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Abstract—With the exponential increase in connected devices 

and its accompanying complexities in network management, 

dynamic Traffic Engineering (TE) solutions in Software-Defined 

Networking (SDN) using Reinforcement Learning (RL) 

techniques has emerged in recent times. The SDN architecture 

empowers network operators to monitor network traffic with 

agility, flexibility, robustness and centralized control. The 

separation of the control and the forwarding plane in SDN has 

enabled the integration of RL agents in the networking 

architecture to enforce changes in traffic patterns during 

network congestions.  This paper surveys major RL techniques 

adopted for efficient TE in SDN. We reviewed the use of RL 

agents in modelling TE policies for SDNs, with agents’ actions on 

the environment guided by future rewards and a new state. We 

further looked at the SARL and MARL algorithms the RL 

agents deploy in forming policies for the environment. The paper 

finally looked at agents design architecture in SDN and possible 
research gaps. 
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I. INTRODUCTION 

The emergence of fifth generation (5G) networks has 
propelled the growth of Internet of Things (IoT) in recent 
times. IoT is a rapid evolving technology that connects billions 
of devices to the internet [1]. With 5G, the rapid deployment of 
new and smart IoT applications are expected to reach 22.3 
billion by 2024 and generate about 163 zettabyes (ZB) of data 
by 2025 [2] [3]. These new and dynamic applications are 
expected to benefit from the services 5G networks will 
provide: ultra-reliable and low latency communication 
(URLLC) [4], enhanced mobile broadband (eMBB) [5] and 
massive machine type communication, massive MIMO [6]. 

As shown in Fig. 1 and Fig. 2, the dynamic nature and 
requirements of IoT devices has necessitated a network 
deployment shift from the traditional networking architecture 
which are difficult to configure and manage to a more flexible 
programmable domain [7].  Software-Defined Networking 
(SDN) is a new networking paradigm that separates the data 
plane from the control plane [8] [9]. This separation makes the 
network more agile with centralized responsibility given to the 
controller [10]. The controller communicates with the 
application plane via the northbound APIs and the forwarding 
devices via the southbound APIs (OpenFlow).  The automation 
and programmability of the SDN architecture helps to 
configure, secure, and optimize network resources [11] quickly 

whiles maintaining a good Quality of Service (QoS) [12] and 
Quality of Experience (QoE) [13]. 

Traffic Engineering (TE) in SDN involves the analysis of 
the networks state by the SDN controller to act on flow data 
through the rapid change in flow table information for 
forwarding devices [14]. Rerouting flows periodically to 
balance the loads on the network minimizes congestion and 
improves the overall network performance. A network 
experiences two kinds of traffic flows: elephant flows and mice 
flows [15]. The elephant flows are heavy traffic flows that 
requires more network resources whiles the rapid aggregation 
of the mice flows can equally degrade the network. These 
traffic flows continuously needs dynamic resource allocation 
for the efficient utilization of scarce network resources through 
TE. 

With the advent of machine learning, port-based [16] and 
payload-based [17] flow classification techniques have become 
ineffective due to the dynamic port usage of IoT devices. The 
negative impact of packet out of order and packet loss in 
traditional TE techniques even worsens the case for the 
network operator. 

 

Fig. 1. Traditional Networking Architecture [7]. 

 

Fig. 2. Software-Defined Networking (SDN) Architecture [7]. 
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Fig. 3. TE using RL in SDN – Review Outline 

Currently for TE, machine learning algorithms are adopted 
for intelligent flow re-routing with an efficient feature selection 
criterion [18] [19] in network flow analysis. Deploying these 
machine learning algorithms in the SDN controller will 
efficiently allocate network resources and formulate policies 
for optimal network performance with low overheads. 

In this survey as outlined in Fig. 3, we reviewed popular 
Reinforcement Learning (RL) techniques used in SDN 
architecture for Traffic Engineering with limitations on 
parameters chosen and approaches for future research. The rest 
of the paper is organized as follows: Section II discusses the 
justification of RL for TE; Section III analysed the TE 
architecture integration in SDN based on policies and 
performance. Finally, Section IV looked at the research gaps 
identified from the survey. 

II. MACHINE LEARNING WITH REINFORCEMENT 

ALGORITHMS 

With the advent of Machine Learning [101] where 
automation modelling using data remains relevant, traditional 
algorithms [102][103][104] used in solving SDN-IoT related 
task is unfeasible. In supervised learning [103] agents are 
trained with a labeled dataset and later tasked to make 
predictions out of the learned data. Increased complexity in a 
dynamic environment with new IoT devices and variance in 
data will negatively affect the accuracy of supervised learning 
algorithms and predictions. Even worse is the time factor in 
retraining and relabeling of new data variance in an attempt to 
still adopt classification algorithms. With unsupervised 
learning [104] that uses unlabeled dataset, there is no guidance 

regarding the accuracy of the clustered dataset. Clustering 
algorithms alone is inefficient in an SDN-IoT environment that 
requires efficiency in diverse IoT applications. Reinforcement 
Learning (RL) defines the true automation of agents in an 
environment [20][105] with rewards as guidance on how well 
the agent is performing. Though complex, RL agents adapts to 
changing conditions in the environment by learning to solve 
tasks through trial-and-error approach. As the episodes 
progresses, agents adapt to successful actions through 
exploration and exploitation [106][107] on the stochastic 
environment. With the recent success of DeepMinds AlphaGo 
RL agent [108] that defeated the Go champion in 2016, the 
application dimensions of RL have become enormous. The 
only way packets can be routed intelligently in a network with 
varying and emerging IoT devices is to deploy RL agents to 
learn varying network state patterns with no exclusive data 
labels but with policies and actions. 

III. TE USING REINFORECEMENT LEARNING IN SDN 

Reinforcement Learning (RL) is an area of machine 
learning where an agent is modeled to take sequence of actions 
informed by policies [20]. As shown in Fig. 4, the agent learns 
in an interactive environment and receives a reward through its 
actions [21, 22]. The set of actions presents a new state with 
corresponding reward to the agent. Unlike supervised learning 
[23] where a set of correct actions are provided as feedback to 
the agent, RL uses rewards and punishment as signals for 
positive and negative decisions. The goal is to use trial and 
error methods in getting positive rewards or build a suitable 
model that will maximize cumulative rewards for the RL agent. 
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Fig. 4. Reinforcement Learning. 

SDN provides centralised control with a unique advantage 
for intelligent TE framework implementation using RL. 
Network policies can easily be generated from the centralized 
control with corresponding TE rules to forwarding devices. 
With RL, the modelling of the agent’s action on the 
environment with rewards fits into the network architecture of 
SDN and this expedites network control and management. 

A. RL Agents Design 

This section details the mathematical modelling of the state 
space with respect to actions and rewards. Agent design 
requires the environment to be monitored. 

An agent based on the monitored metrics takes actions 
informed by policy decisions with a new state and a 
corresponding reward in guiding the next policy. 

1) Action-State-Reward: RL agents are implemented in 

RL frameworks and modelled in SDN to learn critical network 

packet flow policies and provide routing solutions to 

forwarding devices. The agent takes an action on the 

environment and evaluates the actions based on rewards. 

Using its policy π , the agent performs an action a, which 

alters the environment state s to s'[24]. Based on the reward r, 

the agents policy is updated. In arriving at optimal policy, RL 

agents use Markov Decision Process (MDP) [25] to model 

actions on the environment with corresponding rewards. MDP 

is an intuitive and fundamental formalism for decision-

theoretic planning (DTP) [26] and RL in stochastic domains. 

The MDPs have become the de facto standard formalism for 

learning sequential decision control problems [27]. 

Algorithm 1 Markov Decision Process (MDP) 

An MDP is a 5-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where; 

  𝑆 is a set of states 

 𝐴 is a set of actions 

 𝑃 (𝑠, 𝑎, 𝑠′) is the probability that action 𝑎 in state 𝑠 at time 𝑡  

will lead to state 𝑠′ at time 𝑡 + 1 

 𝑅 (𝑠, 𝑎, 𝑠′) is the immediate reward received after a transition 

from state 𝑠 to 𝑠′, due to action 𝑎 

 𝛾 is the discounted factor which is used to generate a discounted 

reward 

For TE in SDN, RL agents are implemented differently 
based on the agents policy and the metrics for measuring TE 
success. The actions of the agents on the environment are rated 
by the rewards associated with it as the episode progresses. 

CFR-RL agent [28] 

State Space 𝑠𝑡 =  𝑇𝑀𝑡  (1) 

Action Space {0, 1, … , (𝑁 ∗ (𝑁 − 1)) − 1} (2) 

Reward Function 𝑟 =  1
𝑈⁄  (3) 

The CFR-RL agent resides in the controller of the SDN 
architecture. The RL agent uses a traffic matrix that contains 
the traffic demand of each flow as state. The objective is to 
avoid packet link congestion. As shown in equations 1 - 3, the 
CFR-RL agent samples K critical flows for a given stage 
𝑠𝑡 within N nodes. The CFR-RL agent then reroutes these 
critical flows and obtains maximum value in link utilization U 
as reward. 

Q-DATA RL agent [29] 

State Space 
𝑆𝑖  ≜ {(𝑓𝑖, ∆𝑓𝑖) ∶ 0 < 𝑓𝑖 ≤ 𝑓𝑐𝑎𝑝𝑖; −𝑓𝑐𝑎𝑝𝑖 ≤ ∆𝑓𝑖

≤ 𝑓𝑐𝑎𝑝𝑖}  
(4) 

Action Space 𝐴𝑖 ≜ {𝑎 ∶ 𝑎 ∈ ℱ}  (5) 

Reward Function {

∑ 𝛩𝑥
𝑓𝑖
𝑥=1

𝑓𝑖

,   0 < 𝑓𝑖 < 𝑓𝑐𝑎𝑝𝑖 ,

     0,          𝑓𝑖 =  𝑓𝑐𝑎𝑝𝑖 ,

 
   
(6) 

The Q-DATA agent resides in the application plane of 
SDN. As shown in equations 4 - 6, the Q-DATA RL agent has 
a defined state space where 𝑓𝑖  is the current total number of 
flow entries in switch i; ∆𝑓𝑖  is the number of flow entry 

changes between two consecutive observations and 𝑓𝑐𝑎𝑝𝑖  is the 

maximum number of flow entries in switch i. (𝑓𝑖 , ∆𝑓𝑖) 
represents the state of an SDN switch i, as a tuple. For its 
action space, a represents a traffic flow matching scheme 
change related to a destination host and ℱ denotes a list of all 
feasible match field combinations. With the reward function, 𝑓𝑖 
is the current total number of flow entries in the switch i; and 
𝛩𝑥 is an integer number representing the number of enabled 
match fields in flow entry x. An action has no reward if that 
action leads to the total number of current flow entries in the 

SDN switch i reaching the limit 𝑓𝑐𝑎𝑝𝑖 . 

   Mu [30] 

State Space 𝑠𝑖 =  (𝑓𝑙𝑜𝑤_𝑓𝑟𝑒𝑞𝑖 , 𝑓𝑙𝑜𝑤_𝑟𝑒𝑐𝑒𝑛𝑡𝑛𝑒𝑠𝑠𝑖) (7) 

Action Space 𝑎𝑓𝑙𝑜𝑤_𝑓𝑟𝑒𝑞𝑖

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = (𝑓𝑙𝑜𝑤𝑓𝑟𝑒𝑞 𝑖

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 , 𝑓𝑙𝑜𝑤𝑟𝑒𝑐𝑒𝑛𝑡𝑛𝑒𝑠𝑠 𝑖
) (8) 

Reward Function 
𝑟𝑡 = 𝐶𝑜𝑚𝑝𝑎𝑟𝑒( 

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑏𝑒𝑠𝑡
, 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑡) 

(9) 

In [30], the RL agent resides in the controller of the SDN. 
As shown in equations 7-9,  𝑓𝑙𝑜𝑤_𝑓𝑟𝑒𝑞𝑖  represents the 
frequency of matched flows and 𝑓𝑙𝑜𝑤_𝑟𝑒𝑐𝑒𝑛𝑡𝑛𝑒𝑠𝑠𝑖 , an 
indication of flow duration in the memory of the switch. These 
are defined for the state space. The action space denotes an 
increase action on the flow frequency parameters. With the 

reward function the 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑏𝑒𝑠𝑡
 denotes the current 

best network control overhead obtained. A configuration with 
less overhead returns a positive reward, 1 to the RL agent 
otherwise a negative value -1 is returned. If 

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑏𝑒𝑠𝑡
 and 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑡 are equal, a reward value 

of 0 is given. 

Huang [31] 

State Space 𝑠𝑓 = (𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑓 , 𝑗𝑖𝑡𝑡𝑒𝑟𝑓 , 𝑝𝑎𝑐𝑘𝑒𝑡_𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑒𝑓 )  (10) 
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Action Space 𝑎𝑠 =  𝑎𝑐𝑡𝑖𝑜𝑛𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑓

𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑝𝑎𝑡ℎ
 (11) 

Reward Function 𝑟𝑠 = {𝑀𝑂𝑆𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟, 𝑄𝑜𝐸𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟} (12) 

With [31], the objective of the RL agent is to maximize the 
cumulative QoE of customers by dynamically allocation traffic 
in a multimedia environment. The RL agent resides in the 
controller of the SDN architecture. As shown in equations 10 – 
12, the state of the environment refers to the state of flows and 
covers the following metrics: allocated bandwidth, the delay, 
the jitter and the packet loss rate of flows. The action includes: 
the path chosen (routing path) and the bandwidth adaptation of 
flows. The mean opinion score (MOS) [32] used to evaluate 
the QoE represents the reward function. A multi-layer deep 
neural network (DNN) is used to map the network and 
application metrics to the MOS. 

Choi [59] 

State Space 𝑠𝑖 = (𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑝𝑒𝑟𝑖𝑜𝑑𝑖)  (13) 

Action Space 𝑎𝑖
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = ( 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒) (14) 

Reward Function 𝑟𝑡 =  {
   1, ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡−1 < ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡

   0,         ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡−1 = ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡

−1, ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡−1 > ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡

 (15) 

In [59] RL framework is modelled to minimize the number 
of overflow occurrences. As shown in equations 13 - 15, the 
state space represents the size of the sampling period with a 
unit size of 500 ms. This ranges to 5,000 ms with a total of 10 
states. The action space has three options: (i) increase sample 
period by unit size; (ii) decrease sampling period by unit size; 
(iii) maintain the sample period. Based on the percentage of 
table hits, three rewards are given. A reward of 1 is given when 
the measured hit rate is higher than the hit rate pre-action. If 
low, a reward of -1 is assigned. A reward of 0 is assigned if 
there is no change in the hit rate. 

Fu [71] 

State Space 
𝑆𝑡𝑎𝑡𝑒 = {𝑠 = [𝐹𝑇𝑠𝑤𝑖,𝑡𝑗

, 𝑃𝑆𝑝𝑘,𝑠𝑤𝑖,𝑡𝑗 ]| 𝑖 ∈

[1, 𝑛], 𝑗 ∈ [1, 𝑚], 𝑘 ∈ [1, 𝑧]}  
(16) 

Action Space 𝐴𝑐𝑡𝑖𝑜𝑛 = {𝑎𝑝1, 𝑎𝑝2, . . .  𝑎𝑝𝑘  . . . 𝑎𝑝𝑁 } (17) 

Reward Function 
𝑅𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 =  𝛼 ∗ (1 − 𝑃𝐿𝑅) +  𝛽 ∗ 𝑇𝑃 

𝑅𝑚𝑖𝑐𝑒 =  𝜆 ∗ (1 − 𝑃𝐿𝑅2) + µ ∗ (1 − 𝐷𝐿) 
(18) 

In [71], flow table state and port state are responsible for 
collecting network statistics. The channels of the network 
represent the flow table utilization and its respective port rate 
of switches at current and previous states. For the state space 
modelling n, m and z respectively identifies the number of 

switches, moments and ports of a single switch. 𝐹𝑇𝑠𝑤𝑖,𝑡𝑗
 

represents the flow table utilization rate of switch i at the 
moment 𝑡𝑗  and ranges from 0 to 1. 𝑃𝑆𝑝𝑘,𝑠𝑤𝑖,𝑡𝑗 represents the 

port rate of port k in switch i at the moment 𝑡𝑗 . The action 

space comprises of 𝑝1 𝑡𝑜 𝑝𝑁  which indicates all paths in the 

network, 𝑎𝑝𝑘  ∈ {0, 1}. If 𝑎𝑝𝑘 = 1, the current flow is assigned 

to path k else 𝑎𝑝𝑘 = 0. For the reward function, the elephant-

flows 𝑃𝐿𝑅, represents the average packet loss rate of elephant-
flows in the network, TP is the average throughput of elephant-
flows after processing. 𝛼 and 𝛽 are the weights of the 𝑃𝐿𝑅 and 

TP respectively. With the mice-flows, 𝑃𝐿𝑅2  indicates the 
average packet loss rate of mice-flows and DL represents the 
normalized average delay. 𝜆 and µ identifies the weight of the 
𝑃𝐿𝑅2 and DL , respectively. 

Zhang [86] 

State Space 𝑠 = (𝑛𝑐, 𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑎𝑣𝑎𝑖𝑙) (19) 

Action Space 𝑎 = (𝑎1 , , 𝑎𝑖 … , 𝑎𝑗 , 𝑝𝑎𝑡ℎ) (20) 

Reward Function 

𝑟 =  
1

𝐿
∑ (2

𝑏𝑙

𝑏𝑤𝑙

− 1)
𝐿

𝑙=1

−  β
2

𝜋
arctan(𝜎) + 1 

(21) 

In [86] the state comprises of four components; name of the 
requested content, source, destination and available link 
bandwidth. 

With the action, 𝑎𝑖  denotes the ith destination node split 
ratio and relates to the content request sent to that destination 
node using selected transmission links. The reward is meant to 

improve load balance and throughput. The 
1

𝐿
∑ (2

𝑏𝑙

𝑏𝑤𝑙
− 1)𝐿

𝑙=1  

reveals throughput impact in relation to available normalized 

bandwidth. The - (
2

𝜋
)arctan(𝜎) + 1 indicates the load balance 

with normalized variance of available bandwidth. A value 
close to 1 signals a preferred action with a reverse value close 
to -1, a penalty. β = 1 is a factor used to balance the throughput 
and the load balance. 

B. RL Algorithms 

In this section, we reviewed the algorithms the RL agents 
use to formulate policies that informs the action taken by the 
agent on the environment as the episode progresses. For 
effective TE and policy enforcement on the environment, RL 
agents learns to take the best actions for traffic optimization in 
respect to cumulative future rewards. RL algorithms are 
distinguished into two main classes: the model-free (direct) and 
model-based (indirect) methods [33, 34, 35]. 

1) Model-based RL methods: Model-based RL algorithms 

utilizes a model when the RL agent interacts with the 

environment. The model keeps track of transition dynamics of 

the network to derive optimal actions and rewards [35]. When 

the model is referenced, the RL agent can make predictions 

about the next state and reward before an action is taken. 

Model-based RL methods are data efficient but struggles to 

achieve asymptotic performance for real-world applications 

[36]. For model-based RL methods, the interaction between 

the RL agent and the environment is modeled as a discrete-

time Markov Decision Process (MDP) ℳ and defined by the 

tuple [36]: 

(𝑆, 𝘈, 𝑝, 𝑟, 𝛾, 𝑝0, 𝐻)  . Where 𝑆  is the set of states, 𝘈  the 
action space, 𝑝(𝑠𝑡+1| 𝑠𝑡 , 𝑎𝑡) the transition distribution, 𝑟 ∶  𝑆 ×
𝘈 → ℝ as a reward function, 𝑝0 : 𝑆 → ℝ+ represents the initial 
state distribution, 𝛾 the discount factor, and 𝐻  the horizon of 
the process. The return function is defined as the sum of 
rewards 𝑟 (𝑠𝑡 , 𝑎𝑡)  along a trajectory τ: = 
(𝑠0, 𝑎0, … , 𝑠𝐻−1, 𝑎𝐻−1, 𝑠𝐻  ).  The goal of the reinforcement 
learning is to find a policy π:  𝑆 × 𝘈 → ℝ+ that maximizes the 
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expected return. The model-based learns the transition 
distribution from the observed transitions using parametric 
approximator  ṕø(𝑠′|𝑠, 𝑎) . The parameter ø  of the dynamic 
model are optimized to maximize the log-likelihood of the state 
transition distribution. Though model-based RL methods are 
data efficient, they have high computational complexity and 
the degree of potential error in maximizing a reward is 
compounded.. 

2) Model-free RL methods: Model-free RL algorithms do 

not utilize a model and thus the rewards and the optimal 

actions are derived through trial-and-error approach with the 

environment [37]. These set of algorithms operate over an 

unordered list of actions, with a positive or negative reward 

value. The RL agents that utilizes model-free algorithms 

increases the value associated with a positive action which 

helps the agent to learn from direct experience. Agents in 

model-free RL are represented with policy optimization and 

Q-learning approaches [38]. With policy optimization, the 

agents learns directly the policy function that maps state to 

action without a value function. The Q-learning approach 

learns the action-value function 𝑄(𝑠, 𝑎); how good to take an 

action at a particular state. A scalar value is assigned over an 

action a, given the state s [39]. Model-free RL methods have 

low computational complexity but more data dependent. For 

TE, model-free RL methods are frequently used for RL agent 

sequencing and to implement policies on the environment. 

3) Single Agent Reinforcement Learning (SARL): In a 

SARL, there is only one agent that interacts with the 

environment to maximize rewards. The SARL implementation 

is suitable for simple network management with slower 

convergence and learning experience. The SARL 

implemented algorithms are either value-based, policy-based 

or both [48].  As shown in Fig. 5, the SARL through the SDN 

controller collects information from the environment through 

the forwarding devices. 

The agent upon receiving the state information performs a 
set of actions on the environment through the SDN controller. 
These actions are guided by policy algorithms. The episode 
results in a new state and rewards. 

 

Fig. 5. SARL. 
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a) Q-learning Algorithm: Q-learning [40] is an off-

policy, value-based algorithm that takes a random actions 

based on the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy, where the probability of a 

random decision is determined by the value of epsilon 𝜖 . 

During the learning phase, the Q-learning agent initializes the 

Q-table for all state-action pairs and updates it using: 

 

𝒬_(𝑡 + 1) (𝑠_𝑡, 𝑎_𝑡 ) =  𝒬(𝑠_𝑡, 𝑎_𝑡 ) +  𝛼[ ℛ_𝑖 (𝑠_𝑡, 𝑎_𝑡 )
+  𝛾𝑚𝑎𝑥𝒬_𝑡 (𝑠_(𝑡 + 1), 𝑎 )
−  𝒬_𝑡 (𝑠_𝑡, 𝑎_𝑡 )] 

(22) 

The Q-learning agent generates the optimal policy 𝜋∗(𝑠) 
for a state s representing an action a that needs to be taken to 
maximize the value of the 𝒬∗(𝑠, 𝑎)  function,  𝜋∗(𝑠) =
𝑎𝑟𝑔 𝑚𝑎𝑥𝑎 𝒬∗(𝑠, 𝑎) . 

Algorithm 2 Q-learning [40] 

1: 𝐈𝐧𝐩𝐮𝐭𝐬: ℱ; for a state-action pair (𝑠, 𝑎) ∀𝑠 ∈ 𝑆𝑖 , 𝑎 ∈  𝒜𝑖 ,   
initialize a Q-table entry arbitrarily; initialize values of α, 𝛾 and 𝜖, 

respectively. 

2: loop 
3:  Current state 𝑠𝑡 . 
4:  Executive action 𝑎𝑡  according to an exploratory policy (𝜖). 
5:  Obtain a new state 𝑠𝑡+1 and an immediate reward ℛ𝑖 . 
6:  Update the Q-table entry for 𝒬(𝑠𝑡, 𝑎𝑡). 
7:  Update 𝑠𝑡  ⟵ 𝑠𝑡+1. 
8: end loop 

9: Outputs 𝜋∗(𝑠) =  arg 𝑚𝑎𝑥𝑎 𝒬∗(𝑠, 𝑎).    

     

Phan et al. [29] proposed the Q-learning algorithm in 
maximizing traffic flow monitoring in SDN switches. It 
embeds a Support Vector Machine (SVM) [49] algorithm in 
the application plane of the SDN architecture to predict the 
performance degradation of the switches as the episode 
progresses.  To reduce the long-term control plane overhead 
capacity limitation of Ternary Content Addressable Memory 
(TCAM) in OpenFlow switches, [30] proposed a Q-learning 
algorithm for SDN flow entry management. The framework 
determines the forwarding rules that remains in the flow table 
of the SDN switches and those processed by the controller in 
case of a table-miss on the switches. In [50] a Q-learning 
algorithm is proposed to reduce the latencies and improve the 
bandwidth utilization in the UbuntuNet Alliance National 
Research and Education Network (NRENs) SDN switches. The 
proposed framework adapts forwarding devices by learning 
from experience using multipath propagation. In dealing with 
bandwidth overhead caused by Dijkstra’s shortest path first 
module [51] in an OpenDayLight (ODL) architecture meant for 
efficient packets delivery, [52] proposed a congestion 
prevention mechanism using Q-learning in SDN. With [52], 
the set threshold values are defined in SDN controllers to 
enable threshold bandwidth detections. The optimal path 
chosen is delivered to the OpenVSwtiches (OVS) after Q-
routing by the controller during network congestion. To 
balance the network load in SDN, [53] proposed a Q-learning 
approach to reduce the number of unsatisfied users in a 5G 
network architecture. The researchers used a flow admission 
control technique with a fairness function to enhance the per-
flow resource allocation in the network. In [54] a load 
balancing architecture is proposed for SDN networks that uses 
supervised Bayesian Network (BN) to solve the problem of Q 

value local maximum [55] in a Q-learning RL algorithm. The 
combination of the BN in Q-learning helps the controller select 
the most optimal strategy for network load balancing during 
congestion. For TE load balancing optimization in master 
controllers, [56] proposed a dynamic switch migration 
algorithm to slave controllers using Q-learning in SDN. The 
switch migration problem (SMP) is modeled and used to 
redefine the Q-learning parameters. The Q-learning is then 
used to learn the current status of SDN to select the best 
switches for load migration. For an efficient path selection 
technique in load balancing, [57] proposed a Q-learning 
algorithm for path selection and flow forecasting [58]. It has an 
integrated centre that uses Deep Neural Networks (DNNs) to 
process uncertain network traffic and uses Q-learning to 
resolve the optimal path based on the results of the DNN. The 
DNN path selection are obtained from the bandwidth 
utilization ratio, packet loss rate and transmission latency 
which forms the inputs to the DNN. The output which is fed 
into the Q-learning is derived from the corresponding link 
score. For timely eviction of inactive flow entries and to avoid 
overflows in the memory of SDN switches, [59] proposed a Q-
learning User Datagram Protocol (UDP) [60] flow eviction 
strategy for UDP flows. The Q-learning is used to dynamically 
resize the sampling period as the most critical parameter in the 
RL architecture. This advertently maximizes the table hit rates 
of the UDP flows in the SDN. 

b) State-Action-Reward-State-Action (SARSA): SARSA 

[61] is an on-policy algorithm which uses the action 

performed by the current policy to learn the Q-value. As 

shown in Eq. 23 [61] and Eq. 24 [40], the update rule for 
SARSA varies from that of Q-learning algorithm in the 

execution of actions. In SARSA, update estimates are based 

on the same action taken whiles in Q-learning, the update 

estimates are based on the number of possible actions that 

maximizes the post-state Q function, 𝒬(𝑠𝑡+1, 𝑎′). 

 
𝒬(𝑠𝑡 , 𝑎𝑡) ⟵  𝒬(𝑠𝑡, 𝑎𝑡) +  α[𝑟𝑡+1 +  𝛾𝒬(𝑠𝑡+1, 𝑎𝑡+1)  

−  𝒬(𝑠𝑡 , 𝑎𝑡)]               
(23) 

 
𝒬(𝑠𝑡 , 𝑎𝑡) ⟵  𝒬(𝑠𝑡, 𝑎𝑡) +  α[𝑟𝑡+1 +  𝛾𝑚𝑎𝑥𝒬(𝑠𝑡+1, 𝑎′)  

−  𝒬(𝑠𝑡, 𝑎𝑡)]   
(24) 

For dynamic load balancing in multiple controllers due to 
switch migration conflicts, [62] proposed a SARSA-Bayesian 
RL algorithm for a multi-controller cluster design in SDN. 
With knowledge of the real-time load and controller’s 
communication consumption, a request response model using 
the Bayesian [63] algorithm is combined with the SARSA RL 
mini-framework in a switch migration technique to the lighter 
controller. For a multi-layer hierarchical SDN to be effective in 
handling traffic, [64] proposed the SARSA algorithm for QoS 
provisioning. With each pre-flow, the switch contacts the SDN 
controller. The controller uses the SARSA algorithm to 
implicitly detect the QoS requirement of each flow and 
computes the corresponding optimum traffic path based on the 
needed QoS requirement. The next hop in the switch forms the 
basis for the next action from the source to the destination 
switch.  To convey a massive IoT data through a limited 
bandwidth efficiently [65] proposed a SARSA algorithm for 
resource allocation through cognitive communications in the 
SDN-enabled environment. The SARSA agent communication 
is modelled with a buffer metric that manages the aggregator’s 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 5, 2021 

336 | P a g e  
www.ijacsa.thesai.org 

output queue transmissions and reflects dynamically in the IoT 
data demands. This modification targeted at Publish/Subscribe 
(Pub/Sub) paradigms preserves the Pub/Sub bandwidth with 
less computational resources. In order to adapt VS-routing [67] 
optimization to SDN networks, [66] proposed a network hop 
count technique to improve the reward function of SARSA 
algorithm. The VS-routing introduces an 𝜀 − 𝐺𝑟𝑒𝑒𝑑𝑦 function 
in the network hop count which is calculated to select the 
optimal route and avoid the long package queue of network 
links in the SDN architecture. 

c) Deep Q-Network Algorithm (DQN): With the advent 

of Artificial Neural Networks, (ANNs) a class of RL agents 

that utilizes Q-learning with Deep Neural Networks (DNNs) 

[41] in discrete domains for TE has emerged. DQN uses 

feedforward neural networks with three components: 

(i) Neurons that are interconnected using direct links to form a 

network, (ii) Weights associated with each connection, 

(iii) Layers consisting of a number of neurons and multiple 

hidden layers. 

Algorithm 3 Deep Q-Network Algorithm [41] 

Pre-condition: 

 Initialize experience memory 𝑀 

 Initialize action-value pair Q with random weights 

 Initialize state 𝑠𝑡  

 Initialize goal  

Procedure: 

1: improvement = 0 

2: repeat 

3:   for (step = 0; step < learning_iteration; step++) 

4:   Get action 𝑎𝑡  from 𝑠𝑡  using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy 

5:   Get parameter 𝑝𝑎𝑟𝑎𝑚𝑡  from 𝑠𝑡  using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy 

6:    𝜖 = 𝜖 − (step / learning_iteration)* 𝜖 

7:   Take action 𝑎𝑡  on 𝑝𝑎𝑟𝑎𝑚𝑡  and receive reward r, control 

overhead 𝑐𝑡  

8:   Observe new state 𝑠𝑡+1 

9:   Store experienced memory (𝑠, 𝑎, 𝑟, 𝑠𝑡+1) into 𝑀  

10:   Sample 𝑛 random transitions (𝑠′, 𝑎′, 𝑟′, 𝑠″ ) from 𝑀 

11:   Update 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑡 ⟵  𝑟′ + 𝛾 ∗ max( 𝑠″ − 𝑎″) 

12:   Update the 𝑝𝑎𝑟𝑎𝑚𝑡  of 𝜃𝑖 

13:   Train the Q network using 𝑙𝑜𝑠𝑠 = (𝑡𝑡 − 𝑄(𝑠′, 𝑎′))2 

14:   𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = get_improvement ( 𝑏𝑒𝑠𝑡𝑡 , 𝑤𝑜𝑟𝑠𝑡𝑡) 

15:  end for 

16: until improvement >  

The DQN has an experience memory for storing 
experienced transitions (𝑠, 𝑎, 𝑟, 𝑠′) unlike the Q-learning. The 
discount factor 𝛾  and the state of the Q-Network in the ith 
iteration, 𝜃𝑖 are used to update the experienced transitions with 
a training principle using a loss function. The 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 
policy helps select the action based on the highest Q-value 
associated with that action after the training. For the RL agent 
to choose random actions, the 𝜖 value is set to 1 at the start of 
the learning process but decreased over time in order to 
maintain a fixed exploration rate. The DQN keeps track of the 
chosen parameter corresponding to the Q-value of each action 

with a terminal, .. 

In [28], the DQN is used to learn a policy to select critical 
flows based on a given traffic matrix. The Critical Flow Re-
routing-Reinforcement Learning (CFR-RL) agent then reroutes 
the selected flows for a balanced link utilization using Linear 
Programming (LP). For an efficient SDN flow entry level 
management with a TCAM enabled OpenFlow switches [30] 
proposed a DQN algorithm to obtain the flow entries and 
reduce the long-term control plane overhead between the SDN 
switch and the controller. The DQN agent automatically finds 
the values of decision parameters that effectively selects the 
candidates rule in the switch’s flow table for a higher table-hit 
rate. For flexible network management through TE, [68] 
proposed a DQN based dynamic controller placement caused 
by flow fluctuations in SDN. The D4CPP agent in [68] 
integrates historical network data into the controller 
deployment. The real-time switch-controller mapping decisions 
is then triggered with inherent adaptation to the dynamic flow 
fluctuations in the network. For effective TE among distributed 
controllers in SDN, [69] proposed a DQN based switch and 
controller selection scheme for switch migration and switch-
aware reinforcement learning-based load balancing (SAR-LB). 
The SAR-LB adopts the utilization ratio of diverse resource 
types in both controllers and switches as inputs to the neural 
network for a dynamic load distribution among the controllers 
in the network. Yao et al. [70] proposed a DQN-based energy-
efficient routing solution for full load software-defined data 
centers. The optimization is for the DQN to find energy-
efficient routing paths and load-balancing between controllers 
in reducing energy consumption in the network. The enhanced 
DQN-based energy-efficient routing (DQN-EER) algorithm 
learns directly from experience. At the same coordinated time, 
it selects the arriving flows and the energy-saving control path 
at the in-band control mode whiles detecting the energy-saving 
routes for the data center. Fu et al. [71] proposed the detection 
of mice and elephant flows in an SDN-enabled data center 
using two DQNs. The DQNs are built and trained to generate 
efficient routing strategies using convolutional neural networks 
(CNNs) [72][73] to avoid possible network congestion. For 
efficient latency management in SDN, [74] proposed a DQN 
agent that inherently predicts optimal traffic paths and future 
traffic demands through the SDN switches. Whiles formulating 
the flow rules placement policy as an Integer Linear Program 
(ILP), [74] used a traffic prediction module with a long short-
term memory (LSTM) [75][76] neural networks algorithm. To 
further minimize network delay, a proposed DQN-TP (traffic 
prediction)-based heuristics defect-tolerant routing (DTR) [77] 
algorithm interacts dynamically with the DQN agent module in 
the controller of the SDN architecture. 

d) Deep Deterministic Policy Gradient (DDPG): In 

combining policy gradient and Q-learning, Deep Deterministic 

Policy Gradient (DDPG) [42][79] is used as an off-policy, 

actor-critic technique consisting of two modes; actor and critic 

as shown in Fig. 6. The actor is the policy network and the 

critic, the Q-value for training the actor network. 
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Algorithm 4 Deep Deterministic Policy Gradient (DDPG) Algorithm [42] 

1: Input: Initial policy parameters 𝜃, Q-function parameters , empty 

replay buffer Ɗ 

2: Set target parameters equal to main parameters  𝜃𝑡𝑎𝑟𝑔 ⟵  𝜃, 
𝑡𝑎𝑟𝑔

 ⟵

 

3: repeat 

4:  Observe state 𝑠 and select action 𝑎 = clip (
𝜃

(𝑠) + 𝜖, 𝑎𝐿𝑜𝑤  , 𝑎𝐻𝑖𝑔ℎ), 

where 𝜖 ~𝒩 

5:  Executive 𝑎 in the environment 

6:  Observe next state 𝑠′ , reward 𝑟 , and done signal 𝑑  to indicate 

whether 𝑠′ is terminal 

7:  Store (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) in replay buffer Ɗ 

8:  If  𝑠′ is terminal, reset environment state 

9:  if it’s time to update then 

10:   for however many updates do 

11:    Randomly sample a batch of transitions, 𝐵 =
{((𝑠, 𝑎, 𝑟, 𝑠′, 𝑑)} from Ɗ 

12:    Compute targets 

                                                 𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 +
𝛾(1 − 𝑑)𝑄targ  ( 𝑠′,

𝜃targ
(𝑠′)) 

13:    Update Q-function by one step of gradient descent using 

                                                     

∇
1

|B|
    ∑ (𝑄(𝑠,𝑎,𝑟,𝑠′,𝑑)∈𝐵  (𝑠, 𝑎) − 𝑦 (𝑟 𝑠′, 𝑑)) 2  

14:    Update policy by one step of gradient ascent using 

                                                             

∇

1

|B|
   ∑(𝑄

𝑠∈𝐵

 (𝑠, 
 𝜃

(𝑠)) 

15:    Update target networks with  

                                                         𝜃targ ⟵  𝜌
targ

+ (1 −

𝜌)  

                                                         𝜃targ ⟵  𝜌𝜃targ + (1 −

𝜌)𝜃 

16:   end for 

17:  end if 

18: until convergence 

DDPG uses DQNs replay buffer to gather offline unrelated 
experiences obtained by the agents whiles performing actions 
on the environment. At each time step, the actor and the critic 
are updated by uniformly sampling a minibatch from the replay 

buffer. DDPG uses soft target, 𝜃targ  updates rather than 

directly copying the weights to the target network. DDPG 
further utilizes batch normalization which helps normalize each 
dimension across the samples in a mini-batch to have unit 
mean and variance. DDPG algorithm is suitable for continuous 
action space and state representations. 

 

Fig. 6. Actor-Critic Model of DDPG [31]. 
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In [31], the DDPG algorithm is used for multimedia traffic 
control with the objective of maximizing cumulative Quality of 
Experience (QoE) for network users. The DDPG agent 
enforces bandwidth adaptation and path chosen actions for all 
multimedia flows in the SDN-enabled environment. To 
maximize the QoE for users, a multi-layer deep neural network 
is used to map the network and application metrics to the mean 
opinion score (MOS) [78] obtained from users. Stampa et al. 
[80] proposed a DDPG agent for dynamic routing in SDN. The 
architecture embeds an integrated fully-connected feed-forward 
neural network (FFNN) [81] in the framework to re-define the 
feature extraction of the actor-critic network. To improve the 
learning rate of DDPG for effective routing optimization, [82] 
proposed a dynamic planning of the experience pool capacity 
with respect to the current iteration number. This accelerates 
the growth rate of the previous pool by reducing its capacity in 
affecting subsequent learning rates. In [83] a deep-
reinforcement-learning-based quality-of-service (QoS)-aware 
secure routing protocol (DQSP) is proposed using DDPG 
algorithm. The DQSP adds an intelligent layer above the 
control layer which generates the routing policy and evaluates 
the network performance through the rewards obtained by the 
DDPG policy. The DQSP protocol guards against gray hole 
attack [84] and DDoS [85] whiles ensuring an efficient routing 
planning through the environment-aware module of the control 
layer. Zhang et al. [86] proposed a DDPG-based intelligent 
content-aware TE (iTE) which leverages on information centric 
networking (ICN) [87] to optimize traffic distribution in SDN. 
The DDPG agent together with other TE algorithms are 
embedded in a parallel decision-making (PDM) module in the 
controller. This module receives the cache information and the 
link bandwidth from the switches to activate and update its 
neural networks with a reward feedback. In [88] a DDPG-

based network scheduler for deadline-specific SDN 
heterogenous networks is proposed. The DDPG agent receives 
a deadline-ware data transfers from the SDN switches and 
schedules the flows by initializing a pacing rate at the source of 
the deadline flows. The actor-critic model in the DDPG agent 
handles larger and a more generalized scheduling problem that 
maximizes and assigns the aggregated utility value to each 
flow if the deadline is met. For intelligent routing in software-
defined data-centers (SD-DCN), [89] proposed a deep 
reinforcement learning based routing (DRL-R) consisting of 
DDPG-DQN agent to perform a reasonable routing adapted to 
the network state. DRL-R agent efficiently allocates cache and 
bandwidth in the network to improve routing performance by 
delay reduction. This is done through the quantification of the 
overall contribution score in the network and a change in the 
routing metric from a single link state to the resource-
combined state. 

4) Multi-Agent Reinforcement Learning (MARL): In 

MARL systems, multiple agents collectively learn and 

collaborate in a deterministic or a stochastic environment [90, 

91, 92]. Multi-agent systems are seen in domain applications 

including: network resource management, computer games, 

distributed networking, cloud computing and intrusion 

detection systems. Experience sharing and faster convergence 

has necessitated a shift in research direction from SARL to 

MARL in recent times. With a coordinated policy, multi-

agents learn and optimize towards an accumulated global 

reward [93, 94] in the network framework. As a result, the 

dynamics in state transitions in MARL are dependent on the 

joint action of all active agents as shown in Fig. 7. 

 

Fig. 7. MARL 
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Fig. 8. MADDPG. 

a) Multi-Agent Deep Deterministic Policy Gradient 
(MADDPG): MADDPG [95, 96, 97] is an actor-critic multi-

agent extension of DDPG where the critic network is 

augmented with information from other agents in a 

decentralized execution. In MADDPG actor-critic 
architecture, each agent has its own actor and critic network. 

The critic network of each agent has full visibility of the 

actions and observation of other agents. 

The actor network on the other hand only executes the 
action for its local agent given the state. In Fig. 8, the actor 𝜋𝑛 
takes an observation, 𝑜 as state to give an action, 𝑎 whiles the 
critic network, 𝑄𝑛  takes an observation and the action of the 
actor, to train the actor. The critic has dependent view from 
other critic networks whiles training the actor network. 

Algorithm 5 Multi-Agent Deep Deterministic Policy Gradient (MADDPG) 

[97] 

1: for episode = 1 to 𝑀 do 

2:  Initialize a random process 𝒩 for action exploration 

3:  Receive initial state 𝑥 

4:  for 𝑡 = 1 to max-episode-length do 

5:   for each agent 𝑖 , select action 𝑎𝑖 =  
𝜃𝑖

(𝑜𝑖) +  𝒩𝑡 𝑤. 𝑟. 𝑡.  the 

current policy and exploration 

6:   Executive actions 𝑎 = (𝑎1, . . . . , 𝑎𝑁  and observe reward  𝑟  and 

new state 𝑥′  
7:   Store 𝑥, 𝑎, 𝑟, 𝑥′ in replay buffer Ɗ 

8:    𝑥 ⟵  𝑥′  
9:   for agent 𝑖 = 1 to 𝑁 do 

10:    Sample a random minibatch of 𝑆 samples 𝑥 𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑥′𝑗)  
from Ɗ 

11:    Set 𝑦𝑗 =  𝑟𝑖
𝑗

+   𝛾𝑄𝑖

′

(𝑥′𝑗 , 𝑎′
1, . . . . , 𝑎′

𝑁)|𝑎′
𝑘 =  ′

𝑘
(𝑜𝑘

𝑗
) 

12:    Update critic by minimizing the loss ℒ(𝜃𝑖) =  
1

𝑆
 ∑ (𝑦𝑗

𝑗 −

 𝑄𝑖
𝜇

(𝑥 𝑗, 𝑎1
𝑗
, . . . . , 𝑎𝑁

𝑗
)) 2 

13:    Update actor using the sampled policy gradient: 

                                  ∇𝜃𝑖 𝐽 ≈

 
1

𝑆
 ∑ ∇𝜃𝑖𝜇𝑖𝑗 (𝑜𝑖

𝑗)∇𝑎𝑖𝑄𝑖
𝜇

(𝑥 𝑗 , 𝑎1
𝑗
, . . . . , 𝑎𝑁

𝑗
)|𝑎𝑖  =  𝜇𝑖(𝑜𝑖

𝑠)  

14:   end for 

15:   Update target network parameters for each agent 𝑖 
                                                                      𝜃′𝑖 ⟵  𝜏𝜃𝑖 + (1 −
𝜏)𝜃′𝑖  

16:      end for 

17: end for 

 

In [98], a MADDPG-based traffic control and multi-
channel reassignment (TCCA-MADDPG) algorithm is 

proposed for the core backbone network in SDN-IoT. The 
TCCA-MADDPG algorithm reduces the channel interference 
between links by considering the policies of other 
neighbouring agents using a cooperative multi-agent strategy. 
To maximize network throughput and minimize packet loss 
rate and time delay, the TCCA-MADDPG uses a joint traffic 
control mechanism modelled with a partially observable 
markov decision process (POMDP) to optimize traffic 
performance. Yuan et al., [99] proposed a dynamic controller 
assignment using MADDPG for effective TE in Software 
Defined Internet of Vehicles (SD-IoV) [100]. For controllers to 
make local decision in coordination with neighboring 
controllers, a real-time distributed cooperative assignment 
approach is used via the actor-critic model of the MADDPG. 
To get a faster MARL global convergence whiles minimizing 
delay, a centralized training approach using global information 
to attain optimal local assignment is adopted in the model 
development. 

C. TE Architecture in SDN 

In this section, we looked at the design placement of the RL 
agents in the SDN architecture and the communication 
principles adopted with the controller. The architecture of RL 
systems varies based on the RL agent policy algorithms, the 
actions selected and the environment. The agent frameworks 
are designed to enhance positive rewards and proactively 
prevent network performance degradation through forwarding 
devices. Different components of the RL agents design in SDN 
are situated in the application plane, control plane and the data 
plane. 

1) RL agent in control plane: For easier policy 

formulation and faster communication between the controller 

and RL agent, most TE SDN designs 

[28][30][31][52][54][57][70][86][89] situate the RL agent in 

the control plane of the SDN architecture. In [28], the CFR-

RL agent resides in the controller and uses a neural network 

trained with reinforcement algorithm [43] to map a traffic 

matrix to a combination of critical flows.  After training, the 

CFR-RL applies the critical flow selection policy to each real 

time traffic matrix provided by the controller. The SDN 

controller then reroutes the selected critical flows by installing 

and updating flow entries of the switches whiles the remaining 
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flows continue the normal route using Equal-Cost Multi-Path 

(ECMP) [44] TE technique by default. In [30], the RL agent is 

deployed in the controller and utilizes the flow match 

frequency and the flow duration to determine the flow entries 

that should be kept on the switch. To maximize the long term 

reward, the RL agent lowers the configuration overhead and 

the number of table-miss events. To achieve the expected 

reward, the RL agent splits the pool of flow entries into two 

parts: the local switch entries and the remote controller entries. 

This will reduce the control plane overhead given the Ternary 

Content-Addressable Memory (TCAM) [45] size of the SDN 

switches. With [31] the RL agent is the controller and serves 

as the centralized control to collect stats, make decision and 

take actions. The state reflects the situation in the environment 

and covers metrics: allocation of bandwidth, delay, jitter and 

the packet loss rate of flows. The action involves the path 

chosen and the bandwidth adaption for multimedia flows. The 

reward is the QoE received from the environment. To evaluate 

the QoE, the multi-layer deep neural network is used to map 

the network and application metrics to MOS [46]. [52] also 

proposed  the controller is the RL agent and programmed with 

the Q-learning algorithm to detect network congestion and 

find optimal path to be delivered to the OpenVSwitch (OVS). 

In [57] the control layer has an intelligent center connected to 

the SDN controller. For efficient load balancing, the 

intelligent center uses the Q-learning algorithm to find optimal 

paths and returns aggregated path routing decisions to the 

controller.  The DQN-EER architecture [70] has the RL agent 

programmed in the SDN controller using the DQN algorithm. 

The DQN is modified with deep convolutional neural 

networks (CNNs), empirical replay to train the agent and 

independent target networks to train the primary critic 

network. In [86] the intelligent content-aware traffic 

engineering (iTE) RL agent is deployed in the controller of the 

SDN architecture.  It received cache information from the 

ICN-enabled switches and uses parallel execution module 

embedded with multiple DRL-based TE algorithms to 

determine the best routing paths for the flows in the network. 

2) RL agent in Application Plane: For easier system 

failure checks in SDN, [29] [71][83] TE frameworks situate 

the RL agent in the application plane. The Q-DATA [29] 

framework architecture has a built-in forwarding application 

located in the control plane and a Q-DATA application 

residing in the SDN application plane. Initially, the built-in 

forwarding application module is instructed by the Q-DATA 

application through a REST API to apply the Full Matching 

Scheme (FMS) strategy at the switches. The Q-DATA 

application has a statistics collector module which periodically 

collects raw information about traffic flows at the SDN 

switches from the SDN controller. The statistics is then 

forwarded to a statistics extractor and distributor module for 

extraction and distribution to other modules. The SVM based 

performance degradation prediction module anticipates the 

performance degradation of the SDN switches before it occurs 

and provides the prediction results to the Q-learning based 

traffic flow matching policy creation module and the MAC 

matching only scheme control module. The MAC matching 

only scheme control module monitors and checks conditions 

for a traffic flow matching scheme change to FMS in the SDN 

switches. In [71] the AI Plane is used as the Application Plane 

in the SDN architecture. The RL agent is embedded in the AI 

Plane and uses the DQN to learn the best optimal routing 

paths for the mice and elephant flows by obtaining the flow 

type, network state information and network performance 

evaluation from the control plane of the SDN architecture. In 

[83], the DQSP architecture has an agent layer that is 

embedded in the application layer of the SDN architecture. 

The DQSP agent through the controller is aware of the 

underlying network environment and generates routing 

policies for the controller to executive. It receives the reward 

evaluation and adjusts policy parameters until optimal routing 

strategy is achieved. 

TABLE I. TE IN SDN USING RL – SUMMARY OF FINDINGS 

TE in SDN 
Agent 
Algorithm 

Main Contribution MDP Limitations Plane 

[29] 
Q-learning, 

Support Vector 
Machine 

The authors proposed an enhanced 
traffic flow monitoring in SDN using Q-
learning and Support Vector Supervised 
Machine Learning Algorithm 

Yes 
The statistics tracker should have 

factored in control link and data link 
capacity utilization of the SD Networks 

Application 

[30] 
Q-learning, 

Deep Q-Network 
(DQN) 

The authors addressed the TCAM 
capacity issue in OpenFlow switches by 
determining which forwarding rules 
remains in the flow table and those 
processed by the SDN controller 

Yes 
The 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy should have 

given more value for exploration to balance 
the dynamics of the action taken. 

Controller 

[50] Q-learning 
The authors improved bandwidth 

utilization and reduced flow latencies – 
NRENs case study network  

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined.  

Not stated 

[52] Q-learning 

The authors addressed network 
congestion in SDN by reselecting flow 
paths and changing flow table using 
predefined threshold 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Controller 
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[53] Q-learning 
The authors introduced fairness 

function in SDN for load-balancing in 
peak traffic conditions 

Yes 
One type of user that should not be 

ignored is a compromised user with network 
intrusions.  

Not stated 

[54] 
Q-learning, 

Bayesian 
Network 

The authors used the Bayesian 
network to predict the degree of 
congestion and Q-learning for optimal 
action decision in SDN load-balancing 
framework 

Yes 

The rate of packet-in messages from the 
switches is enough parameter to predict the 
load congestion to the controller. Using the 
Bayesian Network will impede the idea of 
Reinforcement Learning 

Controller 

[56] Q-learning 

The authors proposed a dynamic 
switch migration algorithm with Q-
learning in scaling the load on SDN 
controllers 

Yes 
No reward graph per episode to define 

the training and validation accuracy of the 
agent. 

Not stated 

[57] Q-learning 
The authors used an integrated DNN 

in Q-learning for load-balancing in SDN 
through flow forecasting 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Controller 

[59] Q-learning 

The authors maximized table hit rates 
in a UDP flow entry eviction strategy in 
SDN by dynamically resizing sampling 
periods of critical parameters. 

Yes 

The scope of the state space definition is 
limited. Aside the size of the sampling 
period, the state of flows in the network will 
be an added metrics since UDP operates at 
the transport layer. 

Not stated 

[62] 
SARSA, 

Bayesian 
Network 

The authors proposed a switch 
migration prediction method based on 
Bayesian network and used with SARSA 
algorithm for overload-lighter load 
controller migration. 

Yes 

Comparing the modified SARSA 
algorithm to Q-learning in the research will 
have given a more comparative insight into 
the results of the research. 

Not stated 

[64]  SARSA 

The authors proposed a QoS-aware 
adaptive routing scheme using SARSA to 
provide fast convergence in QoS 
provisioning in SDN 

Yes 

The reward function of the MDP is not 
well defined. Secondary, comparing the 
results with other known algorithms will 
have given more credence to the 𝛼, 𝛾 values 

Not stated 

[65] SARSA 

The authors proposed a resource 
allocation technique in massive IoT 
through cognitive communication in 
SDN-enabled environment 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Not stated 

[66] SARSA 
The authors proposed a network hop 

count technique in SDN to improve VS-

routing through 𝜀 − 𝐺𝑟𝑒𝑒𝑑𝑦 function 
No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Not stated 

[68]  DQN 
The authors proposed a flexible 

network management through dynamic 
controller placement technique in SDN 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Not stated 

[69] DQN 

The authors used a DQN based 
switch and controller selection scheme for 
switch migration in distributed SDN 
controllers 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Not stated 

[70] DQN 
The authors used DQN to find 

energy-efficient routing paths and load-
balancing between SDN controllers 

Yes 

Though energy-saving and load 
balancing are metrices defined in this 
research, the extent of a controller’s ability 
to balance the load can be added to the 
reward functionality. 

Controller 

[71] DQN 
The authors used two DQN agents to 

detect mice and elephant flows in an 
SDN-enabled data center 

Yes 

A comparative analysis using packet-in 
and packet-out messages in defining the 
state-action-reward pair will have added 
higher scope to the research. 

Application 

[74] DQN 

The authors proposed a DQN agent 
that predicts optimal traffic paths and 
future traffic demands using LSTM neural 
networks. 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Not stated 

[31] DDPG 

The authors proposed an SDN 
architecture to maximize QoE using 
DDPG agent to enforce bandwidth 
adaption and path chosen for all 
multimedia flows 

Yes 

There is little mathematical modelling 
of the DDPG algorithm used in this research. 
The pseudocode is not stated mathematically 
for this research. The parameters for 
simulation set up was not well defined in this 

Controller 
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research 

[80] DDPG 

The authors adopted the DDPG agent 
for dynamic routing in feature extraction 
with FFNN in the actor-critic network of 
the agent. 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Not stated 

[82]  DDPG 

The authors proposed a DDPG-EREP 
algorithm with dynamic planning of the 
experience pool capacity using the current 
iteration number of the sampling size 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Not stated 

[83] DDPG 

The authors proposed a DQSP using 
DDPG algorithm with added intelligent 
layer above the control layer for routing 
policy optimization in SDN 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Application 

[86] DDPG 

The authors proposed an iTE which 
leverages on ICN to optimize traffic 
distribution in SDN through the PDM 
module in the controller 

Yes 

The action space definition should have 
included the flow path selection procedure 
aside the split ratio for the i-th destination 
node. 

Controller 

[88] DDPG 

The authors used a DDPG agent to 
receive a deadline-aware data transfers 
from SDN switches and schedules 
subsequent flows by initiating a pacing 
rate at the source of the flows 

Yes 
This research can be extended to multi-

path routing using AOMDV protocol 
No stated 

[89] 
DQN, 

DDPG 

The authors proposed a DRL-R based 
on DDPG-DQN agent to allocate cache 
and bandwidth in the SDN to improve 
routing performance 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

Controller 

[98] MADDPG 

The authors proposed TCCA-
MADDPG algorithm to reduce the 
channel interference between links by 
considering the policies of neighbouring 
agents using multi-agent strategy 

Yes 

The TCCA-MADDPG should have 
been compared with DDPG and not DQN 
since both TCCA-MADDPG and DDPG 
work in continuous environment. 

Not stated 

[99] MADDPG 

The authors proposed a MADDPG 
for effective traffic load engineering in 
SDN-IoV using a real-time distributed 
cooperative assignment approach via the 
Actor-Critic network 

No 

Since MDP was not used to 
mathematically define the network 
parameters, the measuring metrics for 
success is not well defined. 

No stated 

IV. OPEN RESEARCH ISSUES 

In this section, we looked at the research gaps identified 
after the review. From the review summary shown in Table I, it 
is conclusive that, SDN-based TE solutions using RL agents 
has the potential to eliminate completely network degradation 
and provide a network recommender system for end users. 
From this review, some future research issues exist. 

A. RL Agent Implementation 

From the review RL agents are designed and situated at the 
control or application plane of the SDN architecture. For a 
more efficient and pro-active TE solutions, new SDN design 
architectures can situate the RL agent as mini-embedded 
applications adapted to dedicated forwarding devices with 
oversight from the SDN controller. With performance 
comparison based on end-to-end delay and response time [47], 
data plane based RL agents will enable a faster network 
congestion detection and prevention since the agents are closer 
to the forwarding devices. 

B. RL Agent Algorithm 

For TE, most RL agents use model-free based algorithms 
for policy enforcement and rewards. Though model-based 
algorithms have high computational complexities, a hybrid 
architecture that enables the RL agent to select either algorithm 
based on reward has a research value. Using trial-or-error and 

referencing a model will give more intelligence to the RL 
agent. The agent will have the capacity to decide the algorithm 
to activate based on network complexity and the priority of 
applications. 

C. Multi-Agent Reinforcement Learning 

For faster convergence and collaborative learning, MARL 
solutions in TE though complex is the future in solving 
network related routing and load-balancing in SDN 
architecture. The advent of connected devices will only 
increase with time. MARL agents from review have limited 
research [98][99] TE solutions in SDN. MARL when proposed 
efficiently can segment the network into smaller units with 
multi-agent capabilities. 

V. CONCLUSION 

Software-Defined Networks (SDN) has emerged to give 
more control in network management by separating the control 
layer from the forwarding devices. This separation has given a 
centralized programmable supervisory role to the controller 
and a flexible management of network flows in forwarding 
devices.  In regulating the behaviour of data transmitted over 
the network, we discussed the relevance of Reinforcement 
Learning in SDN for Traffic Engineering. This paper explained 
major reviews using RL techniques in network traffic 
management and the action of agents on the environment for 
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rewards and new states. The review further detailed the 
mathematical modelling of agents and environment using the 
Markov Decision Process (MDP). We illustrated with diagrams 
SARL and MARL agents and detailed their importance in 
regards to TE. 

With Reinforcement Learning, agents are modelled in a 
controlled loop to take sequence of actions on the environment 
to receive future rewards and a new state. The agent must 
exploit and explore the stochastic environment through 
determined actions that will lead to a faster convergence.  From 
the review, the paper offers future research options for optimal 
Traffic Engineering solutions in SDN. 
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