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Abstract—Medical applications increasingly require complex 

calculations with constraints of accelerated processing time. 

These applications are therefore oriented towards the integration 

of high-performance embedded architectures. In this context, the 

detection of cardiac abnormalities is a task that remains a high 

priority in emergency medicine. ECG analysis is a complex task 

that requires significant computing time since a large amount of 

information must be analyzed in parallel with high frequencies. 

Real-time processing is the biggest challenge for researchers, 

when talking about applications that require time constraints like 

that of cardiac activity monitoring. This work evaluates the 

Adaptive Dual Threshold Filter (ADTF) algorithm dedicated to 

ECG signal filtering using various embedded architectures: A 

Raspberry 3B+ and Odroid XU4. The implementation has been 

based on C/C++ and OpenMP to exploit the parallelism in the 

used architectures. The evaluation was validated using several 

ECG signals proposed in MIT-BIH Arrhythmia database with a 

sampling frequency of 360 Hz. Based on an algorithmic 

complexity study and a parallelization of the functional blocks 

which present significant workloads, the evaluation results show 

a mean execution time of 7.5 ms on the Raspberry 3B+ and 0.34 

ms on the Odroid XU4. With an efficient parallelization on the 

Odroid XU4 architecture, real-time performance can be 
achieved. 

Keywords—ECG signal denoising; ADTF algorithm; OpenMP 

programming; embedded architectures 

I. INTRODUCTION 

ECG is an essential element in the diagnosis and the 
detection of cardiovascular disease or also in the monitoring of 

patients [1]. However, it is often correlated with different types 
of noise, which generates a distortion of the signal and a loss of 
valuable information. To simplify the interpretation task, 
several processing and filtering algorithms are proposed in the 
literature [2-6]. Digital Filters (FIR and IIR), Empirical Mode 
Decomposition (EMD), Wavelet Transform denoising 
techniques as Discrete Wavelet Transform (DWT) and the 
Adaptive Dual Threshold Filter (ADTF) [7-8]. 

Using digital filters, some useful information in the signal 
can be affected, particularly the R wave [3,9]. The EMD and 
the DWT give satisfying results, but they are characterized by 
their algorithmic complexity that requires more hardware 
resources and important computation time [10-11]. The ADTF 
proposed by W. Jenkal et al. in [7] has a great denoising 
capacity, especially when the signal is mixed with the high-
frequency noises. The advantage of this technique is the very 
low complexity. Hardware implementation of this algorithm on 
FPGAs is presented in [8] using Hardware Description 
Language (VHDL). The author divided the algorithm into 3 
main blocks: The first consists of Real-time data loading 
module with an acquisition frequency of 360 Hz as he uses 
signals from MIT-BIH database. The second is used for ADTF 
features calculation. The third is for Test and Assignment. To 
respect real-time processing, a frequency of 3.6 kHz is used in 
the second and third blocks, which is ten times greater than the 
acquisition frequency. This implementation indeed respects 
real-time, but this is related to the processing frequency which 
is fixed by the author not given by the architecture. 

 
 

 
Abbreviations 

ADTF: Adaptive Dual Threshold Filter 

DWT: Discrete Wavelet Transform 

DT-WT: Dual‑Tree Wavelet Transform 

ECG : Electrocardiogram 

EMD : Empirical Mode Decomposition 

EEMD : Ensemble Empirical Mode Decomposition 

EEMD-GA: EEMD and Genetic Algorithm  

FIR: Finite Impulse Response 

FPGA: Field Programmable Gate Array 

GPU: Graphics Processing Unit 

Ht:  Higher Threshold 

 

IIR: Infinite Impulse Response 

IMF : Intrinsic Mode Functions 

LA : Left Atria 

Lt: Lower Threshold  

LV:    Left Ventricle 

MSE: Mean Square Errors 

PRD: Percentage Root-mean-square Difference parameter 

RA: Right Atria 

RV: Right ventricle 

SNR: Signal to Noise Ratio 

VHDL: VHSIC Hardware Description Language 

WGN: White Gaussian Noise 
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This work deals particularly with the real-time ECG 
denoising. Real-time systems differ from others by considering 
time constraints and compliance, which is as important as the 
result's accuracy. In other words, the system should not just 
deliver exact results; it should also provide them within a set 
timeframe. This notion takes on its importance when it comes 
to human health. So, the design of processing algorithms that 
meet these constraints is therefore essential. In this context, the 
processing system is considered a real-time system. It must 
make the necessary correction for sample n before the arrival 
of sample (n + 1). This constraint implies rigorous 
requirements in terms of performance and speed. In this work, 
different signals from the Physionet MIT-BIH arrhythmia 
database are used, with 360 Hz of sampling frequency to test 
the reliability of the algorithm. This means that the time 
constraint is of the order of 2.77 ms. The Matlab simulation 
gives a processing time average of 150ms for one sample, 
which is too far from being in real-time. 

In order to ensure real-time processing, OpenMP parallel 
programming is used, which gives excellent results compared 
to C/C++ naive implementation and Matlab implementation. 
So, for Desktop with OpenMP programming, just 0.34 ms is 
needed to process one sample. But desktop is not always a 
good solution in biomedical monitoring because of its size, 
weight, and power consumption, especially when the objective 
is the home monitoring to facilitate access to care for the 
elderly or in regions lacking medical personnel, prevent 
hospitalizations and improve patient control and quality of life. 

We opted to use Low-cost embedded architectures such as 
XU4 and Raspberry. The given results show that the optimal 
choice is the XU4 board with an average processing time of 
2.34ms instead of 7.5 ms in the case of Raspberry 3B, which 
greatly satisfies the time and energy consumption constraints. 

The paper is formulated as follow: 

1) The first section exposes an overview of ECG signal 

denoising techniques and related work. 

2) The second section depicts a detailed evaluation of the 

ADTF algorithm and describes its implementation. 

3) The third section puts on view the results and discussion 

of the processing performance of the embedded 

implementations on different embedded architectures. 

4) Lastly, conclusion and future work are the objects of the 

fourth section. 

II. ECG SIGNAL PROCESSING: AN OVERVIEW 

A. ECG Signal Processing 

The ECG signal or electrocardiogram is a widely used 
exam in cardiology field. It describes the electrical activity of 
the human heart and has a high clinical value for diagnosing 
cardiac arrhythmias. From the ECG signal processing, several 
parameters can be extracted. As a rule, different waves' 
durations and shapes can indicate some cardiac abnormalities 
[3]. Fig. 1 represents the formation of the ECG signal, which 
reflects the different deflections and contractions of the heart 
muscles, making it possible to diagnose a patient's cardiac 
state. As shown in the Fig. 1, RA, LA, RV, and LV represent 
respectively the right and left Atria and ventricle. 

 

Fig. 1. ECG Signal Formation. 

To make the best use of ECG data in large quantities, 
intelligent diagnostic systems have appeared. These systems 
can improve the quality of the signal; extract useful 
information, and offer a diagnosis that can help doctors make 
the right decisions. 

The biomedical engineering revolution forces researchers 
to enhance the automatic diagnosis by optimization of ECG 
processing algorithms in order to ensure real-time monitoring 
of cardiac data [12-16]; and their implementation on embedded 
systems as recent technological resources [8,17-19]. 

The ECG signal is characterized by low frequency and a 
small amplitude. So, it is often affected by various kinds of 
noise as interference due to electrical appliances, high-
frequency noises produced by muscles activity, and low-
frequency noises of body movements in relation with 
respiration, which distorts its morphology, resulting a wrong 
diagnostic of the heart state of the patients [5,20]. To overcome 
this problem, the ECG signal must first go through a precise 
and effective preprocessing step. 

The preprocessing step aims to remove or reduce the 
different noises. In this context, many methods are used such 
as Digital Filters (FIR/IIR) [21-22], Empirical Mode 
Decomposition (EMD) and Ensemble EMD (EEMD) based 
techniques [10, 23-25], Discrete Wavelet Transform (DWT) 
[26-27, 3], Dual‑Tree Wavelet Transform (DT-WT) [28] and 
Adaptive Filtering [29,8]. 

B. Related Works based ECG Denoising 

Digital filters are represented by Finite Impulse Response 
(FIR) and Infinite Impulse Response (IIR). They are used to 
denoise ECG signals. Their names are originally linked to the 
mathematical definition, and their expressions are given 
respectively by (1) and (2): 

𝑌(𝑛) = ∑ b(q)X(n − q)𝑁−1
𝑘=0             (1) 

𝑦(𝑛) = ∑ 𝑎𝑘 𝑦(𝑛 − 𝑘) + ∑ 𝑏𝑘 𝑥(𝑛 − 𝑘)𝑁
𝑘=0

𝑀
𝑘=1           (2) 

The implementation of FIR filters can be done without 
feedback as it is shown in Fig. 2 where X(n) presents the input 
signal, Y(n) is the filtered signal, Z-1 operator is a delay in the 
Z transformation, N is the filter order, and bq are the 
coefficients of the filter transfer function. Various windowing 
techniques are used, as example: Rectangular window, Kaiser 
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window, Hamming window, Hanning window and Blackman 
window. IIR filters are designed using filters as Chebyshev 
filter, Butterworth filter, Inverse Chebyshev filter [30]. The 
major difference between them is that FIR filters are stable for 
any input signal. However, IIR filters can alter to unstable due 
to the feedback as shown in Fig. 3. Where an and bm are the 
filter transfer function coefficients. 

Most of the works used FIR or IIR filters by selecting a 
bandwidth related to the utile data from the ECG signal. From 
different papers, it can be deduced that that FIR filter with 
Kaiser Window eliminates noises from ECG signal with less 
alteration in the waveform [4,20]. FIR filters’ problem is the 
high computational due to the number of coefficients needed to 
achieve excellent denoising result and a group of delay in 
response, which is the main challenge in real-time systems [4]. 

Wavelet methods have proven to be more common and 
effective than FIR/IIR filters [31]. Wavelet methods 
simultaneously characterize time and frequency information. 
They decompose the signal to different resolutions using low 
pass filters (H[n]) to get the approximations (A) and high pass 
filters (g[n]) to get the details (D) as it’s explained in Fig. 4. 
The ECG signals are denoised using thresholding techniques. 
But they have some limitations since they reduce the signal 
amplitude, which can affect the R waves. 

To overcome this limitation, methods based on EMD are 
used, the signal is disintegrated into a sequence of intrinsic 
mode functions (IMFs), and noisy IMFs are removed, but this 
technique can remove some useful information when 
eliminating the noisy IMFs. EEMD is used to overcome this 
problem by removing the mode-mixing [32]. 

To deal with the problems of complexity in ECG denoising, 
W. Jenkal et al. developed a new approach inspired from image 
denoising [33]. This approach is an adaptive dual threshold 
filter which is dedicated to removing high-frequency noises 
[34-35].  This method aims to compute three elements for a 
selecting window (the average of the window, the higher 
threshold, and the lower threshold) and then the correction of 
the window’s median value using the thresholding. The process 
is explained in the following block diagram shown in Fig. 5. 

The performance evaluation of this method is made in [8] 
based on the SNRimp result comparison between the ADTF 
and techniques based on EEMD. This evaluation shows that 
the ADTF gives very good results compared to the EEMD 
denoising algorithm presented in [36] and a competitive 
SNRimp results to the enhanced EEMD method ( EEMD-GA) 
published in [37]. 

The main characteristic of the ADTF algorithm is its low 
complexity compared to the cited methods. The ADTF 
presents a linear complexity C(n) depending just on the signal 
size n. A comparative study of the complexity between the 
EMD, the EEMD, and the ADTF methods is presented in [8]. 
The conclusion of this study shows that ADTF presents a low 
complexity, unlike EMD and EEMD, which is related to 
various parameters, namely, the length of the signal, the 
number of the noisy signals, the number of IMFs, as well as the 
number of sifting processes. Comparing with the DWT, it also 
has linear complexity, in the manner of EMD/EEMD, it's 

related to other parameters not only the size of the signal, we 
are talking about the wavelet mother's coefficients, the number 
of decomposition's level and also the thresholding technique 
[38]. 

In the next section, a detailed study of the ADTF is 
presented as well as simulation results. 

 

Fig. 2. FIR Filter Conception. 

 

Fig. 3. IIR Filter Conception. 

 

Fig. 4. DWT Decomposition. 

 

Fig. 5. ADTF Algorithm Overview. 
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C. The ADTF Technique 

As described above, the ADTF algorithm aims to compute 
the average of the selected window (µ), the lower threshold 
(Lt), and the higher threshold (Ht). Hereinafter, they are 
presented respectively by (3), (4), and (5). 

µ =  
1

W
∑ Input(i)n+W

i=n                  (3) 

  Lt = µ − [(µ − Min) ∗ α]              (4) 

Ht = µ + [(Max − µ) ∗ α]              (5) 

Where the window size is W, Input (i) is the noisy signal, 
and n presents the signal length. Min is the minimum value of 
the window, Max is the maximum value of the window, and α 
is the thresholding coefficient with: 

0 < 𝛼 < 1 

α is essentially used to adapt the thresholding. According to 
the filtering process, α varies between 0% and 100%, lower 
values are recommended for a high concentration of noise, and 
higher values are tolerated in the opposite case [7]. 

The window selection is not arbitrary; it’s used to compare 
the median sample to his left and right regions, as stated in [7], 
a window of five samples gives the best results in terms of 
MSE and SNRinput. 

Fig. 6 shows the result of the ADTF filtering applied on the 
signal n° 234 from the MIT-BIH Arrhythmia database 
corelated with white Gaussian noises of 5 dB, using a window 
of 5 samples, an α coefficient of 5%. The compilation is done 
using Matlab R2019a. 

The algorithm validation is done using Matlab coding [7], 
but this remains a functional validation, while in biomedical 
engineering, Real-time processing is required in most cases, 
especially ECG signal processing. The time constraint is 
related to the sampling frequency of the used signals. In the 
MIT-BIH Arrhythmia database, the signals are sampled 360 Hz 
which leads to an interval of 2.7 ms between the samples. 
Using Matlab coding, 150 ms is needed to process and correct 
each sample. Thusly, with Matlab implementation, the system 
is too far from being in real-time. 

 

Fig. 6. The Denoising Results of the Signal n°234 of the MIT-BIH 

Arrhythmia Database Correlated with 5 dB of the WGN. 

We have opted for C/C++ optimization using OpenMP 
parallelization in order to optimize the code. As follows a 
comparative study of the obtained results using Matlab, C/C++ 
non-optimized algorithm and OpenMP optimized algorithm on 
different architectures. 

III. RESULTS AND DISCUSSION 

A. System Specification 

In this paper, ECG signals from MIT-BIH Arrhythmia, the 
international database Physionet, which incorporates 48 half-
hour records are used. These signals are converted to numerical 
values at 360 Hz with a resolution of 11-bits. Different signals 
with additive White Gaussian Noise (WGN) at SNR levels of 
10dB and 20dB are used.  Table I presents the used signals for 
both the Matlab and the C/C++ validation. 

The validation of the algorithm was performed using 
Matlab. In order to ensure a reliable and accurate real-time 
processing, OpenMP programming is used in the 
implementation to ensure parallel programming on a shared 
memory multiprocessor system. The parallelism is achieved by 
creating a set of threads; these treads execute independently 
and simultaneously the appointed tasks. Using OpenMP, the 
program could be optimized to evaluate processing times using 
three different architectures. 

The work is based on Raspberry 3B and XU4 architectures; 
the choice of these architectures was based on the low energy 
consumption and also a low weight for embedded application. 
Despite the desktop giving excellent processing time results, 
but it's not a good solution for biomedical monitoring because 
of its size and portability in the real case. Good results can also 
be given using TX1, TX2, and AGX Xavier boards; notably, 
with GPU part, we can decrease the processing time [39]. But 
the major problems are their cost and power consumption. 
Raspberry and XU4 present a low-cost embedded system with 
low power computation [40]. The rest of this study will allow 
to make the right decision by comparing the found processing 
times for the two architectures. Table II presents the used 
architectures specifications. 

TABLE I. ECG SIGNAL RECORDS 

Signal number 
The corresponding Signal from  

MIT-BIH 

1 Record n° 100 

2 Record n° 100 + 10 dB of WGN 

3 Record n° 100 + 20 dB of WGN 

4 Record n° 101 

5 Record n° 101 + 10 dB of WGN 

6 Record n° 101 + 20 dB of WGN 

7 Record n° 103 

8 Record n° 103 + 10 dB of WGN 

9 Record n° 103 + 20 dB of WGN 

10 Record n° 113 

11 Record n° 113 + 10 dB of WGN 

12 Record n° 113 + 20 dB of WGN 
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TABLE II. DESKTOP, RASPBERRY AND XU4 SPECIFICATIONS 

Type Desktop Raspberry XU4 

Processor  
Intel® Core™ 

i5-4200M 

Broadcom 

BCM2837B

0 

Exynos 5422 big. 

LITTLE 

Cores  Quad Quad Octa 

CPU  

 
I5 4200M 

ARM 

Cortex-A53 

(ARMv8) 

ARM  Cortex A15/A7 

GPU 

HD Graphics 

4600 /AMD Radeo

n R5 M230 

Broadcom 

Videocore-

IV 

Advanced Mali 

Support 

Language  

C/C++/OpenCL/ 

OpenGL 
C/C++ 

C/C++/OpenCL/Open

GL 

Frequency  2.50 GHz 1.4GHz 2GHz/1.4GHz 

Weight  2.6 kg 50 g 60 g 

Energy 90 w 15.5 w 5W 

Dimension

s 

377 x 250 x 34  

mm 

85 x 56 x 17  

mm 
82 × 58 × 22 mm 

B. Experimental Results 

To evaluate the denoising performance of the C/C++ code 
of the ADTF algorithm, Mean Square Errors (MSE), 
Percentage Root-mean-square Difference parameter (PRD), 
and Signal to Noise Ratio (SNR) are computed for 12 records 
of ECG of 10s from the MIT-BIH arrythmia database. Their 
expressions are presented respectively by (6), (7), and (8). 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝐼𝑛𝑝𝑢𝑡(𝑖) − 𝑂𝑢𝑡𝑝𝑢𝑡(𝑖))²𝑁

𝑖=1                  (6) 

𝑆𝑁𝑅𝑜𝑢𝑡 = 10 × 𝑙𝑜𝑔10 (
∑ (𝐼𝑛𝑝𝑢𝑡(𝑖))

2𝑁
𝑖=1

∑ (𝑂𝑢𝑡𝑝𝑢𝑡(𝑖)−𝐼𝑛𝑝𝑢𝑡(𝑖))
2𝑁

𝑖=1

)                (7) 

𝑃𝑅𝐷 = √
∑ (𝐼𝑛𝑝𝑢𝑡(𝑖)−𝑂𝑢𝑡𝑝𝑢𝑡(𝑖))²𝑁

𝑖=1

∑ (𝐼𝑛𝑝𝑢𝑡(𝑖))²𝑁
𝑖=1

  × 100              (8) 

Where input(i) represents each input sample and output (i) 
the filtered sample, N is the size of signal. 

The experimental results in Fig. 7, 8, and 9 show that the 
C/C++ program provides concrete denoising than the Matlab 
code in terms of good SNR with less MSE and PRD. 

 

Fig. 7. MSE Comparison of Denoised Signals using Matlab and C/C++. 

 

Fig. 8. SNRout Results Comparison of Denoised Signals using Matlab and 

C/C++. 

 

Fig. 9. PRD Comparison of Denoised Signals using Matlab and C/C++. 

As shown, the C/C++ gives better performance in noise 
reduction. As follows, a comparison study of the execution 
time on Desktop is presented in Table III. It presents the 
needed time to process each sample of the signal based on nine 
iterations of time average calculation. The obtained results 
show that using OpenMP on the desktop, the results showed a 
×4 speed-up compared to the time obtained with the naive 
C/C++ implementation. In Fig. 10, the execution time of 
Matlab is added to visualize the interest of parallel 
programming in this case. 

TABLE III. EXECUTION TIME IN DESKTOP 

C++ Open MP 

Iteration Time (ms) Iteration Time (ms) 

1 1.21 1 0.25 

2 2.01 2 0.4 

3 0.9 3 0.133 

4 1.47 4 0.36 

5 1.85 5 0.41 

6 1.81 6 0.408 

7 2.04 7 0.405 

8 1.81 8 0.365 

9 0.94 9 0.405 

Average 1.56 Average 0.348 

https://www.notebookcheck.net/Intel-HD-Graphics-4600.86106.0.html
https://www.notebookcheck.net/Intel-HD-Graphics-4600.86106.0.html
https://www.notebookcheck.net/AMD-Radeon-R5-M230.108655.0.html
https://www.notebookcheck.net/AMD-Radeon-R5-M230.108655.0.html
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Fig. 10. Processing Times on Desktop using different Tools. 

C. Performance Evaluation using Embedded Architectures 

Performance evaluation implementing embedded 
architectures is the main of this work. After proving the 
algorithm performance in noise reduction, a reliable real-time 
implementation is necessary. 

The Matlab implementation was used for the algorithm 
validation and results interpretation, but the very high 
execution times lead us to exclude any software optimization in 
order to speed up processing in this implementation. Then we 
opted for C/C++ programming. The implementation is done, as 
cited above using a Desktop, a Raspberry 3B and XU4 boards. 
The C/C++ implementations results are too much better than 
those given by Matlab implementation, but they stay a little far 
from the real-time as it appears in Fig. 11, with 1.56 ms for 
Desktop, 9.2ms for Raspberry and 6.8 ms for XU4. 

The block diagram of the parallelized algorithm is 
presented in Fig. 12. The first block is the ECG signal 
acquisition which is not the subject of this paper. The second 
aims to divide to the input signal by the thread number (A). 
Here a test is done; if the number of signal samples is not 
divisible on A the system searches for the optimal signal size 
by adding a few samples at the end of the signal. The added 
samples can be calculated using the values of the last window 
of the signal, an average of the window can be calculated to 
replace missing samples. The third block consists of memory 
allocation and parameters initialization as the α coefficient and 
the window size. 

Block 4 is the core of this work; it aims to execute the 
denoising procedure. This is where the parallelism is applied, 
ECG signal is divided by the number of threads, each thread 
runs the denoising program on a portion of the signal instead of 
the whole signal. The last blocks present the denoised signal's 
exploitation step either for additional processing, storage, 
display, or transmission. 

To optimize the given execution times, OpenMP is used. 
Fig. 13 depicts the pseudo code of the OpenMP-based parallel 
computation algorithm. 

 

Fig. 11. Min and Max Processing Times using different Architectures. 

The first step is to determine the optimal size that can give 
a divisible value over the number of threads. Thereafter, we set 
the input and output signals that will be written in the output 
file. This output file will be plotted subsequently using Matlab 
in order to display the errors and compute the different 
evaluation metrics. 

 

Fig. 12. The Algorithm Block Diagram. 
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ALGORITHM  

#define NUMTHREADS  

#define NAME_FILE "INPU_ECG" 

#define NOM_SORTIE1 "OUTPUT_Signal" 

#define Alpha 

Input:  ECG Signal.txt  

Find the optimal signal size 

X(i)  <=  Input(i) 

i=1; 

α, W Initialisation 

Threads = NUMTHREADS 

#pragma omp parallel for shared (Min, Max, 

 µ, Ht, Lt,) num_threads (threads) 

                 for i=1 to N-W 

     Compute Min, Max, µ, Ht and Lt  

     If X (i+W/2) > Ht Output (i+W/2) =Ht; 

     If X (i+W/2) < Lt Output (i+W/2) =Lt; 

     Else 

     Output(i+W/2) = Input(i+W/2) 

     i= i+1;  

                 End for 

Output(N-1) = X(N-1)  

Output(N) = X(N) 

End. 

Fig. 13. Pseudo Program of the Algorithm using OpenMP. 

Fig. 14 shows processing time using OpenMP 
implementation. A time of 7.5 ms is achieved for one sample 
processing using Raspberry architecture, 2.34 ms using XU4 
architecture, and 0.34 ms using the desktop. The time 
constraint posed by the acquisition system forced us to process 
each sample with a delay less than 1/360Hz, which implies 
trying to process each sample within 2.77ms. The results 
allowed to eliminate the choice of raspberry due to the 
processing times, which exceed 2.77ms. Despite their low 
energy consumption and weight, the time evaluation has shown 
that this architecture cannot process the algorithm in real-time. 
The desktop gave a very low processing time, 0.34ms, which 
shows the desktop's high performance, but the drawback here 
is the high-power consumption, which makes this type of 
system does not meet the reliability requirement. On the other 
hand, the XU4 architecture met the time constraint, making it 
the best choice for this application. In addition, its low power 
consumption and low weight confirm the choice. 

 

Fig. 14. OpenMP Executing Time. 

TABLE IV. DIFFERENT EXECUTING TIMES 

Executing time (ms) Desktop XU4 Raspberry  

C/C++ 1.56 6.8 9.2 

C/C++ - OpenMP 0.34 2.34 7.5 

 

Fig. 15. Mean Processing Times (MS) based on different Architectures. 

Table IV and Fig. 15 shows a comparison of all processing 
times using the different architectures and both C/C++ and 
OpenMP parallel implementation. 

The optimization of the algorithm on the XU4 architecture 
proves to be very efficient and makes it possible to speed up 
processing and achieve real-time processing times in addition 
to its power consumption advantage. 

IV. CONCLUSION 

In this paper, a complex algorithm-based ECG signals 
processing is studied in order to meet the requirements of 
monitoring applications in terms of real time and portability on 
a low power architecture. 

The evaluation of the algorithm using Matlab allowed 
validation of the algorithm and the evaluation of the different 
metrics (MSE, PRD, and SNR errors). 

The approach followed by the algorithm parallelization on 
an adequate architecture is effective to process signals at 
2.34ms/samples using a 360 Hz frequency acquisition. 

This study opens up research perspectives to design a 
system integrating sensors and a SoC whose architecture is 
similar to that of the XU4 and which integrates an FPGA in 
order to carry out on-the-fly signal processing without data 
storage. 
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