher GPU performance and 
number of cores on the laptop compared to TX1, Fig. 7 is a 
graphical representation of the total execution time speed up 
for the algorithm on GPGPU. 

 
(a) 

 
(b) 

Fig. 7. Comparison of Acceleration (A) and Total Execution time (B) for 

Oxford New College [9] on Laptop and on TX1 Hardware. 

Below, graphs in Fig. 8, 9 and 10 represent the average 
execution timing measurement related to NVIDIA GeForce 
MX110 GPGPU and on ARM Cortex-A57 on TX1, also the 
power consumption in Watts for both Laptop CPU and GPU. 

 

Fig. 8. Average Workload Evolution for RatSLAM on Laptop NVIDIA 

GeForce MX110 GPU, the Workload Everage is around 20% during the Total 
Execution Time of the Selected Dataset [9]. 

 

Fig. 9. Average Workload Evolution for RatSLAM on Laptop Intel Core i7 

CPU, the Workload Everage is Variating between 20% and 60% during 
Execution of the Selected Dataset [9]. 

 

Fig. 10. The CPU-GPGPU Power Comsumption is Calcuted only for 

RATSLAM Algorithm when the Power Resulting form Operating System is 

not Considered. 

As per above graphs , the CPU workload has been reduced 
by an average of 20% when running the RatSLAM algorithm, 
by running parallel functional blocks on GPGPU, but due to 
the nature of the algorithm some blocks cannot run on GPU 
because they are sequential and therefore are kept on CPU. 

As expected the temperature will also increase on the CPU 
in the same way as per below Fig. 11, which can be considered 
as a week point for implementation of Rat SLAM in an 
embedded architecture where the use of a cooling system is not 
always possible. 

An evaluation of HOOFR-SALM using KITTI-07 open 
source dataset, gives the results shown in Tables VI and VII. 

 

Fig. 11. Temperature Profile for Laptop CPU and GPU, it Increases Over 

Time Due to the Amount of Input Data. 
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TABLE VI. AVERAGE PROCESSING TIME (MS) EVALUATION FOR HOOFR-
SLAM WITH PARALLEL IMPLEMENTATION ON MULTI-CORE CPU, CPU-

GPGPU ON INTEL® CORE I7 / NVIDIA GEFORCE MX110 

  Intel® core i7 / NVIDIA GeForce MX110 

  
CPU 

(ms) 

Multi 

Core 

CPU 

(ms)  

Acceleration 

% 

CPU-

GPU 

(ms) 

Acceleration 

% 

Extraction 8.6 8.6 0.00 8.6 0.01 

Mapping 52.79 52.76 0.06 27.88 47.15 

Loop detection 15.38 15.34 0.26 8.05 47.52 

Map Processing 0.48 0.45 6.25 0.19 58.85 

TABLE VII. AVERAGE PROCESSING TIME (MS) EVALUATION FOR HOOFR-
SLAM FOR PARALLEL IMPLEMENTATION ON MULTI-CORE CPU, CPU-

GPGPU ON TX1 ARM®CORTEX-A57 NVIDIA MAXWELL™ 

 
ARM®Cortex-A57 NVIDIA Maxwell™  

 

Multi Core 

CPU  
CPU-GPU Acceleration % 

Extraction 16.78 16.73 0.31 

Mapping 21.92 16.47 25 

Loop detection 21.92 16.47 25 

Map Processing 0.58 0.4 31 

VI. CONCLUSION 

This paper presented an algorithmic complexity study for 
two bio-inspired algorithms. It proposed an optimized parallel 
implementation on a CPU-GPU by studying, in a practical 
way, optimization possibilities for workload partitioning. It 
also presented understanding of bio-inspired algorithms with 
necessary techniques to accelerate there processing times for 
real time SLAM applications. 

From one hand, based on above temporal evaluation 
results, a first conclusion is that the use of multiple CPU’s 
cores cannot accelerate much the algorithm compared to one 
CPU core. This is due to the congestion of data in buses at the 
on-chip memory level since it is a shared resource for all 
CPU’s cores. The memory is considered as a bottleneck in this 
case and using a higher CPU frequency or more memory will 
not help much. 

From another hand, considering a real time sequence where 
the frequency is higher than 30fps, and based on the 
experimental results when executing both algorithms, it is 
clearly seen that despite the considerable acceleration, Rat 
SLAM still cannot fulfill the real time expectation as it should 
be executed in less than 33ms per frame, due to the matching 
sequence that is dependent on the number of images perceived 
by the camera sensor. Furthermore, the algorithm needs to keep 
previously seen templates in the memory for localization and to 
fine tune the map (loop closing), which has an impact on the 
final execution time. 

In the case of HOOFR-SLAM, which is a feature-based 
approach that doesn’t depend on the dataset size, the matching 
process time is not increased by increasing the number of input 
images. This is very important because the processing time will 

remain practically the same for all iterations and therefore the 
parallelization is more efficient. 

These two studies covering the exploration of hybrid 
architectures based on GPU-CPU for the implementation and 
parallelization of bio-inspired SLAM applications, allowed to 
draw conclusions about the challenges to be met related to the 
complexity, the structure of data and the nature of the 
algorithms studied. The results presented in this paper confirm 
that future heterogeneous architectures will represent potential 
candidates to embed complex algorithms such as those of bio-
inspired SLAM applications. 

Future work will focus on the implementation of selected 
functional blocks on FPGA architectures in order to bring 
defined processing closer to the sensor and hence allow image 
processing on the fly and reserve the GPU for massively 
parallel processing. 
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