
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

330 | P a g e
www.ijacsa.thesai.org

Traffic Engineering in Software-defined Networks

using Reinforcement Learning: A Review

Delali Kwasi Dake1, Griffith Selorm Klogo3

Henry Nunoo-Mensah4

Department of Computer Engineering, Kwame Nkrumah

University of Science and Technology, Kumasi, Ghana

James Dzisi Gadze2

Department of Telecommunications Engineering

Kwame Nkrumah University of Science and Technology

Kumasi, Ghana

Abstract—With the exponential increase in connected devices

and its accompanying complexities in network management,

dynamic Traffic Engineering (TE) solutions in Software-Defined

Networking (SDN) using Reinforcement Learning (RL)

techniques has emerged in recent times. The SDN architecture

empowers network operators to monitor network traffic with

agility, flexibility, robustness and centralized control. The

separation of the control and the forwarding plane in SDN has

enabled the integration of RL agents in the networking

architecture to enforce changes in traffic patterns during

network congestions. This paper surveys major RL techniques

adopted for efficient TE in SDN. We reviewed the use of RL

agents in modelling TE policies for SDNs, with agents’ actions on

the environment guided by future rewards and a new state. We

further looked at the SARL and MARL algorithms the RL

agents deploy in forming policies for the environment. The paper

finally looked at agents design architecture in SDN and possible
research gaps.

Keywords—Software defined networking; reinforcement

learning; machine learning; traffic engineering

I. INTRODUCTION

The emergence of fifth generation (5G) networks has
propelled the growth of Internet of Things (IoT) in recent
times. IoT is a rapid evolving technology that connects billions
of devices to the internet [1]. With 5G, the rapid deployment of
new and smart IoT applications are expected to reach 22.3
billion by 2024 and generate about 163 zettabyes (ZB) of data
by 2025 [2] [3]. These new and dynamic applications are
expected to benefit from the services 5G networks will
provide: ultra-reliable and low latency communication
(URLLC) [4], enhanced mobile broadband (eMBB) [5] and
massive machine type communication, massive MIMO [6].

As shown in Fig. 1 and Fig. 2, the dynamic nature and
requirements of IoT devices has necessitated a network
deployment shift from the traditional networking architecture
which are difficult to configure and manage to a more flexible
programmable domain [7]. Software-Defined Networking
(SDN) is a new networking paradigm that separates the data
plane from the control plane [8] [9]. This separation makes the
network more agile with centralized responsibility given to the
controller [10]. The controller communicates with the
application plane via the northbound APIs and the forwarding
devices via the southbound APIs (OpenFlow). The automation
and programmability of the SDN architecture helps to
configure, secure, and optimize network resources [11] quickly

whiles maintaining a good Quality of Service (QoS) [12] and
Quality of Experience (QoE) [13].

Traffic Engineering (TE) in SDN involves the analysis of
the networks state by the SDN controller to act on flow data
through the rapid change in flow table information for
forwarding devices [14]. Rerouting flows periodically to
balance the loads on the network minimizes congestion and
improves the overall network performance. A network
experiences two kinds of traffic flows: elephant flows and mice
flows [15]. The elephant flows are heavy traffic flows that
requires more network resources whiles the rapid aggregation
of the mice flows can equally degrade the network. These
traffic flows continuously needs dynamic resource allocation
for the efficient utilization of scarce network resources through
TE.

With the advent of machine learning, port-based [16] and
payload-based [17] flow classification techniques have become
ineffective due to the dynamic port usage of IoT devices. The
negative impact of packet out of order and packet loss in
traditional TE techniques even worsens the case for the
network operator.

Fig. 1. Traditional Networking Architecture [7].

Fig. 2. Software-Defined Networking (SDN) Architecture [7].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

331 | P a g e
www.ijacsa.thesai.org

Fig. 3. TE using RL in SDN – Review Outline

Currently for TE, machine learning algorithms are adopted
for intelligent flow re-routing with an efficient feature selection
criterion [18] [19] in network flow analysis. Deploying these
machine learning algorithms in the SDN controller will
efficiently allocate network resources and formulate policies
for optimal network performance with low overheads.

In this survey as outlined in Fig. 3, we reviewed popular
Reinforcement Learning (RL) techniques used in SDN
architecture for Traffic Engineering with limitations on
parameters chosen and approaches for future research. The rest
of the paper is organized as follows: Section II discusses the
justification of RL for TE; Section III analysed the TE
architecture integration in SDN based on policies and
performance. Finally, Section IV looked at the research gaps
identified from the survey.

II. MACHINE LEARNING WITH REINFORCEMENT

ALGORITHMS

With the advent of Machine Learning [101] where
automation modelling using data remains relevant, traditional
algorithms [102][103][104] used in solving SDN-IoT related
task is unfeasible. In supervised learning [103] agents are
trained with a labeled dataset and later tasked to make
predictions out of the learned data. Increased complexity in a
dynamic environment with new IoT devices and variance in
data will negatively affect the accuracy of supervised learning
algorithms and predictions. Even worse is the time factor in
retraining and relabeling of new data variance in an attempt to
still adopt classification algorithms. With unsupervised
learning [104] that uses unlabeled dataset, there is no guidance

regarding the accuracy of the clustered dataset. Clustering
algorithms alone is inefficient in an SDN-IoT environment that
requires efficiency in diverse IoT applications. Reinforcement
Learning (RL) defines the true automation of agents in an
environment [20][105] with rewards as guidance on how well
the agent is performing. Though complex, RL agents adapts to
changing conditions in the environment by learning to solve
tasks through trial-and-error approach. As the episodes
progresses, agents adapt to successful actions through
exploration and exploitation [106][107] on the stochastic
environment. With the recent success of DeepMinds AlphaGo
RL agent [108] that defeated the Go champion in 2016, the
application dimensions of RL have become enormous. The
only way packets can be routed intelligently in a network with
varying and emerging IoT devices is to deploy RL agents to
learn varying network state patterns with no exclusive data
labels but with policies and actions.

III. TE USING REINFORECEMENT LEARNING IN SDN

Reinforcement Learning (RL) is an area of machine
learning where an agent is modeled to take sequence of actions
informed by policies [20]. As shown in Fig. 4, the agent learns
in an interactive environment and receives a reward through its
actions [21, 22]. The set of actions presents a new state with
corresponding reward to the agent. Unlike supervised learning
[23] where a set of correct actions are provided as feedback to
the agent, RL uses rewards and punishment as signals for
positive and negative decisions. The goal is to use trial and
error methods in getting positive rewards or build a suitable
model that will maximize cumulative rewards for the RL agent.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

332 | P a g e
www.ijacsa.thesai.org

Fig. 4. Reinforcement Learning.

SDN provides centralised control with a unique advantage
for intelligent TE framework implementation using RL.
Network policies can easily be generated from the centralized
control with corresponding TE rules to forwarding devices.
With RL, the modelling of the agent’s action on the
environment with rewards fits into the network architecture of
SDN and this expedites network control and management.

A. RL Agents Design

This section details the mathematical modelling of the state
space with respect to actions and rewards. Agent design
requires the environment to be monitored.

An agent based on the monitored metrics takes actions
informed by policy decisions with a new state and a
corresponding reward in guiding the next policy.

1) Action-State-Reward: RL agents are implemented in

RL frameworks and modelled in SDN to learn critical network

packet flow policies and provide routing solutions to

forwarding devices. The agent takes an action on the

environment and evaluates the actions based on rewards.

Using its policy π , the agent performs an action a, which

alters the environment state s to s'[24]. Based on the reward r,

the agents policy is updated. In arriving at optimal policy, RL

agents use Markov Decision Process (MDP) [25] to model

actions on the environment with corresponding rewards. MDP

is an intuitive and fundamental formalism for decision-

theoretic planning (DTP) [26] and RL in stochastic domains.

The MDPs have become the de facto standard formalism for

learning sequential decision control problems [27].

Algorithm 1 Markov Decision Process (MDP)

An MDP is a 5-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where;

 𝑆 is a set of states

 𝐴 is a set of actions

 𝑃 (𝑠, 𝑎, 𝑠′) is the probability that action 𝑎 in state 𝑠 at time 𝑡

will lead to state 𝑠′ at time 𝑡 + 1

 𝑅 (𝑠, 𝑎, 𝑠′) is the immediate reward received after a transition

from state 𝑠 to 𝑠′, due to action 𝑎

 𝛾 is the discounted factor which is used to generate a discounted

reward

For TE in SDN, RL agents are implemented differently
based on the agents policy and the metrics for measuring TE
success. The actions of the agents on the environment are rated
by the rewards associated with it as the episode progresses.

CFR-RL agent [28]

State Space 𝑠𝑡 = 𝑇𝑀𝑡 (1)

Action Space {0, 1, … , (𝑁 ∗ (𝑁 − 1)) − 1} (2)

Reward Function 𝑟 = 1
𝑈⁄ (3)

The CFR-RL agent resides in the controller of the SDN
architecture. The RL agent uses a traffic matrix that contains
the traffic demand of each flow as state. The objective is to
avoid packet link congestion. As shown in equations 1 - 3, the
CFR-RL agent samples K critical flows for a given stage
𝑠𝑡 within N nodes. The CFR-RL agent then reroutes these
critical flows and obtains maximum value in link utilization U
as reward.

Q-DATA RL agent [29]

State Space
𝑆𝑖 ≜ {(𝑓𝑖, ∆𝑓𝑖) ∶ 0 < 𝑓𝑖 ≤ 𝑓𝑐𝑎𝑝𝑖; −𝑓𝑐𝑎𝑝𝑖 ≤ ∆𝑓𝑖

≤ 𝑓𝑐𝑎𝑝𝑖}
(4)

Action Space 𝐴𝑖 ≜ {𝑎 ∶ 𝑎 ∈ ℱ} (5)

Reward Function {

∑ 𝛩𝑥
𝑓𝑖
𝑥=1

𝑓𝑖

, 0 < 𝑓𝑖 < 𝑓𝑐𝑎𝑝𝑖 ,

 0, 𝑓𝑖 = 𝑓𝑐𝑎𝑝𝑖 ,

(6)

The Q-DATA agent resides in the application plane of
SDN. As shown in equations 4 - 6, the Q-DATA RL agent has
a defined state space where 𝑓𝑖 is the current total number of
flow entries in switch i; ∆𝑓𝑖 is the number of flow entry

changes between two consecutive observations and 𝑓𝑐𝑎𝑝𝑖 is the

maximum number of flow entries in switch i. (𝑓𝑖 , ∆𝑓𝑖)
represents the state of an SDN switch i, as a tuple. For its
action space, a represents a traffic flow matching scheme
change related to a destination host and ℱ denotes a list of all
feasible match field combinations. With the reward function, 𝑓𝑖
is the current total number of flow entries in the switch i; and
𝛩𝑥 is an integer number representing the number of enabled
match fields in flow entry x. An action has no reward if that
action leads to the total number of current flow entries in the

SDN switch i reaching the limit 𝑓𝑐𝑎𝑝𝑖 .

 Mu [30]

State Space 𝑠𝑖 = (𝑓𝑙𝑜𝑤_𝑓𝑟𝑒𝑞𝑖 , 𝑓𝑙𝑜𝑤_𝑟𝑒𝑐𝑒𝑛𝑡𝑛𝑒𝑠𝑠𝑖) (7)

Action Space 𝑎𝑓𝑙𝑜𝑤_𝑓𝑟𝑒𝑞𝑖

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = (𝑓𝑙𝑜𝑤𝑓𝑟𝑒𝑞 𝑖

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 , 𝑓𝑙𝑜𝑤𝑟𝑒𝑐𝑒𝑛𝑡𝑛𝑒𝑠𝑠 𝑖
) (8)

Reward Function
𝑟𝑡 = 𝐶𝑜𝑚𝑝𝑎𝑟𝑒(

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑏𝑒𝑠𝑡
, 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑡)

(9)

In [30], the RL agent resides in the controller of the SDN.
As shown in equations 7-9, 𝑓𝑙𝑜𝑤_𝑓𝑟𝑒𝑞𝑖 represents the
frequency of matched flows and 𝑓𝑙𝑜𝑤_𝑟𝑒𝑐𝑒𝑛𝑡𝑛𝑒𝑠𝑠𝑖 , an
indication of flow duration in the memory of the switch. These
are defined for the state space. The action space denotes an
increase action on the flow frequency parameters. With the

reward function the 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑏𝑒𝑠𝑡
 denotes the current

best network control overhead obtained. A configuration with
less overhead returns a positive reward, 1 to the RL agent
otherwise a negative value -1 is returned. If

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑏𝑒𝑠𝑡
 and 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑡 are equal, a reward value

of 0 is given.

Huang [31]

State Space 𝑠𝑓 = (𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑓 , 𝑗𝑖𝑡𝑡𝑒𝑟𝑓 , 𝑝𝑎𝑐𝑘𝑒𝑡_𝑙𝑜𝑠𝑠_𝑟𝑎𝑡𝑒𝑓) (10)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

333 | P a g e
www.ijacsa.thesai.org

Action Space 𝑎𝑠 = 𝑎𝑐𝑡𝑖𝑜𝑛𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑓

𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑝𝑎𝑡ℎ
 (11)

Reward Function 𝑟𝑠 = {𝑀𝑂𝑆𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟, 𝑄𝑜𝐸𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟} (12)

With [31], the objective of the RL agent is to maximize the
cumulative QoE of customers by dynamically allocation traffic
in a multimedia environment. The RL agent resides in the
controller of the SDN architecture. As shown in equations 10 –
12, the state of the environment refers to the state of flows and
covers the following metrics: allocated bandwidth, the delay,
the jitter and the packet loss rate of flows. The action includes:
the path chosen (routing path) and the bandwidth adaptation of
flows. The mean opinion score (MOS) [32] used to evaluate
the QoE represents the reward function. A multi-layer deep
neural network (DNN) is used to map the network and
application metrics to the MOS.

Choi [59]

State Space 𝑠𝑖 = (𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑝𝑒𝑟𝑖𝑜𝑑𝑖) (13)

Action Space 𝑎𝑖
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = (𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒) (14)

Reward Function 𝑟𝑡 = {
 1, ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡−1 < ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡

 0, ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡−1 = ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡

−1, ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡−1 > ℎ𝑖𝑡_𝑟𝑎𝑡𝑖𝑜𝑡

 (15)

In [59] RL framework is modelled to minimize the number
of overflow occurrences. As shown in equations 13 - 15, the
state space represents the size of the sampling period with a
unit size of 500 ms. This ranges to 5,000 ms with a total of 10
states. The action space has three options: (i) increase sample
period by unit size; (ii) decrease sampling period by unit size;
(iii) maintain the sample period. Based on the percentage of
table hits, three rewards are given. A reward of 1 is given when
the measured hit rate is higher than the hit rate pre-action. If
low, a reward of -1 is assigned. A reward of 0 is assigned if
there is no change in the hit rate.

Fu [71]

State Space
𝑆𝑡𝑎𝑡𝑒 = {𝑠 = [𝐹𝑇𝑠𝑤𝑖,𝑡𝑗

, 𝑃𝑆𝑝𝑘,𝑠𝑤𝑖,𝑡𝑗]| 𝑖 ∈

[1, 𝑛], 𝑗 ∈ [1, 𝑚], 𝑘 ∈ [1, 𝑧]}
(16)

Action Space 𝐴𝑐𝑡𝑖𝑜𝑛 = {𝑎𝑝1, 𝑎𝑝2, . . . 𝑎𝑝𝑘 . . . 𝑎𝑝𝑁 } (17)

Reward Function
𝑅𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 = 𝛼 ∗ (1 − 𝑃𝐿𝑅) + 𝛽 ∗ 𝑇𝑃

𝑅𝑚𝑖𝑐𝑒 = 𝜆 ∗ (1 − 𝑃𝐿𝑅2) + µ ∗ (1 − 𝐷𝐿)
(18)

In [71], flow table state and port state are responsible for
collecting network statistics. The channels of the network
represent the flow table utilization and its respective port rate
of switches at current and previous states. For the state space
modelling n, m and z respectively identifies the number of

switches, moments and ports of a single switch. 𝐹𝑇𝑠𝑤𝑖,𝑡𝑗

represents the flow table utilization rate of switch i at the
moment 𝑡𝑗 and ranges from 0 to 1. 𝑃𝑆𝑝𝑘,𝑠𝑤𝑖,𝑡𝑗 represents the

port rate of port k in switch i at the moment 𝑡𝑗 . The action

space comprises of 𝑝1 𝑡𝑜 𝑝𝑁 which indicates all paths in the

network, 𝑎𝑝𝑘 ∈ {0, 1}. If 𝑎𝑝𝑘 = 1, the current flow is assigned

to path k else 𝑎𝑝𝑘 = 0. For the reward function, the elephant-

flows 𝑃𝐿𝑅, represents the average packet loss rate of elephant-
flows in the network, TP is the average throughput of elephant-
flows after processing. 𝛼 and 𝛽 are the weights of the 𝑃𝐿𝑅 and

TP respectively. With the mice-flows, 𝑃𝐿𝑅2 indicates the
average packet loss rate of mice-flows and DL represents the
normalized average delay. 𝜆 and µ identifies the weight of the
𝑃𝐿𝑅2 and DL , respectively.

Zhang [86]

State Space 𝑠 = (𝑛𝑐, 𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑎𝑣𝑎𝑖𝑙) (19)

Action Space 𝑎 = (𝑎1 , , 𝑎𝑖 … , 𝑎𝑗 , 𝑝𝑎𝑡ℎ) (20)

Reward Function

𝑟 =
1

𝐿
∑ (2

𝑏𝑙

𝑏𝑤𝑙

− 1)
𝐿

𝑙=1

− β
2

𝜋
arctan(𝜎) + 1

(21)

In [86] the state comprises of four components; name of the
requested content, source, destination and available link
bandwidth.

With the action, 𝑎𝑖 denotes the ith destination node split
ratio and relates to the content request sent to that destination
node using selected transmission links. The reward is meant to

improve load balance and throughput. The
1

𝐿
∑ (2

𝑏𝑙

𝑏𝑤𝑙
− 1)𝐿

𝑙=1

reveals throughput impact in relation to available normalized

bandwidth. The - (
2

𝜋
)arctan(𝜎) + 1 indicates the load balance

with normalized variance of available bandwidth. A value
close to 1 signals a preferred action with a reverse value close
to -1, a penalty. β = 1 is a factor used to balance the throughput
and the load balance.

B. RL Algorithms

In this section, we reviewed the algorithms the RL agents
use to formulate policies that informs the action taken by the
agent on the environment as the episode progresses. For
effective TE and policy enforcement on the environment, RL
agents learns to take the best actions for traffic optimization in
respect to cumulative future rewards. RL algorithms are
distinguished into two main classes: the model-free (direct) and
model-based (indirect) methods [33, 34, 35].

1) Model-based RL methods: Model-based RL algorithms

utilizes a model when the RL agent interacts with the

environment. The model keeps track of transition dynamics of

the network to derive optimal actions and rewards [35]. When

the model is referenced, the RL agent can make predictions

about the next state and reward before an action is taken.

Model-based RL methods are data efficient but struggles to

achieve asymptotic performance for real-world applications

[36]. For model-based RL methods, the interaction between

the RL agent and the environment is modeled as a discrete-

time Markov Decision Process (MDP) ℳ and defined by the

tuple [36]:

(𝑆, 𝘈, 𝑝, 𝑟, 𝛾, 𝑝0, 𝐻) . Where 𝑆 is the set of states, 𝘈 the
action space, 𝑝(𝑠𝑡+1| 𝑠𝑡 , 𝑎𝑡) the transition distribution, 𝑟 ∶ 𝑆 ×
𝘈 → ℝ as a reward function, 𝑝0 : 𝑆 → ℝ+ represents the initial
state distribution, 𝛾 the discount factor, and 𝐻 the horizon of
the process. The return function is defined as the sum of
rewards 𝑟 (𝑠𝑡 , 𝑎𝑡) along a trajectory τ: =
(𝑠0, 𝑎0, … , 𝑠𝐻−1, 𝑎𝐻−1, 𝑠𝐻). The goal of the reinforcement
learning is to find a policy π: 𝑆 × 𝘈 → ℝ+ that maximizes the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

334 | P a g e
www.ijacsa.thesai.org

expected return. The model-based learns the transition
distribution from the observed transitions using parametric
approximator ṕø(𝑠′|𝑠, 𝑎) . The parameter ø of the dynamic
model are optimized to maximize the log-likelihood of the state
transition distribution. Though model-based RL methods are
data efficient, they have high computational complexity and
the degree of potential error in maximizing a reward is
compounded..

2) Model-free RL methods: Model-free RL algorithms do

not utilize a model and thus the rewards and the optimal

actions are derived through trial-and-error approach with the

environment [37]. These set of algorithms operate over an

unordered list of actions, with a positive or negative reward

value. The RL agents that utilizes model-free algorithms

increases the value associated with a positive action which

helps the agent to learn from direct experience. Agents in

model-free RL are represented with policy optimization and

Q-learning approaches [38]. With policy optimization, the

agents learns directly the policy function that maps state to

action without a value function. The Q-learning approach

learns the action-value function 𝑄(𝑠, 𝑎); how good to take an

action at a particular state. A scalar value is assigned over an

action a, given the state s [39]. Model-free RL methods have

low computational complexity but more data dependent. For

TE, model-free RL methods are frequently used for RL agent

sequencing and to implement policies on the environment.

3) Single Agent Reinforcement Learning (SARL): In a

SARL, there is only one agent that interacts with the

environment to maximize rewards. The SARL implementation

is suitable for simple network management with slower

convergence and learning experience. The SARL

implemented algorithms are either value-based, policy-based

or both [48]. As shown in Fig. 5, the SARL through the SDN

controller collects information from the environment through

the forwarding devices.

The agent upon receiving the state information performs a
set of actions on the environment through the SDN controller.
These actions are guided by policy algorithms. The episode
results in a new state and rewards.

Fig. 5. SARL.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

335 | P a g e
www.ijacsa.thesai.org

a) Q-learning Algorithm: Q-learning [40] is an off-

policy, value-based algorithm that takes a random actions

based on the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy, where the probability of a

random decision is determined by the value of epsilon 𝜖 .

During the learning phase, the Q-learning agent initializes the

Q-table for all state-action pairs and updates it using:

𝒬_(𝑡 + 1) (𝑠_𝑡, 𝑎_𝑡) = 𝒬(𝑠_𝑡, 𝑎_𝑡) + 𝛼[ℛ_𝑖 (𝑠_𝑡, 𝑎_𝑡)
+ 𝛾𝑚𝑎𝑥𝒬_𝑡 (𝑠_(𝑡 + 1), 𝑎)
− 𝒬_𝑡 (𝑠_𝑡, 𝑎_𝑡)]

(22)

The Q-learning agent generates the optimal policy 𝜋∗(𝑠)
for a state s representing an action a that needs to be taken to
maximize the value of the 𝒬∗(𝑠, 𝑎) function, 𝜋∗(𝑠) =
𝑎𝑟𝑔 𝑚𝑎𝑥𝑎 𝒬∗(𝑠, 𝑎) .

Algorithm 2 Q-learning [40]

1: 𝐈𝐧𝐩𝐮𝐭𝐬: ℱ; for a state-action pair (𝑠, 𝑎) ∀𝑠 ∈ 𝑆𝑖 , 𝑎 ∈ 𝒜𝑖 ,
initialize a Q-table entry arbitrarily; initialize values of α, 𝛾 and 𝜖,

respectively.

2: loop
3: Current state 𝑠𝑡 .
4: Executive action 𝑎𝑡 according to an exploratory policy (𝜖).
5: Obtain a new state 𝑠𝑡+1 and an immediate reward ℛ𝑖 .
6: Update the Q-table entry for 𝒬(𝑠𝑡, 𝑎𝑡).
7: Update 𝑠𝑡 ⟵ 𝑠𝑡+1.
8: end loop

9: Outputs 𝜋∗(𝑠) = arg 𝑚𝑎𝑥𝑎 𝒬∗(𝑠, 𝑎).

Phan et al. [29] proposed the Q-learning algorithm in
maximizing traffic flow monitoring in SDN switches. It
embeds a Support Vector Machine (SVM) [49] algorithm in
the application plane of the SDN architecture to predict the
performance degradation of the switches as the episode
progresses. To reduce the long-term control plane overhead
capacity limitation of Ternary Content Addressable Memory
(TCAM) in OpenFlow switches, [30] proposed a Q-learning
algorithm for SDN flow entry management. The framework
determines the forwarding rules that remains in the flow table
of the SDN switches and those processed by the controller in
case of a table-miss on the switches. In [50] a Q-learning
algorithm is proposed to reduce the latencies and improve the
bandwidth utilization in the UbuntuNet Alliance National
Research and Education Network (NRENs) SDN switches. The
proposed framework adapts forwarding devices by learning
from experience using multipath propagation. In dealing with
bandwidth overhead caused by Dijkstra’s shortest path first
module [51] in an OpenDayLight (ODL) architecture meant for
efficient packets delivery, [52] proposed a congestion
prevention mechanism using Q-learning in SDN. With [52],
the set threshold values are defined in SDN controllers to
enable threshold bandwidth detections. The optimal path
chosen is delivered to the OpenVSwtiches (OVS) after Q-
routing by the controller during network congestion. To
balance the network load in SDN, [53] proposed a Q-learning
approach to reduce the number of unsatisfied users in a 5G
network architecture. The researchers used a flow admission
control technique with a fairness function to enhance the per-
flow resource allocation in the network. In [54] a load
balancing architecture is proposed for SDN networks that uses
supervised Bayesian Network (BN) to solve the problem of Q

value local maximum [55] in a Q-learning RL algorithm. The
combination of the BN in Q-learning helps the controller select
the most optimal strategy for network load balancing during
congestion. For TE load balancing optimization in master
controllers, [56] proposed a dynamic switch migration
algorithm to slave controllers using Q-learning in SDN. The
switch migration problem (SMP) is modeled and used to
redefine the Q-learning parameters. The Q-learning is then
used to learn the current status of SDN to select the best
switches for load migration. For an efficient path selection
technique in load balancing, [57] proposed a Q-learning
algorithm for path selection and flow forecasting [58]. It has an
integrated centre that uses Deep Neural Networks (DNNs) to
process uncertain network traffic and uses Q-learning to
resolve the optimal path based on the results of the DNN. The
DNN path selection are obtained from the bandwidth
utilization ratio, packet loss rate and transmission latency
which forms the inputs to the DNN. The output which is fed
into the Q-learning is derived from the corresponding link
score. For timely eviction of inactive flow entries and to avoid
overflows in the memory of SDN switches, [59] proposed a Q-
learning User Datagram Protocol (UDP) [60] flow eviction
strategy for UDP flows. The Q-learning is used to dynamically
resize the sampling period as the most critical parameter in the
RL architecture. This advertently maximizes the table hit rates
of the UDP flows in the SDN.

b) State-Action-Reward-State-Action (SARSA): SARSA

[61] is an on-policy algorithm which uses the action

performed by the current policy to learn the Q-value. As

shown in Eq. 23 [61] and Eq. 24 [40], the update rule for
SARSA varies from that of Q-learning algorithm in the

execution of actions. In SARSA, update estimates are based

on the same action taken whiles in Q-learning, the update

estimates are based on the number of possible actions that

maximizes the post-state Q function, 𝒬(𝑠𝑡+1, 𝑎′).

𝒬(𝑠𝑡 , 𝑎𝑡) ⟵ 𝒬(𝑠𝑡, 𝑎𝑡) + α[𝑟𝑡+1 + 𝛾𝒬(𝑠𝑡+1, 𝑎𝑡+1)

− 𝒬(𝑠𝑡 , 𝑎𝑡)]
(23)

𝒬(𝑠𝑡 , 𝑎𝑡) ⟵ 𝒬(𝑠𝑡, 𝑎𝑡) + α[𝑟𝑡+1 + 𝛾𝑚𝑎𝑥𝒬(𝑠𝑡+1, 𝑎′)

− 𝒬(𝑠𝑡, 𝑎𝑡)]
(24)

For dynamic load balancing in multiple controllers due to
switch migration conflicts, [62] proposed a SARSA-Bayesian
RL algorithm for a multi-controller cluster design in SDN.
With knowledge of the real-time load and controller’s
communication consumption, a request response model using
the Bayesian [63] algorithm is combined with the SARSA RL
mini-framework in a switch migration technique to the lighter
controller. For a multi-layer hierarchical SDN to be effective in
handling traffic, [64] proposed the SARSA algorithm for QoS
provisioning. With each pre-flow, the switch contacts the SDN
controller. The controller uses the SARSA algorithm to
implicitly detect the QoS requirement of each flow and
computes the corresponding optimum traffic path based on the
needed QoS requirement. The next hop in the switch forms the
basis for the next action from the source to the destination
switch. To convey a massive IoT data through a limited
bandwidth efficiently [65] proposed a SARSA algorithm for
resource allocation through cognitive communications in the
SDN-enabled environment. The SARSA agent communication
is modelled with a buffer metric that manages the aggregator’s

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

336 | P a g e
www.ijacsa.thesai.org

output queue transmissions and reflects dynamically in the IoT
data demands. This modification targeted at Publish/Subscribe
(Pub/Sub) paradigms preserves the Pub/Sub bandwidth with
less computational resources. In order to adapt VS-routing [67]
optimization to SDN networks, [66] proposed a network hop
count technique to improve the reward function of SARSA
algorithm. The VS-routing introduces an 𝜀 − 𝐺𝑟𝑒𝑒𝑑𝑦 function
in the network hop count which is calculated to select the
optimal route and avoid the long package queue of network
links in the SDN architecture.

c) Deep Q-Network Algorithm (DQN): With the advent

of Artificial Neural Networks, (ANNs) a class of RL agents

that utilizes Q-learning with Deep Neural Networks (DNNs)

[41] in discrete domains for TE has emerged. DQN uses

feedforward neural networks with three components:

(i) Neurons that are interconnected using direct links to form a

network, (ii) Weights associated with each connection,

(iii) Layers consisting of a number of neurons and multiple

hidden layers.

Algorithm 3 Deep Q-Network Algorithm [41]

Pre-condition:

 Initialize experience memory 𝑀

 Initialize action-value pair Q with random weights

 Initialize state 𝑠𝑡

 Initialize goal

Procedure:

1: improvement = 0

2: repeat

3: for (step = 0; step < learning_iteration; step++)

4: Get action 𝑎𝑡 from 𝑠𝑡 using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

5: Get parameter 𝑝𝑎𝑟𝑎𝑚𝑡 from 𝑠𝑡 using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy

6: 𝜖 = 𝜖 − (step / learning_iteration)* 𝜖

7: Take action 𝑎𝑡 on 𝑝𝑎𝑟𝑎𝑚𝑡 and receive reward r, control

overhead 𝑐𝑡

8: Observe new state 𝑠𝑡+1

9: Store experienced memory (𝑠, 𝑎, 𝑟, 𝑠𝑡+1) into 𝑀

10: Sample 𝑛 random transitions (𝑠′, 𝑎′, 𝑟′, 𝑠″) from 𝑀

11: Update 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑡 ⟵ 𝑟′ + 𝛾 ∗ max(𝑠″ − 𝑎″)

12: Update the 𝑝𝑎𝑟𝑎𝑚𝑡 of 𝜃𝑖

13: Train the Q network using 𝑙𝑜𝑠𝑠 = (𝑡𝑡 − 𝑄(𝑠′, 𝑎′))2

14: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = get_improvement (𝑏𝑒𝑠𝑡𝑡 , 𝑤𝑜𝑟𝑠𝑡𝑡)

15: end for

16: until improvement >

The DQN has an experience memory for storing
experienced transitions (𝑠, 𝑎, 𝑟, 𝑠′) unlike the Q-learning. The
discount factor 𝛾 and the state of the Q-Network in the ith
iteration, 𝜃𝑖 are used to update the experienced transitions with
a training principle using a loss function. The 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦
policy helps select the action based on the highest Q-value
associated with that action after the training. For the RL agent
to choose random actions, the 𝜖 value is set to 1 at the start of
the learning process but decreased over time in order to
maintain a fixed exploration rate. The DQN keeps track of the
chosen parameter corresponding to the Q-value of each action

with a terminal, ..

In [28], the DQN is used to learn a policy to select critical
flows based on a given traffic matrix. The Critical Flow Re-
routing-Reinforcement Learning (CFR-RL) agent then reroutes
the selected flows for a balanced link utilization using Linear
Programming (LP). For an efficient SDN flow entry level
management with a TCAM enabled OpenFlow switches [30]
proposed a DQN algorithm to obtain the flow entries and
reduce the long-term control plane overhead between the SDN
switch and the controller. The DQN agent automatically finds
the values of decision parameters that effectively selects the
candidates rule in the switch’s flow table for a higher table-hit
rate. For flexible network management through TE, [68]
proposed a DQN based dynamic controller placement caused
by flow fluctuations in SDN. The D4CPP agent in [68]
integrates historical network data into the controller
deployment. The real-time switch-controller mapping decisions
is then triggered with inherent adaptation to the dynamic flow
fluctuations in the network. For effective TE among distributed
controllers in SDN, [69] proposed a DQN based switch and
controller selection scheme for switch migration and switch-
aware reinforcement learning-based load balancing (SAR-LB).
The SAR-LB adopts the utilization ratio of diverse resource
types in both controllers and switches as inputs to the neural
network for a dynamic load distribution among the controllers
in the network. Yao et al. [70] proposed a DQN-based energy-
efficient routing solution for full load software-defined data
centers. The optimization is for the DQN to find energy-
efficient routing paths and load-balancing between controllers
in reducing energy consumption in the network. The enhanced
DQN-based energy-efficient routing (DQN-EER) algorithm
learns directly from experience. At the same coordinated time,
it selects the arriving flows and the energy-saving control path
at the in-band control mode whiles detecting the energy-saving
routes for the data center. Fu et al. [71] proposed the detection
of mice and elephant flows in an SDN-enabled data center
using two DQNs. The DQNs are built and trained to generate
efficient routing strategies using convolutional neural networks
(CNNs) [72][73] to avoid possible network congestion. For
efficient latency management in SDN, [74] proposed a DQN
agent that inherently predicts optimal traffic paths and future
traffic demands through the SDN switches. Whiles formulating
the flow rules placement policy as an Integer Linear Program
(ILP), [74] used a traffic prediction module with a long short-
term memory (LSTM) [75][76] neural networks algorithm. To
further minimize network delay, a proposed DQN-TP (traffic
prediction)-based heuristics defect-tolerant routing (DTR) [77]
algorithm interacts dynamically with the DQN agent module in
the controller of the SDN architecture.

d) Deep Deterministic Policy Gradient (DDPG): In

combining policy gradient and Q-learning, Deep Deterministic

Policy Gradient (DDPG) [42][79] is used as an off-policy,

actor-critic technique consisting of two modes; actor and critic

as shown in Fig. 6. The actor is the policy network and the

critic, the Q-value for training the actor network.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

337 | P a g e
www.ijacsa.thesai.org

Algorithm 4 Deep Deterministic Policy Gradient (DDPG) Algorithm [42]

1: Input: Initial policy parameters 𝜃, Q-function parameters , empty

replay buffer Ɗ

2: Set target parameters equal to main parameters 𝜃𝑡𝑎𝑟𝑔 ⟵ 𝜃,
𝑡𝑎𝑟𝑔

 ⟵

3: repeat

4: Observe state 𝑠 and select action 𝑎 = clip (
𝜃

(𝑠) + 𝜖, 𝑎𝐿𝑜𝑤 , 𝑎𝐻𝑖𝑔ℎ),

where 𝜖 ~𝒩

5: Executive 𝑎 in the environment

6: Observe next state 𝑠′ , reward 𝑟 , and done signal 𝑑 to indicate

whether 𝑠′ is terminal

7: Store (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) in replay buffer Ɗ

8: If 𝑠′ is terminal, reset environment state

9: if it’s time to update then

10: for however many updates do

11: Randomly sample a batch of transitions, 𝐵 =
{((𝑠, 𝑎, 𝑟, 𝑠′, 𝑑)} from Ɗ

12: Compute targets

 𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 +
𝛾(1 − 𝑑)𝑄targ (𝑠′,

𝜃targ
(𝑠′))

13: Update Q-function by one step of gradient descent using

∇
1

|B|
 ∑ (𝑄(𝑠,𝑎,𝑟,𝑠′,𝑑)∈𝐵 (𝑠, 𝑎) − 𝑦 (𝑟 𝑠′, 𝑑)) 2

14: Update policy by one step of gradient ascent using

∇

1

|B|
 ∑(𝑄

𝑠∈𝐵

 (𝑠,
 𝜃

(𝑠))

15: Update target networks with

 𝜃targ ⟵ 𝜌
targ

+ (1 −

𝜌)

 𝜃targ ⟵ 𝜌𝜃targ + (1 −

𝜌)𝜃

16: end for

17: end if

18: until convergence

DDPG uses DQNs replay buffer to gather offline unrelated
experiences obtained by the agents whiles performing actions
on the environment. At each time step, the actor and the critic
are updated by uniformly sampling a minibatch from the replay

buffer. DDPG uses soft target, 𝜃targ updates rather than

directly copying the weights to the target network. DDPG
further utilizes batch normalization which helps normalize each
dimension across the samples in a mini-batch to have unit
mean and variance. DDPG algorithm is suitable for continuous
action space and state representations.

Fig. 6. Actor-Critic Model of DDPG [31].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

338 | P a g e
www.ijacsa.thesai.org

In [31], the DDPG algorithm is used for multimedia traffic
control with the objective of maximizing cumulative Quality of
Experience (QoE) for network users. The DDPG agent
enforces bandwidth adaptation and path chosen actions for all
multimedia flows in the SDN-enabled environment. To
maximize the QoE for users, a multi-layer deep neural network
is used to map the network and application metrics to the mean
opinion score (MOS) [78] obtained from users. Stampa et al.
[80] proposed a DDPG agent for dynamic routing in SDN. The
architecture embeds an integrated fully-connected feed-forward
neural network (FFNN) [81] in the framework to re-define the
feature extraction of the actor-critic network. To improve the
learning rate of DDPG for effective routing optimization, [82]
proposed a dynamic planning of the experience pool capacity
with respect to the current iteration number. This accelerates
the growth rate of the previous pool by reducing its capacity in
affecting subsequent learning rates. In [83] a deep-
reinforcement-learning-based quality-of-service (QoS)-aware
secure routing protocol (DQSP) is proposed using DDPG
algorithm. The DQSP adds an intelligent layer above the
control layer which generates the routing policy and evaluates
the network performance through the rewards obtained by the
DDPG policy. The DQSP protocol guards against gray hole
attack [84] and DDoS [85] whiles ensuring an efficient routing
planning through the environment-aware module of the control
layer. Zhang et al. [86] proposed a DDPG-based intelligent
content-aware TE (iTE) which leverages on information centric
networking (ICN) [87] to optimize traffic distribution in SDN.
The DDPG agent together with other TE algorithms are
embedded in a parallel decision-making (PDM) module in the
controller. This module receives the cache information and the
link bandwidth from the switches to activate and update its
neural networks with a reward feedback. In [88] a DDPG-

based network scheduler for deadline-specific SDN
heterogenous networks is proposed. The DDPG agent receives
a deadline-ware data transfers from the SDN switches and
schedules the flows by initializing a pacing rate at the source of
the deadline flows. The actor-critic model in the DDPG agent
handles larger and a more generalized scheduling problem that
maximizes and assigns the aggregated utility value to each
flow if the deadline is met. For intelligent routing in software-
defined data-centers (SD-DCN), [89] proposed a deep
reinforcement learning based routing (DRL-R) consisting of
DDPG-DQN agent to perform a reasonable routing adapted to
the network state. DRL-R agent efficiently allocates cache and
bandwidth in the network to improve routing performance by
delay reduction. This is done through the quantification of the
overall contribution score in the network and a change in the
routing metric from a single link state to the resource-
combined state.

4) Multi-Agent Reinforcement Learning (MARL): In

MARL systems, multiple agents collectively learn and

collaborate in a deterministic or a stochastic environment [90,

91, 92]. Multi-agent systems are seen in domain applications

including: network resource management, computer games,

distributed networking, cloud computing and intrusion

detection systems. Experience sharing and faster convergence

has necessitated a shift in research direction from SARL to

MARL in recent times. With a coordinated policy, multi-

agents learn and optimize towards an accumulated global

reward [93, 94] in the network framework. As a result, the

dynamics in state transitions in MARL are dependent on the

joint action of all active agents as shown in Fig. 7.

Fig. 7. MARL

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

339 | P a g e
www.ijacsa.thesai.org

Fig. 8. MADDPG.

a) Multi-Agent Deep Deterministic Policy Gradient
(MADDPG): MADDPG [95, 96, 97] is an actor-critic multi-

agent extension of DDPG where the critic network is

augmented with information from other agents in a

decentralized execution. In MADDPG actor-critic
architecture, each agent has its own actor and critic network.

The critic network of each agent has full visibility of the

actions and observation of other agents.

The actor network on the other hand only executes the
action for its local agent given the state. In Fig. 8, the actor 𝜋𝑛
takes an observation, 𝑜 as state to give an action, 𝑎 whiles the
critic network, 𝑄𝑛 takes an observation and the action of the
actor, to train the actor. The critic has dependent view from
other critic networks whiles training the actor network.

Algorithm 5 Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

[97]

1: for episode = 1 to 𝑀 do

2: Initialize a random process 𝒩 for action exploration

3: Receive initial state 𝑥

4: for 𝑡 = 1 to max-episode-length do

5: for each agent 𝑖 , select action 𝑎𝑖 =
𝜃𝑖

(𝑜𝑖) + 𝒩𝑡 𝑤. 𝑟. 𝑡. the

current policy and exploration

6: Executive actions 𝑎 = (𝑎1, , 𝑎𝑁 and observe reward 𝑟 and

new state 𝑥′
7: Store 𝑥, 𝑎, 𝑟, 𝑥′ in replay buffer Ɗ

8: 𝑥 ⟵ 𝑥′
9: for agent 𝑖 = 1 to 𝑁 do

10: Sample a random minibatch of 𝑆 samples 𝑥 𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑥′𝑗)
from Ɗ

11: Set 𝑦𝑗 = 𝑟𝑖
𝑗

+ 𝛾𝑄𝑖

′

(𝑥′𝑗 , 𝑎′
1, , 𝑎′

𝑁)|𝑎′
𝑘 = ′

𝑘
(𝑜𝑘

𝑗
)

12: Update critic by minimizing the loss ℒ(𝜃𝑖) =
1

𝑆
 ∑ (𝑦𝑗

𝑗 −

 𝑄𝑖
𝜇

(𝑥 𝑗, 𝑎1
𝑗
, , 𝑎𝑁

𝑗
)) 2

13: Update actor using the sampled policy gradient:

 ∇𝜃𝑖 𝐽 ≈

1

𝑆
 ∑ ∇𝜃𝑖𝜇𝑖𝑗 (𝑜𝑖

𝑗)∇𝑎𝑖𝑄𝑖
𝜇

(𝑥 𝑗 , 𝑎1
𝑗
, , 𝑎𝑁

𝑗
)|𝑎𝑖 = 𝜇𝑖(𝑜𝑖

𝑠)

14: end for

15: Update target network parameters for each agent 𝑖
 𝜃′𝑖 ⟵ 𝜏𝜃𝑖 + (1 −
𝜏)𝜃′𝑖

16: end for

17: end for

In [98], a MADDPG-based traffic control and multi-
channel reassignment (TCCA-MADDPG) algorithm is

proposed for the core backbone network in SDN-IoT. The
TCCA-MADDPG algorithm reduces the channel interference
between links by considering the policies of other
neighbouring agents using a cooperative multi-agent strategy.
To maximize network throughput and minimize packet loss
rate and time delay, the TCCA-MADDPG uses a joint traffic
control mechanism modelled with a partially observable
markov decision process (POMDP) to optimize traffic
performance. Yuan et al., [99] proposed a dynamic controller
assignment using MADDPG for effective TE in Software
Defined Internet of Vehicles (SD-IoV) [100]. For controllers to
make local decision in coordination with neighboring
controllers, a real-time distributed cooperative assignment
approach is used via the actor-critic model of the MADDPG.
To get a faster MARL global convergence whiles minimizing
delay, a centralized training approach using global information
to attain optimal local assignment is adopted in the model
development.

C. TE Architecture in SDN

In this section, we looked at the design placement of the RL
agents in the SDN architecture and the communication
principles adopted with the controller. The architecture of RL
systems varies based on the RL agent policy algorithms, the
actions selected and the environment. The agent frameworks
are designed to enhance positive rewards and proactively
prevent network performance degradation through forwarding
devices. Different components of the RL agents design in SDN
are situated in the application plane, control plane and the data
plane.

1) RL agent in control plane: For easier policy

formulation and faster communication between the controller

and RL agent, most TE SDN designs

[28][30][31][52][54][57][70][86][89] situate the RL agent in

the control plane of the SDN architecture. In [28], the CFR-

RL agent resides in the controller and uses a neural network

trained with reinforcement algorithm [43] to map a traffic

matrix to a combination of critical flows. After training, the

CFR-RL applies the critical flow selection policy to each real

time traffic matrix provided by the controller. The SDN

controller then reroutes the selected critical flows by installing

and updating flow entries of the switches whiles the remaining

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

340 | P a g e
www.ijacsa.thesai.org

flows continue the normal route using Equal-Cost Multi-Path

(ECMP) [44] TE technique by default. In [30], the RL agent is

deployed in the controller and utilizes the flow match

frequency and the flow duration to determine the flow entries

that should be kept on the switch. To maximize the long term

reward, the RL agent lowers the configuration overhead and

the number of table-miss events. To achieve the expected

reward, the RL agent splits the pool of flow entries into two

parts: the local switch entries and the remote controller entries.

This will reduce the control plane overhead given the Ternary

Content-Addressable Memory (TCAM) [45] size of the SDN

switches. With [31] the RL agent is the controller and serves

as the centralized control to collect stats, make decision and

take actions. The state reflects the situation in the environment

and covers metrics: allocation of bandwidth, delay, jitter and

the packet loss rate of flows. The action involves the path

chosen and the bandwidth adaption for multimedia flows. The

reward is the QoE received from the environment. To evaluate

the QoE, the multi-layer deep neural network is used to map

the network and application metrics to MOS [46]. [52] also

proposed the controller is the RL agent and programmed with

the Q-learning algorithm to detect network congestion and

find optimal path to be delivered to the OpenVSwitch (OVS).

In [57] the control layer has an intelligent center connected to

the SDN controller. For efficient load balancing, the

intelligent center uses the Q-learning algorithm to find optimal

paths and returns aggregated path routing decisions to the

controller. The DQN-EER architecture [70] has the RL agent

programmed in the SDN controller using the DQN algorithm.

The DQN is modified with deep convolutional neural

networks (CNNs), empirical replay to train the agent and

independent target networks to train the primary critic

network. In [86] the intelligent content-aware traffic

engineering (iTE) RL agent is deployed in the controller of the

SDN architecture. It received cache information from the

ICN-enabled switches and uses parallel execution module

embedded with multiple DRL-based TE algorithms to

determine the best routing paths for the flows in the network.

2) RL agent in Application Plane: For easier system

failure checks in SDN, [29] [71][83] TE frameworks situate

the RL agent in the application plane. The Q-DATA [29]

framework architecture has a built-in forwarding application

located in the control plane and a Q-DATA application

residing in the SDN application plane. Initially, the built-in

forwarding application module is instructed by the Q-DATA

application through a REST API to apply the Full Matching

Scheme (FMS) strategy at the switches. The Q-DATA

application has a statistics collector module which periodically

collects raw information about traffic flows at the SDN

switches from the SDN controller. The statistics is then

forwarded to a statistics extractor and distributor module for

extraction and distribution to other modules. The SVM based

performance degradation prediction module anticipates the

performance degradation of the SDN switches before it occurs

and provides the prediction results to the Q-learning based

traffic flow matching policy creation module and the MAC

matching only scheme control module. The MAC matching

only scheme control module monitors and checks conditions

for a traffic flow matching scheme change to FMS in the SDN

switches. In [71] the AI Plane is used as the Application Plane

in the SDN architecture. The RL agent is embedded in the AI

Plane and uses the DQN to learn the best optimal routing

paths for the mice and elephant flows by obtaining the flow

type, network state information and network performance

evaluation from the control plane of the SDN architecture. In

[83], the DQSP architecture has an agent layer that is

embedded in the application layer of the SDN architecture.

The DQSP agent through the controller is aware of the

underlying network environment and generates routing

policies for the controller to executive. It receives the reward

evaluation and adjusts policy parameters until optimal routing

strategy is achieved.

TABLE I. TE IN SDN USING RL – SUMMARY OF FINDINGS

TE in SDN
Agent
Algorithm

Main Contribution MDP Limitations Plane

[29]
Q-learning,

Support Vector
Machine

The authors proposed an enhanced
traffic flow monitoring in SDN using Q-
learning and Support Vector Supervised
Machine Learning Algorithm

Yes
The statistics tracker should have

factored in control link and data link
capacity utilization of the SD Networks

Application

[30]
Q-learning,

Deep Q-Network
(DQN)

The authors addressed the TCAM
capacity issue in OpenFlow switches by
determining which forwarding rules
remains in the flow table and those
processed by the SDN controller

Yes
The 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy should have

given more value for exploration to balance
the dynamics of the action taken.

Controller

[50] Q-learning
The authors improved bandwidth

utilization and reduced flow latencies –
NRENs case study network

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Not stated

[52] Q-learning

The authors addressed network
congestion in SDN by reselecting flow
paths and changing flow table using
predefined threshold

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Controller

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

341 | P a g e
www.ijacsa.thesai.org

[53] Q-learning
The authors introduced fairness

function in SDN for load-balancing in
peak traffic conditions

Yes
One type of user that should not be

ignored is a compromised user with network
intrusions.

Not stated

[54]
Q-learning,

Bayesian
Network

The authors used the Bayesian
network to predict the degree of
congestion and Q-learning for optimal
action decision in SDN load-balancing
framework

Yes

The rate of packet-in messages from the
switches is enough parameter to predict the
load congestion to the controller. Using the
Bayesian Network will impede the idea of
Reinforcement Learning

Controller

[56] Q-learning

The authors proposed a dynamic
switch migration algorithm with Q-
learning in scaling the load on SDN
controllers

Yes
No reward graph per episode to define

the training and validation accuracy of the
agent.

Not stated

[57] Q-learning
The authors used an integrated DNN

in Q-learning for load-balancing in SDN
through flow forecasting

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Controller

[59] Q-learning

The authors maximized table hit rates
in a UDP flow entry eviction strategy in
SDN by dynamically resizing sampling
periods of critical parameters.

Yes

The scope of the state space definition is
limited. Aside the size of the sampling
period, the state of flows in the network will
be an added metrics since UDP operates at
the transport layer.

Not stated

[62]
SARSA,

Bayesian
Network

The authors proposed a switch
migration prediction method based on
Bayesian network and used with SARSA
algorithm for overload-lighter load
controller migration.

Yes

Comparing the modified SARSA
algorithm to Q-learning in the research will
have given a more comparative insight into
the results of the research.

Not stated

[64] SARSA

The authors proposed a QoS-aware
adaptive routing scheme using SARSA to
provide fast convergence in QoS
provisioning in SDN

Yes

The reward function of the MDP is not
well defined. Secondary, comparing the
results with other known algorithms will
have given more credence to the 𝛼, 𝛾 values

Not stated

[65] SARSA

The authors proposed a resource
allocation technique in massive IoT
through cognitive communication in
SDN-enabled environment

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Not stated

[66] SARSA
The authors proposed a network hop

count technique in SDN to improve VS-

routing through 𝜀 − 𝐺𝑟𝑒𝑒𝑑𝑦 function
No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Not stated

[68] DQN
The authors proposed a flexible

network management through dynamic
controller placement technique in SDN

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Not stated

[69] DQN

The authors used a DQN based
switch and controller selection scheme for
switch migration in distributed SDN
controllers

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Not stated

[70] DQN
The authors used DQN to find

energy-efficient routing paths and load-
balancing between SDN controllers

Yes

Though energy-saving and load
balancing are metrices defined in this
research, the extent of a controller’s ability
to balance the load can be added to the
reward functionality.

Controller

[71] DQN
The authors used two DQN agents to

detect mice and elephant flows in an
SDN-enabled data center

Yes

A comparative analysis using packet-in
and packet-out messages in defining the
state-action-reward pair will have added
higher scope to the research.

Application

[74] DQN

The authors proposed a DQN agent
that predicts optimal traffic paths and
future traffic demands using LSTM neural
networks.

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Not stated

[31] DDPG

The authors proposed an SDN
architecture to maximize QoE using
DDPG agent to enforce bandwidth
adaption and path chosen for all
multimedia flows

Yes

There is little mathematical modelling
of the DDPG algorithm used in this research.
The pseudocode is not stated mathematically
for this research. The parameters for
simulation set up was not well defined in this

Controller

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

342 | P a g e
www.ijacsa.thesai.org

research

[80] DDPG

The authors adopted the DDPG agent
for dynamic routing in feature extraction
with FFNN in the actor-critic network of
the agent.

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Not stated

[82] DDPG

The authors proposed a DDPG-EREP
algorithm with dynamic planning of the
experience pool capacity using the current
iteration number of the sampling size

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Not stated

[83] DDPG

The authors proposed a DQSP using
DDPG algorithm with added intelligent
layer above the control layer for routing
policy optimization in SDN

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Application

[86] DDPG

The authors proposed an iTE which
leverages on ICN to optimize traffic
distribution in SDN through the PDM
module in the controller

Yes

The action space definition should have
included the flow path selection procedure
aside the split ratio for the i-th destination
node.

Controller

[88] DDPG

The authors used a DDPG agent to
receive a deadline-aware data transfers
from SDN switches and schedules
subsequent flows by initiating a pacing
rate at the source of the flows

Yes
This research can be extended to multi-

path routing using AOMDV protocol
No stated

[89]
DQN,

DDPG

The authors proposed a DRL-R based
on DDPG-DQN agent to allocate cache
and bandwidth in the SDN to improve
routing performance

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

Controller

[98] MADDPG

The authors proposed TCCA-
MADDPG algorithm to reduce the
channel interference between links by
considering the policies of neighbouring
agents using multi-agent strategy

Yes

The TCCA-MADDPG should have
been compared with DDPG and not DQN
since both TCCA-MADDPG and DDPG
work in continuous environment.

Not stated

[99] MADDPG

The authors proposed a MADDPG
for effective traffic load engineering in
SDN-IoV using a real-time distributed
cooperative assignment approach via the
Actor-Critic network

No

Since MDP was not used to
mathematically define the network
parameters, the measuring metrics for
success is not well defined.

No stated

IV. OPEN RESEARCH ISSUES

In this section, we looked at the research gaps identified
after the review. From the review summary shown in Table I, it
is conclusive that, SDN-based TE solutions using RL agents
has the potential to eliminate completely network degradation
and provide a network recommender system for end users.
From this review, some future research issues exist.

A. RL Agent Implementation

From the review RL agents are designed and situated at the
control or application plane of the SDN architecture. For a
more efficient and pro-active TE solutions, new SDN design
architectures can situate the RL agent as mini-embedded
applications adapted to dedicated forwarding devices with
oversight from the SDN controller. With performance
comparison based on end-to-end delay and response time [47],
data plane based RL agents will enable a faster network
congestion detection and prevention since the agents are closer
to the forwarding devices.

B. RL Agent Algorithm

For TE, most RL agents use model-free based algorithms
for policy enforcement and rewards. Though model-based
algorithms have high computational complexities, a hybrid
architecture that enables the RL agent to select either algorithm
based on reward has a research value. Using trial-or-error and

referencing a model will give more intelligence to the RL
agent. The agent will have the capacity to decide the algorithm
to activate based on network complexity and the priority of
applications.

C. Multi-Agent Reinforcement Learning

For faster convergence and collaborative learning, MARL
solutions in TE though complex is the future in solving
network related routing and load-balancing in SDN
architecture. The advent of connected devices will only
increase with time. MARL agents from review have limited
research [98][99] TE solutions in SDN. MARL when proposed
efficiently can segment the network into smaller units with
multi-agent capabilities.

V. CONCLUSION

Software-Defined Networks (SDN) has emerged to give
more control in network management by separating the control
layer from the forwarding devices. This separation has given a
centralized programmable supervisory role to the controller
and a flexible management of network flows in forwarding
devices. In regulating the behaviour of data transmitted over
the network, we discussed the relevance of Reinforcement
Learning in SDN for Traffic Engineering. This paper explained
major reviews using RL techniques in network traffic
management and the action of agents on the environment for

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

343 | P a g e
www.ijacsa.thesai.org

rewards and new states. The review further detailed the
mathematical modelling of agents and environment using the
Markov Decision Process (MDP). We illustrated with diagrams
SARL and MARL agents and detailed their importance in
regards to TE.

With Reinforcement Learning, agents are modelled in a
controlled loop to take sequence of actions on the environment
to receive future rewards and a new state. The agent must
exploit and explore the stochastic environment through
determined actions that will lead to a faster convergence. From
the review, the paper offers future research options for optimal
Traffic Engineering solutions in SDN.

REFERENCES

[1] Zanella, Andrea, et al. "Internet of things for smart cities." IEEE Internet

of Things journal 1.1 (2014): 22-32

[2] Salem, Mohammed A., et al. "M2M in 5G Communication Networks:
Characteristics, Applications, Taxonomy, Technologies, and Future

Challenges." Fundamental and Supportive Technologies for 5G Mobile
Networks. IGI Global, 2020. 309-321.

[3] Mattisson, Sven. "Overview of 5G requirements and future wireless

networks." ESSCIRC 2017-43rd IEEE European Solid State Circuits
Conference. IEEE, 2017.

[4] Ji, Hyoungju, et al. "Ultra-reliable and low-latency communications in

5G downlink: Physical layer aspects." IEEE Wireless Communications
25.3 (2018): 124-130.

[5] Busari, Sherif Adeshina, et al. "5G millimeter-wave mobile broadband:

Performance and challenges." IEEE Communications Magazine 56.6
(2018): 137-143.

[6] Jungnickel, Volker, et al. "The role of small cells, coordinated

multipoint, and massive MIMO in 5G." IEEE communications magazine
52.5 (2014): 44-51.

[7] Alencar, Felipe, et al. "How Software Aging affects SDN: A view on the
controllers." 2014 Global Information Infrastructure and Networking

Symposium (GIIS). IEEE, 2014.

[8] Kim, Hyojoon, and Nick Feamster. "Improving network management
with software defined networking." IEEE Communications Magazine

51.2 (2013): 114-119.

[9] Yeganeh, Soheil Hassas, Amin Tootoonchian, and Yashar Ganjali. "On
scalability of software-defined networking." IEEE Communications

Magazine 51.2 (2013): 136-141.

[10] Kim, Hyojoon, and Nick Feamster. "Improving network management
with software defined networking." IEEE Communications Magazine

51.2 (2013): 114-119

[11] Pruss, R. M., Mcdowall, J. E., Medved, J., & Abrahams, L. (2015). U.S.
Patent No. 9,047,143. Washington, DC: U.S. Patent and Trademark

Office.

[12] Karakus, Murat, and Arjan Durresi. "Quality of service (QoS) in
software defined networking (SDN): A survey." Journal of Network and

Computer Applications 80 (2017): 200-218.

[13] Kassler, Andreas, et al. "Towards QoE-driven multimedia service

negotiation and path optimization with software defined networking."
SoftCOM 2012, 20th International Conference on Software,

Telecommunications and Computer Networks. IEEE, 2012.

[14] Mahboob, Tahira, Young Rok Jung, and Min Young Chung. "Optimized
Routing in Software Defined Networks–A Reinforcement Learning

Approach." International Conference on Ubiquitous Information
Management and Communication. Springer, Cham, 2019.

[15] Perera, Menuka, Kandaraj Piamrat, and Salima Hamma. "Network

Traffic Classification using Machine Learning for Software Defined
Networks." Journées non thématiques GDR-RSD 2020. 2020.

[16] Bernaille, Laurent, et al. "Traffic classification on the fly." ACM

SIGCOMM Computer Communication Review 36.2 (2006): 23-26.

[17] Finsterbusch, Michael, et al. "A survey of payload-based traffic
classification approaches." IEEE Communications Surveys & Tutorials

16.2 (2013): 1135-1156.

[18] Khondoker, Rahamatullah, et al. "Feature-based comparison and

selection of Software Defined Networking (SDN) controllers." 2014
world congress on computer applications and information systems

(WCCAIS). IEEE, 2014.

[19] Dey, Samrat Kumar, and Md Mahbubur Rahman. "Flow based anomaly
detection in software defined networking: A deep learning approach

with feature selection method." 2018 4th International Conference on
Electrical Engineering and Information & Communication Technology

(iCEEiCT). IEEE, 2018.

[20] Sutton, Richard S., and Andrew G. Barto. "Introduction to reinforcement
learning. Vol. 135." MIT press Cambridge 5 (1998): 21-22.

[21] Szepesvári, Csaba. "Algorithms for reinforcement learning." Synthesis

lectures on artificial intelligence and machine learning 4.1 (2010): 1-
103.

[22] Stampa, G., Arias, M., Sánchez-Charles, D., Muntés-Mulero, V., &

Cabellos, A. (2017). A deep-reinforcement learning approach for
software-defined networking routing optimization. arXiv preprint

arXiv:1709.07080.

[23] Møller, Martin Fodslette. "A scaled conjugate gradient algorithm for fast

supervised learning." Neural networks 6.4 (1993): 525-533.

[24] Torrey, Lisa, and Matthew Taylor. "Teaching on a budget: Agents
advising agents in reinforcement learning." Proceedings of the 2013

international conference on Autonomous agents and multi-agent
systems. 2013.

[25] Puterman, Martin L. Markov decision processes: discrete stochastic

dynamic programming. John Wiley & Sons, 2014.

[26] Boutilier, Craig, Thomas Dean, and Steve Hanks. "Decision-theoretic
planning: Structural assumptions and computational leverage." Journal

of Artificial Intelligence Research 11 (1999): 1-94.

[27] Van Otterlo, Martijn, and Marco Wiering. "Reinforcement learning and
markov decision processes." Reinforcement learning. Springer, Berlin,

Heidelberg, 2012. 3-42.

[28] Zhang, Junjie, et al. "CFR-RL: Traffic engineering with reinforcement
learning in SDN." IEEE Journal on Selected Areas in Communications

38.10 (2020): 2249-2259.

[29] Phan, Trung V., et al. "Q-DATA: Enhanced Traffic Flow Monitoring in

Software-Defined Networks applying Q-learning." 2019 15th
International Conference on Network and Service Management

(CNSM). IEEE, 2019.

[30] Mu, Ting-Yu, et al. "SDN flow entry management using reinforcement
learning." ACM Transactions on Autonomous and Adaptive Systems

(TAAS) 13.2 (2018): 1-23.

[31] Huang, Xiaohong, et al. "Deep reinforcement learning for multimedia
traffic control in software defined networking." IEEE Network 32.6

(2018): 35-41.

[32] Khan, Asiya, Lingfen Sun, and Emmanuel Ifeachor. "QoE prediction
model and its application in video quality adaptation over UMTS

networks." IEEE Transactions on Multimedia 14.2 (2011): 431-442.

[33] Zhang, Hongming, and Tianyang Yu. "Taxonomy of Reinforcement
Learning Algorithms." Deep Reinforcement Learning. Springer,

Singapore, 2020. 125-133.

[34] Buşoniu, Lucian, et al. "Approximate reinforcement learning: An
overview." 2011 IEEE symposium on adaptive dynamic programming

and reinforcement learning (ADPRL). IEEE, 2011.

[35] Polydoros, Athanasios S., and Lazaros Nalpantidis. "Survey of model-

based reinforcement learning: Applications on robotics." Journal of
Intelligent & Robotic Systems 86.2 (2017): 153-173.

[36] Clavera, Ignasi, et al. "Model-based reinforcement learning via meta-

policy optimization." Conference on Robot Learning. PMLR, 2018.

[37] Degris, Thomas, Patrick M. Pilarski, and Richard S. Sutton. "Model-free
reinforcement learning with continuous action in practice." 2012

American Control Conference (ACC). IEEE, 2012.

[38] Song, Zhao, and Wen Sun. "Efficient model-free reinforcement learning
in metric spaces." arXiv preprint arXiv:1905.00475 (2019).

[39] Akrour, Riad, et al. "Model-free trajectory optimization for

reinforcement learning." International Conference on Machine
Learning. PMLR, 2016.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

344 | P a g e
www.ijacsa.thesai.org

[40] Sutton, Richard S., and Andrew G. Barto. "Introduction to reinforcement

learning. Vol. 135." MIT press Cambridge 5 (1998): 21-22.

[41] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement
learning." arXiv preprint arXiv:1312.5602 (2013).

[42] Kumar, Arun, Navneet Paul, and S. N. Omkar. "Bipedal walking robot

using deep deterministic policy gradient." arXiv preprint
arXiv:1807.05924 (2018).

[43] Williams, Ronald J. "Simple statistical gradient-following algorithms for

connectionist reinforcement learning." Machine learning 8.3-4 (1992):
229-256.

[44] Chiesa, Marco, Guy Kindler, and Michael Schapira. "Traffic engineering

with equal-cost-multipath: An algorithmic perspective." IEEE/ACM
Transactions on Networking 25.2 (2016): 779-792.

[45] Salisbury, B. "TCAMs and OpenFlow-what every SDN practitioner
must know." See http://tinyurl. com/kjy99uw (2012).

[46] Khan, Asiya, Lingfen Sun, and Emmanuel Ifeachor. "QoE prediction

model and its application in video quality adaptation over UMTS
networks." IEEE Transactions on Multimedia 14.2 (2011): 431-442.

[47] Chin, Tommy, Mohamed Rahouti, and Kaiqi Xiong. "Applying

software-defined networking to minimize the end-to-end delay of
network services." ACM SIGAPP Applied Computing Review 18.1

(2018): 30-40.

[48] Nachum, Ofir, et al. "Bridging the gap between value and policy based
reinforcement learning." arXiv preprint arXiv:1702.08892 (2017).

[49] Suthaharan, Shan. "Machine learning models and algorithms for big data

classification." Integr. Ser. Inf. Syst 36 (2016): 1-12.

[50] Chavula, Josiah, Melissa Densmore, and Hussein Suleman. "Using SDN
and reinforcement learning for traffic engineering in UbuntuNet

Alliance." 2016 International Conference on Advances in Computing
and Communication Engineering (ICACCE). IEEE, 2016.

[51] Barbehenn, Michael. "A note on the complexity of Dijkstra's algorithm
for graphs with weighted vertices." IEEE transactions on computers

47.2 (1998): 263.

[52] Kim, Seonhyeok, et al. "Congestion prevention mechanism based on Q-
leaning for efficient routing in SDN." 2016 International Conference on

Information Networking (ICOIN). IEEE, 2016.

[53] Tennakoon, Deepal, Suneth Karunarathna, and Brian Udugama. "Q-
learning approach for load-balancing in software defined networks."

2018 Moratuwa engineering research conference (MERCon). IEEE,
2018.

[54] LIANG, Siyuan, et al. "Load Balancing Algorithm of Controller Based

on SDN Architecture Under Machine Learning." Journal of Systems
Science and Information 8.6 (2020): 578-588.

[55] Wang, Ke, Wai-Choong Wong, and Teck Yoong Chai. "A MANET

routing protocol using Q-learning method integrated with Bayesian
network." 2012 IEEE International Conference on Communication

Systems (ICCS). IEEE, 2012.

[56] Min, Zhu, Qu Hua, and Zhao Jihong. "Dynamic switch migration
algorithm with Q-learning towards scalable SDN control plane." 2017

9th International Conference on Wireless Communications and Signal
Processing (WCSP). IEEE, 2017.

[57] Yu, Chen, et al. "Intelligent optimizing scheme for load balancing in
software defined networks." 2017 IEEE 85th Vehicular Technology

Conference (VTC Spring). IEEE, 2017.

[58] Smith, Brian L., and Michael J. Demetsky. "Traffic flow forecasting:
comparison of modeling approaches." Journal of transportation

engineering 123.4 (1997): 261-266.

[59] Choi, Hanhimnara, et al. "UDP Flow Entry Eviction Strategy Using Q-
Learning in Software Defined Networking." 2020 16th International

Conference on Network and Service Management (CNSM). IEEE, 2020.

[60] Nadeau, Thomas D., and Ken Gray. SDN: Software Defined Networks:
an authoritative review of network programmability technologies. "

O'Reilly Media, Inc.", 2013.

[61] Hausknecht, Matthew, and Peter Stone. "Deep reinforcement learning in
parameterized action space." arXiv preprint arXiv:1511.04143 (2015).

[62] Yang, Shike, Haobin Shi, and Hengsheng Zhang. "Dynamic Load

Balancing of Multiple Controller based on Intelligent Collaboration in

SDN." 2020 International Conference on Computer Vision, Image and

Deep Learning (CVIDL). IEEE, 2020.

[63] Li, Zhihua, et al. "Bayesian network-based virtual machines
consolidation method." Future Generation Computer Systems 69 (2017):

75-87.

[64] Lin, Shih-Chun, et al. "QoS-aware adaptive routing in multi-layer
hierarchical software defined networks: A reinforcement learning

approach." 2016 IEEE International Conference on Services Computing
(SCC). IEEE, 2016.

[65] Arruda, Carlos E., et al. "Enhanced Pub/Sub Communications for

Massive IoT Traffic with SARSA Reinforcement Learning." arXiv
preprint arXiv:2101.00687 (2021).

[66] Yuan, Zhengwu, et al. "Research on Routing Optimization of SDN

Network Using Reinforcement Learning Method." 2019 2nd
International Conference on Safety Produce Informatization (IICSPI).

IEEE, 2019.

[67] Saraph, Girish P., and Pushpraj Singh. "Traffic engineering using new

VS routing scheme." 2004 IEEE International Conference on
Communications (IEEE Cat. No. 04CH37577). Vol. 2. IEEE, 2004.

[68] Wu, Yiwen, et al. "Deep Reinforcement Learning for Controller

Placement in Software Defined Network." IEEE INFOCOM 2020-IEEE
Conference on Computer Communications Workshops (INFOCOM

WKSHPS). IEEE, 2020.

[69] Yeo, Sangho, et al. "Achieving Balanced Load Distribution with
Reinforcement Learning-Based Switch Migration in Distributed SDN

Controllers." Electronics 10.2 (2021): 162.

[70] Yao, Zan, Ying Wang, and Xuesong Qiu. "DQN-based energy-efficient
routing algorithm in software-defined data centers." International

Journal of Distributed Sensor Networks 16.6 (2020):
1550147720935775.

[71] Fu, Qiongxiao, et al. "Deep Q-learning for routing schemes in SDN-

based data center networks." IEEE Access 8 (2020): 103491-103499.

[72] Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi.
"Understanding of a convolutional neural network." 2017 International

Conference on Engineering and Technology (ICET). Ieee, 2017.

[73] O'Shea, Keiron, and Ryan Nash. "An introduction to convolutional

neural networks." arXiv preprint arXiv:1511.08458 (2015).

[74] Bouzidi, El Hocine, Abdelkader Outtagarts, and Rami Langar. "Deep
reinforcement learning application for network latency management in

software defined networks." 2019 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2019.

[75] Sundermeyer, Martin, Ralf Schlüter, and Hermann Ney. "LSTM neural

networks for language modeling." Thirteenth annual conference of the
international speech communication association. 2012.

[76] Lipton, Zachary C., et al. "Learning to diagnose with LSTM recurrent

neural networks." arXiv preprint arXiv:1511.03677 (2015).

[77] Pitaksanonkul, Anucha, et al. "DTR: A defect-tolerant routing
algorithm." Proceedings of the 26th ACM/IEEE Design Automation

Conference. 1989.

[78] Streijl, Robert C., Stefan Winkler, and David S. Hands. "Mean opinion
score (MOS) revisited: methods and applications, limitations and

alternatives." Multimedia Systems 22.2 (2016): 213-227.

[79] Silver, David, et al. "Deterministic policy gradient algorithms."

International conference on machine learning. PMLR, 2014.

[80] Stampa, Giorgio, et al. "A deep-reinforcement learning approach for
software-defined networking routing optimization." arXiv preprint

arXiv:1709.07080 (2017).

[81] Schmidt, Wouter F., Martin A. Kraaijveld, and Robert PW Duin. "Feed
forward neural networks with random weights." International

Conference on Pattern Recognition. IEEE COMPUTER SOCIETY
PRESS, 1992.

[82] Lu, Xiaoye, et al. "SDN routing optimization based on improved

Reinforcement learning." Proceedings of the 2020 International
Conference on Cyberspace Innovation of Advanced Technologies. 2020.

[83] Guo, Xuancheng, et al. "Deep-reinforcement-learning-based QoS-aware

secure routing for SDN-IoT." IEEE Internet of Things Journal 7.7
(2019): 6242-6251.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

345 | P a g e
www.ijacsa.thesai.org

[84] Dhawan, Mohan, et al. "SPHINX: detecting security attacks in software-

defined networks." Ndss. Vol. 15. 2015.

[85] Ashraf, Javed, and Seemab Latif. "Handling intrusion and DDoS attacks
in Software Defined Networks using machine learning techniques."

2014 National Software Engineering Conference. IEEE, 2014.

[86] Zhang, Qingyi, et al. "Intelligent Content-Aware Traffic Engineering for
SDN: An AI-Driven Approach." IEEE Network 34.3 (2020): 186-193.

[87] Dannewitz, Christian, et al. "Network of information (netinf)–an

information-centric networking architecture." Computer
Communications 36.7 (2013): 721-735.

[88] Ghosal, Gaurav R., et al. "A Deep Deterministic Policy Gradient Based

Network Scheduler For Deadline-Driven Data Transfers." 2020 IFIP
Networking Conference (Networking). IEEE, 2020.

[89] Xu, Chunlei, Weijin Zhuang, and Hong Zhang. "A Deep-reinforcement
Learning Approach for SDN Routing Optimization." Proceedings of the

4th International Conference on Computer Science and Application
Engineering. 2020.

[90] Buşoniu, Lucian, Robert Babuška, and Bart De Schutter. "Multi-agent

reinforcement learning: An overview." Innovations in multi-agent
systems and applications-1 (2010): 183-221.

[91] Christianos, Filippos, et al. "Scaling Multi-Agent Reinforcement

Learning with Selective Parameter Sharing." arXiv preprint
arXiv:2102.07475 (2021).

[92] Omidshafiei, Shayegan, et al. "Learning to teach in cooperative

multiagent reinforcement learning." Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33. No. 01. 2019.

[93] Busoniu, Lucian, Robert Babuska, and Bart De Schutter. "A

comprehensive survey of multiagent reinforcement learning." IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews) 38.2 (2008): 156-172.

[94] Gupta, Jayesh K., Maxim Egorov, and Mykel Kochenderfer.
"Cooperative multi-agent control using deep reinforcement learning."

International Conference on Autonomous Agents and Multiagent
Systems. Springer, Cham, 2017.

[95] Egorov, Maxim. "Multi-agent deep reinforcement learning." CS231n:
convolutional neural networks for visual recognition (2016): 1-8.

[96] Chu, Tianshu, et al. "Multi-agent deep reinforcement learning for large-

scale traffic signal control." IEEE Transactions on Intelligent
Transportation Systems 21.3 (2019): 1086-1095.

[97] Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-

competitive environments." arXiv preprint arXiv:1706.02275 (2017)

[98] Wu, Tong, et al. "Joint Traffic Control and Multi-Channel Reassignment
for Core Backbone Network in SDN-IoT: A Multi-Agent Deep

Reinforcement Learning Approach." IEEE Transactions on Network
Science and Engineering (2020).

[99] Yuan, Tingting, et al. "Dynamic Controller Assignment in Software

Defined Internet of Vehicles through Multi-Agent Deep Reinforcement
Learning." IEEE Transactions on Network and Service Management

(2020).

[100] Jiacheng, Chen, et al. "Software defined Internet of vehicles:
Architecture, challenges and solutions." (2016): 14-26.

[101] Dey, Ayon. "Machine learning algorithms: a review." International
Journal of Computer Science and Information Technologies 7.3 (2016):

1174-1179.

[102] Van Engelen, Jesper E., and Holger H. Hoos. "A survey on semi-
supervised learning." Machine Learning 109.2 (2020): 373-440.

[103] Sen, Pratap Chandra, Mahimarnab Hajra, and Mitadru Ghosh.

"Supervised classification algorithms in machine learning: A survey and
review." Emerging technology in modelling and graphics. Springer,

Singapore, 2020. 99-111.

[104] Khanum, Memoona, et al. "A survey on unsupervised machine learning
algorithms for automation, classification and maintenance."

International Journal of Computer Applications 119.13 (2015).

[105] Bellemare, Marc G., Will Dabney, and Rémi Munos. "A distributional
perspective on reinforcement learning." International Conference on

Machine Learning. PMLR, 2017.

[106] Wang, Haoran, Thaleia Zariphopoulou, and Xun Yu Zhou. "Exploration
versus exploitation in reinforcement learning: a stochastic control

approach." Available at SSRN 3316387 (2019).

[107] Colas, Cédric, Olivier Sigaud, and Pierre-Yves Oudeyer. "Gep-pg:

Decoupling exploration and exploitation in deep reinforcement learning
algorithms." International Conference on Machine Learning. PMLR,

2018.

[108] Holcomb, Sean D., et al. "Overview on deepmind and its alphago zero
ai." Proceedings of the 2018 international conference on big data and

education. 2018.

