
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

221 | P a g e
www.ijacsa.thesai.org

Workload Partitioning of a Bio-inspired Simultaneous

Localization and Mapping Algorithm on an

Embedded Architecture

Amraoui Mounir1, Latif Rachid2

LISTI, ENSA

Ibn Zohr University

Agadir,80000, Morocco

Abdelhafid El Ouardi3

SATIE, Digiteo Labs

Paris-Saclay University

Orsay, France

Abdelouahed Tajer4

LISA, ENSA

Cadi Ayyad University

Marrakech, 40140, Morocco

Abstract—Many algorithms were developed to perform visual

localization and mapping (SLAM) for robotic applications. These

algorithms used monocular or stereovision systems to solve

constraints related to the navigation in unknown or dynamic

environment. The requirement of SLAM systems in terms of

processing time and precision is a factor that limits their use in

many embedded applications like UAVs or autonomous vehicles.

Meanwhile, trends towards low-cost and low-power processing

require massive parallelism on hardware architectures. The

emergence of recent heterogeneous embedded architectures

should help design embedded systems dedicated to Visual SLAM

applications. It was demonstrated in a previous work that bio-

inspired algorithms are competitive compared to classical

methods based on image processing and environment perception.

This paper is a study of a bio-inspired SLAM algorithm with the

aim of making it suitable for an implementation on a

heterogeneous architecture dedicated for embedded applications.

An algorithm-architecture adequation approach is used to

achieve a workload partitioning on CPU-GPU architecture and
hence speeding up processing tasks.

Keywords—Simultaneous localization and mapping (SLAM);

Bio-inspired algorithms; CPU-GPU workload partitioning;

embedded systems; visual acuity (VA); hardware/software codesign

I. INTRODUCTION

The robot navigation is not always possible in some special
circumstances, due to the unavailability of a map or because
the environment keeps changing. Hence, for its localization,
the robot needs to know its pose accurately which is not
possible without a map, which brings us back to the initial
issue. The dilemma of what should come first the map, or the
pose is complex to solve, because it needs to calculate the pose
and construct the map at the same time. A solution to this
navigation problem is a Visual Simultaneous Localization and
Mapping system also called V-SLAM [1]. The implemented
algorithms use data inputs from different sensors mounted on
the mobile robot, like cameras since they provide much more
information about the environment.

To run a Visual SLAM algorithm, the minimum hardware
requirement is a CPU based architecture and a monocular
camera. Usually, as depth cannot be observed with one camera,
most of systems use multi-view techniques to allow map
reconstruction. Camera data is used to perform the scene
photogrammetry and rebuild the trajectory map. This sensor

presents several advantages (price, availability of a high
amount of information) compared to other sensors it also has
constraints such as the need for calibration, and sensitivity to
light changes and intensity.

Bio-inspired approaches are based on learning concepts
from nature and applying them to design an enhanced real time
SLAM system. Hence most of these algorithms are aiming to
simulate the biological retina and brain-based methods for
features detection and description, which make the model
complex and also its parallelization a real challenge.

Eyes represented by cameras are used to provide inputs
data for front-end operations, but images are processed in a
different way compared to classic methods. It can be
categorized into simple eyes with one concave photoreceptor
lens like for humans, and compound eyes like for some insects
with multiple lenses [2]. This study is limited to simple eyes
because it is the most feasible to be simulated in a mobile
robot. Binocular and stereo vision systems can be then
considered as a reference.

Simple eyes are grouped into two known categories based
on their photoreceptor's cellular construction. Therefore,
human and rodent were selected because they are both on the
top of each group, since they are representing the best visual
acuity (VA) [3].

In previous studies [4 - 5], bio-inspired approaches were
proved to be very competitive methods, in term of accuracy
and execution time compared to classic ones. This paper is
sharping these results by studding two different models: the
retina model HOOFR-SLAM [6] and hippocampal model for
rodent RAT-SLAM [7].

The contribution is:

 an efficient partitioning model of a bio-inspired
algorithm on a heterogeneous CPU-GPU architecture to
improve the processing time performance.

 the evaluation of this model on a dedicated architecture
based embedded application.

The aim is to be able to determine if bio-inspired V-SLAM
methods can be used on a real-time application, despite their
algorithmic complexity.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

222 | P a g e
www.ijacsa.thesai.org

The reported resulting values are given based on the mean
of 20 run results for at least 1000 timestamps. Datasets used are
from the well-known KITTI benchmark [8] and Oxford New
college opensource dataset [9]. Calibration and other algorithm
parameters were adapted accordingly to each dataset to always
have the maximum performance.

II. BACKGROUND

One of the advantages of Rat-SLAM navigation system is
its ability to run in dynamic environment using cheap camera
sensor, due to the nature of Rat retina that has a low Visual
acuity (VA) compared to the human one [3]. From another
hand the use of odometrical data in this algorithm is mandatory
in order to combine visual scene matching and a semi-metric
topological map representation. The used image model is a
simulation of a biological rat retina perception. HOOFR-
SLAM doesn’t need any odometrical data and can rely only on
inputs provided by a well calibrated camera.

Human vision is trichromatic because it has three types of
color cones: long-wavelength “red”, middle-wavelength
“green”, and short-wavelength “blue”. Rat's vision is
dichromatic because, they have only two wavelengths: a
shorter blue wavelength than human but shifted toward and
middle "green". Therefore, rats can see into the ultraviolet, this
doesn’t mean that they are color blind, they just have different
color perception compared to human.

It is very important to understand how images are seen by
each bio-inspired system. So, based on above, RAT-SLAM
have to spend less time to convert images to gray scale than
HOOFR-SLAM, with better adaptation to lower light
environment, but accuracy is also lower, since human Visual
Acuity (VA) is higher, this is why the use of an additional
sensor (odometer) is needed.

Since Rats have eyes on both sides of the head, the vision is
binocular, the field is large and panoramic. So, a representation
in a simple flat screen will distort the image, since computer
screens are flat and adapted to human forward-facing eyes
which have a smaller visual field and more binocular vision.
Due to these facts, running the same dataset on HOOFR-
SLAM and RAT-SLAM will be a real challenge due to the
difference in image perception and cameras position, and must
be converted and adapted to each bio-inspired system before
use, also the dataset will never have the same length, making a
direct comparison simply not possible.

Now, after standing up on all the differences related to
visual performance and image perception, the next sections are
describing the Rat-SLAM and HOOFR-SLAM algorithm
concept and the details of each model front end, back-end,
kernels and evaluate their algorithmic complexity.

Finally, a parallelization and an implementation on a single
CPU, multi-cores CPU and CPU-GPU on laptop, then a Jetson
TX1 system on ship (SoC) architecture.

III. THE RAT-SLAM

A. Algorithm Inputs

The Rat-SLAM system as defined by [7] use a self-motion
sensor data to create a representation known as experience

map, also used to facilitate the exploration. This technic is used
in robotic when the human intervention is not or low needed.
This navigation system has two goals, short term goals using a
local obstacle map, and long-term goals relaying on experience
map, with the aim to reach the desired destination. These two
steps can be resumed to Matching [10] and mapping processes,
if compared to HOOFR-SLAM as per Fig. 1.

The RAT-SLAM algorithm uses two different sensors, as a
main data input source; a camera and an odometer. If a robot
operating system (ROS) is used, both inputs will be then
received as ROS messages. Also, for simulations reasons, both
inputs camera and odometrical messages derived from the
mobile robot wheels encoders are provided together in a
dataset file (*.bag file), therefore in this case a visual odometry
functional block will not be used, this data is included in the
opensource dataset benchmark from [9].

Cameras are placed on both sides of the robot to simulate
rat eyes position, the vison is binocular, so the depth is
calculated using information on head direction, calibration,

functional regions of the hippocampus and surrounding areas.
The camera motion is limited to the translational and rotational
speed and it is estimated via an image comparison process,
more details on how it is done are provided by [11].

The rotational velocity estimation is done by minimizing
horizontal offset of two consecutive scanline profiles that are
generated by summing the images in the vertical direction
represented by f as follows:

𝑓(𝑆, 𝐼𝑗 , 𝐼𝑘) =
1

𝑤−|𝑠|
(∑ |𝐼𝑛+max(𝑠,0)

𝑗
− 𝐼𝑛+min(𝑠,0)

𝐾 |
𝑤−|𝑠|

𝑛=1
) (1)

where S is the profile shift, Ij and Ik are the scanline
intensity profiles to be compared, and w is the image width.
The pixel shift 𝑆𝑚 in consecutive images Ij and Ik is the value of
s that minimizes f for those two profiles.

𝑆𝑚 = argmin
𝑠 𝜖|𝜌−𝑤,𝑤−𝜌|

𝑓(𝑆, 𝐼𝑗 , 𝐼𝑘) (2)

Fig. 1. Rat-SLAM Vision System Diagram with Inputs and Outputs Related

to each Functional Block (FB), Local view Cells and Pose Cells are the Font-

end and can be Considered as the Tracking Process, using Camera Image Data

Plus Odometry as Inputs to Extract Features (Neural Approach) and Provide

Actions as Output to the Experience Map. The Mapping Process uses Both

Pose Cells Cumulated Odometry Outputs and Links to Avoid Infinity and to

Close the Loop.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

223 | P a g e
www.ijacsa.thesai.org

where ρ is the offset that ensures that there is enough
overlap between the profiles. The translational velocity
estimation is limited to a maximum value to prevent large
changes in illumination and done by multiplying the minimum
difference by a scaling factor. Two ROS message are then
provided to the system: sensor_msgs::CompressedImage and
nav_msgs:Odometry.

B. Main Functional Blocks

RAT-SLAM is a robust bio-inspired navigation algorithm,
used when dependence on human assistance is not or low
needed, based on sensor inputs message data described above.
The algorithm has three main functional blocks and sub-
functional blocks as per Fig. 2. They are identified as follows:

Local view cells: This node uses image data from camera,
to make a matching process, by using a comparison technique
in order to determine if the visualized scene is familiar or
novel. The block algorithm sequence is the following:

Local view cells algorithm:

Image Conversion, Cropping, sizing and Matching (FB1)
{

 Convert image to gray scale ()

/* For Rat-SLAM the input image is already converted Remove

visually bland features like roads */

 Cropping image ()

 Convert_view_to_view_template ()

/* cropping to specified region of the original camera image */

 Do patch normalization ()
 Create_template ()

/* Calculate the sum of absolute difference between current view
template that represents the current camera image, and all

previously learnt templates*/

 Compare ()

}

Pose Cells: as per Fig. 1, it uses the odometric data, visual

template from local view cell, to provide actions to make

decisions used by experience map node. This node has two

inputs and one output that are processed as follows:

 Template: is the output of the local view cell image
comparison process, if the templates already exist it is
directly injected into associated location in the pose
cells, if not a new a local ID is associated to the pose
cell network. Also, in case of a successive detection of
the same template for a long period of time, it could be
understood as the robot is not moving.

 Odometric: inputs are processed in Pose Cells; the
functional block algorithm sequence is described as
follow:

Pose Cells Algorithm:

Check templates and update template database (FB2)
{

 if (New Template)

 create_view_template ()

 else (Template exist)
 give a local template ID ()

 }

Local and global excitation, path integration, action and energy

management (FB3)
{

 Local excitation ()

/*Add energy around each active pose cell */

 Local inhibition ()
 /*Remove energy from around each inactive pose cell */

 Global inhibition ()

 /*Remove energy from all active pose cells above zero */

 Network energy normalization ()

 Path integration using odometrical information ()

 Get_current_exp_id ()

/* Identify the centroid of the dominant activity packet in the

network */

 Get_action ()
 Update_scene ()

 }

Experience Map: Manage based on both local view and
pose Cells outputs, the graph building, relaxation and path
planning. This block has three main outputs:

1) A path message with information on the trajectory to

the goal.

2) A list of nodes and edges that makes a representation of

the experience map.

3) The robot poses in the experience map.

4) Get the goal way point

The experience map algorithm is the following:

Experience Map algorithm:

Update experience map get new target (FB4)

{
 Update Experience map ()

/* update the current position of the experience map since the last
experience*/

 Calculate_path_to_goal ()
 Get_goal_waypoint ()

 }

 Map Converging, add new goal (FB5)

{
 CREATE_NODE

 CREATE_EDGE
 SET_NODE

 iterate ()
 /* iterate the experience map. Perform a graph relaxing algorithm

to allow the map to partially converge */
Set_goal_pose_callback ()

Add_goal ()
/* Setting and handling goals */

 }

According above description, RAT-SLAM software
architecture allows a multithread processing; therefore it can be

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

224 | P a g e
www.ijacsa.thesai.org

parallelized in an heterogenous System on chip (Soc).
However, the proposal is to proceed with the code profiling
first, to stand on every function block use rate, calculate
accurately the number of times each function is called and get
an overview on the memory usage for each block.

C. Code Profiling and Workload Identification

In order to have better understanding about how the
algorithm is behaving once run on a CPU, the source code has
been profiled using a profiling tool to measure the processing
time of the functional blocks, the parameters dependencies and
hence the functional blocks that could be parallelized.

Profilers are designed tools for analyzing and improving
performance of code execution. They allow analyzing the
algorithm, to measure, while the code is running, how long a
routine takes to execute, how often it is called, where it is
called from and how much of total time at some spot is spent
executing that routine.

By using the opensource Callgrind profiling tool [12],
which is considered as a binary instrumentation profiler, the
call history could be recorded among functions for every main
functional block. Data collected and represented in Table I,
correspond to the CPU and memory workloads using an Intel®
core i7 @1.8 GHZ CPU with 8 GB RAM. Also, the cache
memory usage for reading and writing operations is given. This
information is important because it reveals about congestion in
different memory buses.

A fast information is then given about the algorithm
behavior, to target where the code parallelization can be more
efficient, of course an adequation architecture algorithm
analysis is mandatory to have a deeper understanding and make
the maximum optimizations that can be done.

TABLE I. RAT-SLAM C++ WORKLOAD ON A CPU

FB
CPU

workload %

Cache memory

reads %

% Cache memory

writes %

Pose cells 28.98 28.30 29.99

Local View Cells 41.61 42.77 39.70

Experience Map 29.41 28.93 30.31

D. CPU-GPU Parallelization

Computing architectures have known the generalization of
the concept of parallelism thanks to their significant
technological evolution in recent years. Parallelization has
spread to the level of processor architectures, notably with
multicore processors and superscalar computers. In this
context, founders and manufacturers of graphics processors
have developed their architectures to be able to use them in
applications with generic processing by designing GPGPU
(General Purpose Graphic Processing Unit). Development
languages like CUDA, OpenCL or OpenGL have been
designed to use the potential of these processors for massively
parallel computing purposes.

To our knowledge, in the state of the art, there is no study
on the performance evaluation of a bio-inspired SLAM
algorithm on GPU-based architectures.

The interest here is to explore hybrid architectures based on
CPU-GPU for the implementation and parallelization of a bio-
inspired SLAM algorithm. A first challenge lays in the
complex data structure which results in the nature of the
studied algorithm. Another interest lies in the specificity of the
parallelization and programming of CPU-GPU architectures,
which differs from conventional methods of parallel
programming requiring mapping optimization and processing
synchronizing with different coprocessors and shared
memories.

Hence, the RAT-SLAM algorithm was divided into blocks
with well-defined inputs and outputs (in number, type and size
of data). An algorithm consists of a processing description, so
it is the same for the blocks composing it.

The modeling in this work is based on a graph
representation that illustrates the dependencies between the
different blocks of the algorithm.

In the case of a heterogeneous architecture, the execution
time of each functional block and therefore of the algorithm
strongly depends on the mapping, otherwise on the way in
which the functional blocks are distributed between the
different processing units. The goal of the mapping
optimization is to find one or more implementations allowing
to reach defined constraints of real-time.

Given the results about the workload of each functional
block, knowing the cache memory number of read/write
accesses, measuring the execution time of each block and sub-
functions, and taking into consideration the algorithmic
complexity analysis, the nature of interaction between
functional blocks can be understood. So, functions that needs
to be sent to GPGPU for a parallel processing are separated
from the ones that need to remain on the host, because
processing them on CPU will be adequate due to the sequential
processing and to make benefit from the higher frequency of
CPU.

So, based on the above, this study propose an optimized
parallelization targeting a CPU-GPGPU heterogenous
architecture, where all time-consuming functional blocks
related to image processing, visual template generation,
intermediate map creation, pose cell experience and matching,
have been transferred to the GPGPU device as explained in
Fig. 2. The CPU is then managing the sequential processes and
acting as a host.

As per Fig. 2, the selected functions for a parallel
computing were converted to CUDA. Also, for evaluation
purposes, the algorithm is executed first on a laptop (see
Table II for hardware specifications), then on a Jetson TX1
which is often used in automotive applications due its better
performance compared to its predecessor TK1 (see Table III
for Jetson Tegra X1 hardware specifications).

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

225 | P a g e
www.ijacsa.thesai.org

Fig. 2. Rat SLAM Algorithm flow Diagram: Interactions between main

Functional Blocks and Sub-functions. Odometric Data and Image Inputs are

Consecutively given by an IMU and a Camera from [9]. Buses in Red

Represents the Bottleneck in Terms of Data Transfer. Bidirectional Arrows
Represent Data Transferred between CPU and GPU.

TABLE II. HARDWARE SPECIFICATIONS OF THE CPU-GPU LAPTOP

CPU: Intel® core i7 @1.8 GHZ

GPU: NVIDIA GeForce MX110

RAM: 8035640 KB

TABLE III. HARDWARE SPECIFICATIONS OF JETSONTX1

CPU: Quad-Core ARM® Cortex®-A57 MP Core

GPU: 256-core NVIDIA Maxwell™ GPU

Memory: 4GB 64-bit LPDDR4 Memory

IV. HOOFR-SLAM

HOOFR is a bio-inspired binary detector, inspired from
human retina. As introduced by Nguyan et al. [6], it is a novel
model inspired from Hessian ORB - Overlapped FREAK
(HOOFR) and based on the combination of the ORB detector
[13-14] and the FREAK bio-inspired descriptor [15]. HOOFR
use a similar method as ORB except that for filtering features it
uses, instead of Harris filter, a Hessian Matrix represented by
equation 3, together with Gaussian represented by equation 4
for smoothing.

𝐻 = [

𝜕2𝐼

𝜕𝑥²

𝜕2𝐼

𝜕𝑥𝜕𝑦

𝜕2𝐼

𝜕𝑥𝜕𝑦

𝜕2𝐼

𝜕𝑦²

] (3)

Where I is the pixel intensity and 𝜕𝑥, 𝜕𝑦 are the derivative
in x and y direction, respectively.

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎²
𝑒𝑥𝑝 (−

𝑥2+𝑦²

2𝜎²
) (4)

Where G(x,y) is a Gaussian 2D distribution and 𝜎 is the
standard deviation of the distribution.

Because the human retina has a better visual acuity, the
rotation estimation is done based on the sum of gradients over
a selected pair, by using long pairs to compute the global
orientation, whereas select pairs are mainly with symmetric
receptive fields with respect to the center, as per Fig. 3.

The set of selected pairs is done according to the following
equation 5:

𝑂 =
1

𝑀
∑ (𝐼(𝑃0

𝑟1) − 𝐼(𝑃0
𝑟2))

𝑃0
𝑟1− 𝑃0

𝑟2

‖𝑃0
𝑟1− 𝑃0

𝑟2‖
𝑃0∊𝐺

 (5)

where M is the number of pairs in G and P is the 2D vector
of the spatial coordinates of the center of receptive field.
However, compared to classical binary descriptor (like
BRISK), HOOFR retinal pattern has more error in the
orientation due to a larger receptive field allowing more
estimation error, but this issue is solved by discretizing the
space of orientations in much bigger steps, leading to more
than 5 times smaller memory load (about 7 MB against 40
MB), and therefore a smaller execution time.

The main difference between Rat-SLAM and HOOFR-
SLAM matching method, is that the first algorithm is
comparing the template image against the source image by
sliding it, then a sum of square is calculated to give the
movement direction, so this method is operating directly on the
pixel value, while HOOFR, from the other hand, use a feature
matching method. In general, for this kind of techniques, the
accuracy and efficiency are strongly dependent on the used
detector and descriptor. An evaluation has been done in [4-5]
show the impact of execution time and accuracy by using
different feature detectors/descriptors combination. Fig. 4 is
schematizing the flow of each algorithm front-end process.

Unlike RAT-SLAM, HOOFR-SLAM has been parallelized
in a previous work [16] and implemented in different
heterogenous architectures, so it is re-evaluated on a laptop, in
order to determine the acceleration rate in a the same hardware
architectures, and to have a fear comparison with results
obtained for Rat-SLAM.

Since both bio-inspired algorithms has different images
perception and since the camera position in HOOFR is frontal
but lateral for RAT, any comparison using the same dataset
will not be equitable, even after a modification, because the
number of evaluated templates will not be the same. Therefore,
a corresponding dataset is used for each algorithm in order to
get time spent per iteration, images examples are given by
Fig. 5.

Fig. 3. Illustration of the Pairs Selected to Compute the Orientation.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

226 | P a g e
www.ijacsa.thesai.org

Fig. 4. Front End Process flow Diagram Showing differences between

HOOFR-SLAM Feature Matching (Right) and RAT-SALM Template based
Matching Method (Left).

(a) (b) (a) (b)

 (a) (b) (a) (b)

Fig. 5. Left and Right Images taken at different Lighting Conditions, by a

RealSense Stereo Camera System, Simulating Rat Eyes and Placed in Lateral

Position to have Similar Visual Perception as for a Rat. Right (a) and Left (b)

Images used for RAT-SLAM, Images are Panoramic and May Appear
Distorted to Human Eyes.

The evaluation was based on outdoor sequences where
different lighting conditions are applied for better
performances check.

V. EXPERIMENTAL RESULTS

A first evaluation for both selected bio-inspired algorithms
is done based on a Multi-core Intel CPU and an NVIDIA
GPGPU with a high-end 64-bit implementation. This
configuration shown previously in Table II, allows the
evaluation of different run modes on a CPU, multi-cores CPU
and CPU-GPGPU combined. All presented results are the
mean values of 20 runs.

Tables IV and V gives the processing times per iteration
when the functional blocks are transferred to GPGPU as shown
in Fig. 6.

TABLE IV. AVERAGE PROCESSING TIME (MS) EVALUATION FOR RAT-
SLAM WITH PARALLEL IMPLEMENTATION ON A MULTI-CORE CPU, AND A

CPU-GPGPU LAPTOP

Intel® core

i7

NVIDIA GeForce

MX110 Acceleratio

n %

Multi Core

CPU
CPU-GPGPU

Local

View
FB1 183.17 31.93 82.57

Pose cells
FB2 0.75 0.22 70.67

FB3 38.49 22.32 42.01

Experience

Map

FB4 133.93 84.81 36.68

FB5 0.16 0.08 50.00

TABLE V. AVERAGE PROCESSING TIME (MS) EVALUATION FOR RAT-
SLAM WITH PARALLEL IMPLEMENTATION ON AN ARM CPU, AND CPU--

GPGPU USING ARM-NVIDIA TX1

ARM®Cortex

-A57

 NVIDIA

Maxwell™ Acceleratio

n%

Multi Core

CPU
CPU-GPGPU

Local View FB1 111.76 32.24 71.15

Pose cells
FB2 0.75 0.29 61.33

FB3 26.59 20.94 21.25

Experience

Map

FB4 113.82 86.86 23.68

FB5 0.13 0.09 30.73

Fig. 6. Simplified Schematic Representation of Functional Blocks Sent to

GPU and the One Remaining on CPU for Rat-SLAM.

The evaluation was achieved using the well-known open-
source dataset Oxford New College, 2008 [9], settings and
camera calibration parameters are shared by the same source.
Images are panoramic and were converted to gray scale to
match the most the rodent eyes perception to comply with the
template matching process requirement.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

227 | P a g e
www.ijacsa.thesai.org

Based on above results, the processing time of the most
time-consuming functional blocks is drastically reduced using
a parallel implementation by 36.68% on the laptop and 23.68%
for TX1, this is due to the higher GPU performance and
number of cores on the laptop compared to TX1, Fig. 7 is a
graphical representation of the total execution time speed up
for the algorithm on GPGPU.

(a)

(b)

Fig. 7. Comparison of Acceleration (A) and Total Execution time (B) for

Oxford New College [9] on Laptop and on TX1 Hardware.

Below, graphs in Fig. 8, 9 and 10 represent the average
execution timing measurement related to NVIDIA GeForce
MX110 GPGPU and on ARM Cortex-A57 on TX1, also the
power consumption in Watts for both Laptop CPU and GPU.

Fig. 8. Average Workload Evolution for RatSLAM on Laptop NVIDIA

GeForce MX110 GPU, the Workload Everage is around 20% during the Total
Execution Time of the Selected Dataset [9].

Fig. 9. Average Workload Evolution for RatSLAM on Laptop Intel Core i7

CPU, the Workload Everage is Variating between 20% and 60% during
Execution of the Selected Dataset [9].

Fig. 10. The CPU-GPGPU Power Comsumption is Calcuted only for

RATSLAM Algorithm when the Power Resulting form Operating System is

not Considered.

As per above graphs , the CPU workload has been reduced
by an average of 20% when running the RatSLAM algorithm,
by running parallel functional blocks on GPGPU, but due to
the nature of the algorithm some blocks cannot run on GPU
because they are sequential and therefore are kept on CPU.

As expected the temperature will also increase on the CPU
in the same way as per below Fig. 11, which can be considered
as a week point for implementation of Rat SLAM in an
embedded architecture where the use of a cooling system is not
always possible.

An evaluation of HOOFR-SALM using KITTI-07 open
source dataset, gives the results shown in Tables VI and VII.

Fig. 11. Temperature Profile for Laptop CPU and GPU, it Increases Over

Time Due to the Amount of Input Data.

0 20 40 60 80 100

FB1

FB2

FB3

FB4

FB5

Total

Acceleration %

Fu
n

ct
io

n
al

 B
lo

ck

TX1

Laptop

999.98

633.83

1001.01

788.28

0 200 400 600 800 1000

Multi Core CPU workstation

CPU-GPGPU workstation

Multi Core CPU TX1

CPU-GPGPU TX1

Total Eecution Time (ms)

0%

20%

40%

60%

80%

100%

1
1

0
1

2
0

1
3

0
1

4
0

1
5

0
1

6
0

1
7

0
1

8
0

1
9

0
1

1
0

0
1

1
1

0
1

1
2

0
1

1
3

0
1

1
4

0
1

1
5

0
1

1
6

0
1

1
7

0
1

1
8

0
1

1
9

0
1

2
0

0
1

2
1

0
1

2
2

0
1

2
3

0
1

2
4

0
1

2
5

0
1

2
6

0
1

w
o

rk
lo

ad

Time (s)

0

1

2

3

4

5

6

7

0 200 400 600P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (w

at
t)

Time (s)

CPU-GPU CPU

0

20

40

60

80

100

1
1

0
1

2
0

1
3

0
1

4
0

1
5

0
1

6
0

1
7

0
1

8
0

1
9

0
1

1
0

0
1

1
1

0
1

1
2

0
1

1
3

0
1

1
4

0
1

1
5

0
1

1
6

0
1

1
7

0
1

1
8

0
1

1
9

0
1

2
0

0
1

2
1

0
1

2
2

0
1

2
3

0
1

2
4

0
1

2
5

0
1

2
6

0
1

GPU_Temperature CPU_Temperature

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

228 | P a g e
www.ijacsa.thesai.org

TABLE VI. AVERAGE PROCESSING TIME (MS) EVALUATION FOR HOOFR-
SLAM WITH PARALLEL IMPLEMENTATION ON MULTI-CORE CPU, CPU-

GPGPU ON INTEL® CORE I7 / NVIDIA GEFORCE MX110

 Intel® core i7 / NVIDIA GeForce MX110

CPU

(ms)

Multi

Core

CPU

(ms)

Acceleration

%

CPU-

GPU

(ms)

Acceleration

%

Extraction 8.6 8.6 0.00 8.6 0.01

Mapping 52.79 52.76 0.06 27.88 47.15

Loop detection 15.38 15.34 0.26 8.05 47.52

Map Processing 0.48 0.45 6.25 0.19 58.85

TABLE VII. AVERAGE PROCESSING TIME (MS) EVALUATION FOR HOOFR-
SLAM FOR PARALLEL IMPLEMENTATION ON MULTI-CORE CPU, CPU-

GPGPU ON TX1 ARM®CORTEX-A57 NVIDIA MAXWELL™

ARM®Cortex-A57 NVIDIA Maxwell™

Multi Core

CPU
CPU-GPU Acceleration %

Extraction 16.78 16.73 0.31

Mapping 21.92 16.47 25

Loop detection 21.92 16.47 25

Map Processing 0.58 0.4 31

VI. CONCLUSION

This paper presented an algorithmic complexity study for
two bio-inspired algorithms. It proposed an optimized parallel
implementation on a CPU-GPU by studying, in a practical
way, optimization possibilities for workload partitioning. It
also presented understanding of bio-inspired algorithms with
necessary techniques to accelerate there processing times for
real time SLAM applications.

From one hand, based on above temporal evaluation
results, a first conclusion is that the use of multiple CPU’s
cores cannot accelerate much the algorithm compared to one
CPU core. This is due to the congestion of data in buses at the
on-chip memory level since it is a shared resource for all
CPU’s cores. The memory is considered as a bottleneck in this
case and using a higher CPU frequency or more memory will
not help much.

From another hand, considering a real time sequence where
the frequency is higher than 30fps, and based on the
experimental results when executing both algorithms, it is
clearly seen that despite the considerable acceleration, Rat
SLAM still cannot fulfill the real time expectation as it should
be executed in less than 33ms per frame, due to the matching
sequence that is dependent on the number of images perceived
by the camera sensor. Furthermore, the algorithm needs to keep
previously seen templates in the memory for localization and to
fine tune the map (loop closing), which has an impact on the
final execution time.

In the case of HOOFR-SLAM, which is a feature-based
approach that doesn’t depend on the dataset size, the matching
process time is not increased by increasing the number of input
images. This is very important because the processing time will

remain practically the same for all iterations and therefore the
parallelization is more efficient.

These two studies covering the exploration of hybrid
architectures based on GPU-CPU for the implementation and
parallelization of bio-inspired SLAM applications, allowed to
draw conclusions about the challenges to be met related to the
complexity, the structure of data and the nature of the
algorithms studied. The results presented in this paper confirm
that future heterogeneous architectures will represent potential
candidates to embed complex algorithms such as those of bio-
inspired SLAM applications.

Future work will focus on the implementation of selected
functional blocks on FPGA architectures in order to bring
defined processing closer to the sensor and hence allow image
processing on the fly and reserve the GPU for massively
parallel processing.

AKNOWLEDGMENT

This research is supported by Information Systems and
Technologies Engineering Laboratory, LISTI. ENSA Ibn Zohr
University, Agadir, Morocco and SATIE Paris-Saclay
University, Orsay, France.

REFERENCES

[1] T. Savaria and R. Balasubramanian, "V-SLAM: Vision-based
simultaneous localization and map building for an autonomous
mobile robot," 2010 IEEE Conference on Multisensor Fusion
and Integration, Salt Lake City, UT, USA, 2010, pp. 1-6.

[2] Land, M.F.; Fernald, R.D. (1992). "The evolution of
eyes". Annual Review of Neuroscience. 15: 1–
29. doi:10.1146/annurev.ne.15.030192.000245. PMID 1575438

[3] Caves EM, Brandley NC, Johnsen S. Visual Acuity and the
Evolution of Signals. Trends Ecol Evol. 2018;33(5):358‐372.
doi: 10.1016/j.tree.2018.03.001.

[4] M. Amraoui, R. Latif, A. Elouardi and A. Tajer, "Features
Extractors Evaluation Based V-SLAM Applications," 2019 4th
World Conference on Complex Systems (WCCS), Ouarzazate.

[5] M. Amraoui, R. Latif, A.E. Ouardi, A. Tajer "Feature Extractors
Evaluation Based V-SLAM for Autonomous Vehicles",
Advances in Science, Technology and Engineering Systems
Journal, vol. 5, no. 5, pp. 1137-1146 (2020).

[6] D. Nguyen, A. El Ouardi, E. Aldea and S. Bouaziz, "HOOFR:
An enhanced bio-inspired feature extractor," 2016 23rd
International Conference on Pattern Recognition (ICPR),
Cancun, 2016, pp. 2977-2982.

[7] Milford, M.J., Wyeth, G.F., Prasser, D.: Ratslam: a hippocampal
model for simultaneous localization and mapping. In: 2004
IEEE International Conference on Robotics and Automation,
Proceedings, ICRA 2004, vol. 1, pp. 403–408. IEEE (2004).

[8] Andreas Geiger , Philip Lenz , Christoph Stiller , Raquel
Urtasun; “Vision meets Robotics: The KITTI Dataset”;
International Journal of Robotics Research, IJRR,2013.

[9] M. Smith, I. Baldwin, Churchill, R. Paul, Newman, "The new
college vision and laser data set", The International Journal of
Robotics Research, vol.28, issn.0278-3649, May.2009.

[10] U.Muhammad, M.Tanvir, K.Khurshid, “Feature Based
Correspondence: A Comparative Study on Image Matching
Algorithms” International Journal of Advanced Computer
Science and Applications(IJACSA), 7(3), 2016.

[11] D.Ball, S.Heath, , J.Wiles, et al. OpenRatSLAM: an open source
brain-based SLAM system. Auton Robot 34, 149–176 (2013).

[12] Antonio J. Peña, Pavan Balaji, “A data-oriented profiler to assist
in data partitioning and distribution for heterogeneous memory

https://en.wikipedia.org/wiki/Annual_Review_of_Neuroscience
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1146%2Fannurev.ne.15.030192.000245
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/1575438
http://www.cvlibs.net/
http://www.mrt.kit.edu/mitarbeiter_lenz.php
http://www.mrt.kit.edu/mitarbeiter_stiller.php
http://ttic.uchicago.edu/~rurtasun
http://ttic.uchicago.edu/~rurtasun

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

229 | P a g e
www.ijacsa.thesai.org

in HPC Parallel Computing”, Volume 51,2016, Pages 46-55,
SSN 0167-8191.

[13] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: An Open-
Source SLAM System for Monocular, Stereo and RGB-D
Cameras. IEEE Transactions on Robotics, vol. 33, no. 5, pp.
1255-1262, 2017.

[14] E.Adel, M.Elmogy,H.Elbakry, “Image Stitching System Based
on ORB Feature-Based Technique and Compensation Blending”

International Journal of Advanced Computer Science and
Applications(IJACSA),6(9),2015.

[15] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast Retina
Keypoint”, In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 2012, pp. 510-517.

[16] Nguyen, Dai-Duong. “A vision system based real-time SLAM
applications. (Un système de vision pour la localisation et
cartographie temps-réel).” (2018).

