
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Monophonic Guitar Synthesizer via Mobile App
Edgar García Leyva1

Instituto Politécnico Nacional. SEPI-
ESCOM

Mexico City, Mexico

Elena Fabiola Ruiz Ledesma2
Instituto Politécnico Nacional.

ESCOM, UPIICSA
Mexico City, Mexico

Rosaura Palma Orozco3
Lorena Chavarría Báez4

Instituto Politécnico Nacional.
ESCOM, Mexico City, Mexico

Abstract—In the guild of guitarists, it is common to work with
guitar synthesizers because the emulation of a great variety of
sounds that are produced by different musical instruments,
starting from just playing the guitar, which means, a piece of
music is played with a guitar, but other musical instruments are
actually heard such as, a saxophone, a violin, a piano or
percussions, depending on the instrument that has been selected.
The problem that arises in this article is that synthesizers are
expensive and due to their size, the transportation of the
equipment is often impractical. As mentioned, the development
of a mobile application that has the function of a monophonic
synthesizer is proposed as a solution. In this way, the cost is
greatly reduced, and additionally, the user is able to install the
application on a mobile device with Android operating system
and connect it to an electric or electro-acoustic guitar through an
audio interface; obtaining as a result, a functional technological
instrument by offering guitarists an alternative with respect to
conventional synthesizers. The construction of this application
used the Fast Fourier Transform Radix-2 as a signal recognition
algorithm, which allowed obtaining the fundamental frequencies
generated by the guitar, which were transformed into MIDI
notation and later used in sound emulation.

Keywords—Monophonic synthesizer; guitar; sound emulation;
mobile application

I. INTRODUCTION
The advent of tablets and smart cell phones has opened a

range of possibilities in all areas of knowledge. In the field of
music, technological development has occupied a privileged
place by having mobile applications that help in tuning musical
instruments, in measuring time to practice, in recording and
editing music, among other aspects.

The rise of technology has allowed the creation of tools in
order to support musicians in a vast diversity of ways. The tool
that is interesting to highlight in this article is related to the
emulation of monophonic sounds of musical instruments or
other types of sounds, which is obtained through the use of
synthesizers. The Royal Academy of the Spanish Language
defines synthesizer as: "Electronic musical instrument capable
of producing sounds of any frequency and intensity and
combining them with harmonics, thus providing sounds of any
known instrument, or sound effects that do not correspond to
any conventional instrument" [1]. Synthesizers are very useful
devices because when connected to the guitar, are able to
provide a great variety of sounds, increasing the possibilities of
musical interpretation of the guitarist.

Two of the problems that arise are its portability and its
high cost; Due to the mentioned, based on computer science

and mathematics, it was decided to develop a monophonic
synthesizer, using a mobile application, which allows the
guitarist to use a synthesizer through a mobile device such as a
smart cell phone or a tablet, which can be transported easily,
without having to make an additional expense.

Music can be classified into two main categories:
monophonic and polyphonic. Monophonic music is made up of
a single melodic line, which means, only one musical note
sounds at a certain time, while polyphonic music is made up of
more than one melodic line, which means, two or more musical
notes sound at the same time [2]. The present study focuses on
monophonic music.

The guitar is a musical instrument that allows its player to
express musical notes in different ways. The guitar, like other
instruments such as the piano or the violin, generates analog
sounds, which need to be converted to digital sounds in order
to be read by the computer. From this digitization, it is possible
to apply signal recognition techniques for different purposes
and in this case, to detect the fundamental frequencies
generated by the guitar. A transformation was applied to these
frequencies using the notation mentioned in the Musical
Instrument Digital Interface (MIDI), to obtain a discrete
representation of the musical notes, which are defined in an
interval that goes from 0 to 127, where each number
corresponds to a musical note.

The overall objective of this study was to develop a
portable tool that allows the guitarist to emulate monophonic
sounds of other musical instruments or other types of sounds
using the guitar, all this through computational and
mathematical techniques. For this purpose, the following
specific objectives were proposed:

• Recognize frequencies generated by guitars making use
of hardware and software resources of mobile devices.

• Transform frequencies generated by guitars to MIDI
notation.

• Emulate monophonic sounds of musical instruments or
other sounds based on the obtained MIDI notes.

This article is divided into 4 sections. The second section
shows some synthesizers available on the market, as well as
some application programming interfaces that have been
developed in order to recognize signals and to support the
execution of MIDI sounds. The third section deals with the
theoretical references about the recognition of monophonic
sounds and the transformation of frequency to MIDI notation.
The fourth section shows the methodology used for the

409 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

development of the monophonic synthesizer following the
stages of the incremental Software Engineering model.
Subsequently, the results obtained from the tests carried out are
shown and finalized with the conclusions.

II. RELATED WORK
At present, there are independent synthesizers for guitar,

which means, mounted on electronic circuits, some of them
are: MEL9 [3], SY-300 [4], GR-55 [5], among others;
However, when it comes to mobile applications that perform
the function of a guitar synthesizer on the Android operating
system, there are no formal alternatives to it.

On the other hand, there are some application programming
interfaces (APIs) aimed at the Android operating system,
which can be useful for the construction of a synthesizer, for
example, those that serve to perform frequency recognition and
those that serve to execute MIDI sounds, some of these
interfaces are: TarsosDSP [6] and MIDI Driver [7]
respectively.

In the present mobile application, it was chosen the
frequency recognition through the Fast Fourier Transform
Radix-2 algorithm, according to [8], making use of the native
Java development kit, while for the execution of MIDI sounds,
the model that was done in [7] was retaken.

III. THEORETICAL ASPECTS
In this section, reference is made to the techniques used to

recognize monophonic sounds and, on the other hand, the
digital interface of musical instruments (MIDI) is presented,
which shows a notation that serves to discretize frequencies.

A. Monophonic Sound Recognition
Due to in this article the monophonic sounds generated by

the guitar are taken as a basis, some algorithms that can be
used for the recognition of monophonic sounds are specifically
mentioned.

There are mainly two approaches that are used to perform
monophonic sound recognition. One of them consists in
analyzing the signal samples in the time domain, and the other
in analyzing them in the frequency domain. A widely used
method in the time domain is autocorrelation, which compares
a signal with delayed versions of itself at successive intervals
to find the highest amplitudes within the signal and measure
the distances between them. Through these distances the period
of the wave can be inferred, and with it, the present frequency
of the monophonic sound can be detected. On the other hand,
there is the analysis of signals in the frequency domain, where
algorithmic implementations of the Discrete Fourier Transform
are used, with which a set of frequency intervals and their
amplitudes are obtained. A simple way to detect the frequency
of the monophonic sound present quickly is to select the
frequency with the greatest amplitude [9].

In this article, the signals in the frequency domain are
analyzed, so some algorithms that can be used to recognize the
monophonic sounds generated by the guitar in that domain are
specifically mentioned.

B. Fast Fourier Transform (FFT)
Fast Fourier Transform is an efficient mathematical

implementation of the Discrete Fourier Transform (DFT),
which is a particular case of the Fourier Transform for
sequences of finite length in which the spectrum is evaluated
only in a few specific frequencies, and therefore, a discrete
spectrum is obtained [10, 11].

Over time, several FFT algorithms have been developed
such as: prime factor, split radix, vector radix, split vector
radix, Winograd Fourier transform, etc. [12].

The FFT algorithm used to develop the mobile application
of the monophonic synthesizer is the Radix-2. The Radix-2
algorithm is considered the most used for the FFT calculation,
it works when the number of data samples is a power of 2, in
case the number of samples does not satisfy this criterion, the
missing spaces are filled with value 0, this does not alter the
calculated frequency spectrum. The input and output of an FFT
are expressed in complex numbers, in this case, for its
implementation, two arrangements are accepted to store the
real and imaginary components in them, when using the
recording tools of mobile devices, all the bytes of audio
information are obtained, which are used within the real
components, while the imaginary components are always filled
with zeros, the output of the algorithm is contained in two other
arrays, one corresponding to each type of component, where
the frequency spectra are stored, since only the actual samples
are used for input, only the first half of the components need to
be analyzed. Each component of the frequency spectrum is
related to the previous component, since it is the sampling
frequency divided by the number of samples of the FFT [8].

In order to recognize monophonic sounds, the power or
amplitude spectrum (Xp) is analyzed, selecting the frequency f
with the greatest amplitude, which is calculated through the
sum of the squares of its real (Xreal) and imaginary (Ximag)
components, as shown in (1),

Xp = Xreal(f)2 + Ximag(f)2 (1)

The FFT algorithm used to develop the mobile application
is Radix-2, which means that it must work on a group of
samples whose number is a power of two [8].

C. MIDI
Musical Instrument Digital Interface (MIDI) is a music

notation system that allows computers to communicate with
musical synthesizers. MIDI files contain instructions to create
the pitch, volume and duration of the notes, this based on a
sequence of events called: note_on and note_off [13].

Musical notes are not encoded by their names, instead
numbers from 0 to 127 are assigned as shown in Table I. For
example, the number 57 corresponds to a musical note A with
a frequency of 220 Hertz (Hz).

Equation (2) shows the transformation of frequency in Hz
to MIDI note,

MIDINote = round(69 + 12 × log2 (f / 440)) (2)

410 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

TABLE I. MIDI NOTES ASSOCIATED WITH ITS NAME AND FREQUENCY IN HZ [15]

Name MIDI note Frequency (Hz) Name MIDI note Frequency (Hz)

D 38 73.42 F♯/G♭ 66 369.99

D♯/E♭ 39 77.78 G 67 392.00

E 40 82.41 G♯/A♭ 68 415.30

F 41 87.31 A 69 440.00

F♯/G♭ 42 92.50 A♯/B♭ 70 466.16

G 43 98.00 B 71 493.88

G♯/A♭ 44 103.83 C 72 523.25

A 45 110.00 C♯/D♭ 73 554.37

A♯/B♭ 46 116.54 D 74 587.33

B 47 123.47 D♯/E♭ 75 622.25

C 48 130.81 E 76 659.26

C♯/D♭ 49 138.59 F 77 698.46

D 50 146.83 F♯/G♭ 78 739.99

D♯/E♭ 51 155.56 G 79 783.99

E 52 164.81 G♯/A♭ 80 830.61

F 53 174.61 A 81 880.00

F♯/G♭ 54 185.00 A♯/B♭ 82 932.33

G 55 196.00 B 83 987.77

G♯/A♭ 56 207.65 C 84 1046.50

A 57 220.00 C♯/D♭ 85 1108.73

A♯/B♭ 58 233.08 D 86 1174.66

B 59 246.94 D♯/E♭ 87 1244.51

C 60 261.63 E 88 1318.51

C♯/D♭ 61 277.18 F 89 1396.91

D 62 293.66 F♯/G♭ 90 1479.98

D♯/E♭ 63 311.13 G 91 1567.98

E 64 329.63 G♯/A♭ 92 1661.22

F 65 349.23 A 93 1760.00

Where round is a function of rounding to one digit, factor
12 is the resulting linear pitch space per octave, factor 69 is
note A (440 Hz), which is taken as reference, log2 is used
according to the logarithmic pitch perception in humans and
the variable f is the input frequency that will be converted to a
MIDI note [14].

General MIDI is a standardized specification for electronic
musical instruments that respond to MIDI messages. General
MIDI was developed by the American MIDI Manufacturers

Association (MMA) and the Japan MIDI Standards Committee
(JMSC) and first published in 1991 [16].

Within the general MIDI specification 128 sounds of
musical instruments or other types of sounds are included, and
these are divided in sections such as: Piano, Chromatic
Percussion, Organ, Guitar, Bass, Strings, Ensemble, Brass,
Reed, Pipe, Synth Lead, Synth Pad, Synth Effects, Ethnic,
Percussive and Sound Effects which are used in this mobile
application and are shown in Table II.

411 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

TABLE II. SOUNDS OF THE GENERAL MIDI SPECIFICATION [16]

00 - Acoustic Grand Piano 32 - Acoustic Bass 64 - Soprano Sax 96 - FX 1 (rain)

01 - Bright Acoustic Piano 33 - Electric Bass (finger) 65 - Alto Sax 97 - FX 2 (soundtrack)

02 - Electric Grand Piano 34 - Electric Bass (pick) 66 - Tenor Sax 98 - FX 3 (crystal)

03 - Honky-tonk Piano 35 - Fretless Bass 67 - Baritone Sax 99 - FX 4 (atmosphere)

04 - Electric Piano 1 36 - Slap Bass 1 68 – Oboe 100 - FX 5 (brightness)

05 - Electric Piano 2 37 - Slap Bass 2 69 - English Horn 101 - FX 6 (goblins)

06 - Harpsichord 38 - Synth Bass 1 70 – Bassoon 102 - FX 7 (echoes)

07 - Clavi 39 - Synth Bass 2 71 – Clarinet 103 - FX 8 (sci-fi)

08 - Celesta 40 - Violin 72 – Piccolo 104 - Sitar

09 - Glockenspiel 41 - Viola 73 – Flute 105 - Banjo

10 - Music Box 42 - Cello 74 – Recorder 106 - Shamisen

11 - Vibraphone 43 - Contrabass 75 - Pan Flute 107 - Koto

12 - Marimba 44 - Tremolo Strings 76 - Blown Bottle 108 - Kalimba

13 - Xylophone 45 - Pizzicato Strings 77 – Shakuhachi 109 - Bag pipe

14 - Tubular Bells 46 - Orchestral Harp 78 – Whistle 110 - Fiddle

15 - Dulcimer 47 - Timpani 79 – Ocarina 111 - Shanai

16 - Drawbar Organ 48 - String Ensemble 1 80 - Lead 1 (square) 112 - Tinkle Bell

17 - Percussive Organ 49 - String Ensemble 2 81 - Lead 2 (sawtooth) 113 - Agogô

18 - Rock Organ 50 - Synth Strings 1 82 - Lead 3 (calliope) 114 - Steel Drums

19 - Church Organ 51 - Synth Strings 2 83 - Lead 4 (chiff) 115 - Woodblock

20 - Reed Organ 52 - Choir Aahs 84 - Lead 5 (charang) 116 - Taiko Drum

21 - Accordion 53 - Voice Oohs 85 - Lead 6 (voice) 117 - Melodic Tom

22 - Harmonica 54 - Synth Voice 86 - Lead 7 (fifths) 118 - Synth Drum

23 - Tango Accordion 55 - Orchestra Hit 87 - Lead 8 (bass + lead) 119 - Reverse Cymbal

24 - Acoustic Guitar (nylon) 56 - Trumpet 88 - Pad 1 (new age) 120 - Guitar Fret Noise

25 - Acoustic Guitar (steel) 57 - Trombone 89 - Pad 2 (warm) 121 - Breath Noise

26 - Electric Guitar (jazz) 58 – Tuba 90 - Pad 3 (polysynth) 122 - Seashore

27 - Electric Guitar (clean) 59 - Muted Trumpet 91 - Pad 4 (choir) 123 - Bird Tweet

28 - Electric Guitar (muted) 60 - French Horn 92 - Pad 5 (bowed) 124 - Telephone Ring

29 - Overdriven Guitar 61 - Brass Section 93 - Pad 6 (metallic) 125 - Helicopter

30 - Distortion Guitar 62 - Synth Brass 1 94 - Pad 7 (halo) 126 - Applause

31 - Guitar harmonics 63 - Synth Brass 2 95 - Pad 8 (sweep) 127 - Gunshot

IV. METHODOLOGY
The mobile application was developed using the phases of

the incremental Software Engineering model, which applies
linear sequences in a staggered manner as the calendar of
activities progresses. Each linear sequence produces
deliverable software increments [17]. The diagram in Fig. 1
describes the stages used for this development.

According to what Mall [18] points out, first of all a simple
system is built and delivered which implements only a few
basic characteristics. During a few successive iterations,
improved versions are deployed and delivered, until the desired
system is finally realized.

The software requirements are first divided into several
modules or features that can be built and delivered
incrementally. This is graphically represented in Fig. 2.

Returning to what Pressman and Mall [17, 18] point out, 3
modules were created as part of the development of the mobile
application.

In the first module, the recognition of the frequencies
generated by the guitar was carried out, for which the Fast
Fourier Transform Radix-2 algorithm was applied, making use
of the hardware and software resources of mobile devices.
When playing a musical note with the guitar, the fundamental
frequency corresponding to said musical note was obtained in
real time, showing it on the mobile application interface.

412 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Fig. 1. Diagram of the Incremental Model.

Fig. 2. Incremental Software Development.

In the second module, the transformation of frequencies to
MIDI notes was carried out, for which equation 1 shown in the
MIDI section was applied, obtaining as a result, discrete values
of frequencies within a range from 0 to 127, showing the
aforementioned transformation together with at the
fundamental frequency in the mobile application interface.

The third module allowed to emulate the monophonic
sounds of musical instruments or other types of sounds, based
on the MIDI notes obtained. The note_on and note_off events
of the digital interface of musical instruments were used to
execute and stop the MIDI notes. Consequently, the moment
the user plays a musical note with the guitar, the note_on event
is activated, with which the sound chosen by the user within
the 128 included in the mobile application must be heard; for

example, a saxophone, a trumpet, a violin, among others;
whereas when there is an absence of sound, the note_off event
was activated to keep the mobile application silent.

For the construction of all these modules, the Java
programming language was used together with the Android
Development Kit (SDK).

A. Logical Block Diagram of the Structure of the Mobile
Application
Fig. 3 shows the block diagram of the mobile application.

As can be seen, an audio input is required, which goes through
a sampling process to obtain the discretized signal, making use
of the audio recording tools offered by the Android operating
system. Subsequently, the filter allows to eliminate the peaks
of the signal, which means, it eliminates the unwanted noise,
and then to apply the Fast Fourier Transform and thus obtain
the fundamental frequencies. From these fundamental
frequencies, the transformation to MIDI notation is carried out.
From this moment, the sound chosen by the user can be
emulated through the execution of the note_on and note_off
events.

B. Operation of the Mobile Application
Fig. 4 represents the operation of the mobile application. In

order to use it, it is necessary to connect it to an electric or
electroacoustic guitar through an audio interface, the last one is
connected to an audio output device such as an amplifier.

Fig. 3. Block Diagram of the Mobile Application.

413 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Fig. 4. Mobile Application Operation.

V. RESULTS
The mobile application has been developed using the Java

programming language in order to run on mobile devices with
the Android operating system. The tests were carried out on a
device from the Motorola brand, a Moto G7 Plus model with
64 GB of storage and 4 GB of RAM, with the Android 10
(Android Q) operating system installed.

The work was carried out with a sample of three guitarists
to carry out the tests of the operation of the mobile application.
Two of the guitarists used an electric guitar and the remaining
guitarist used an electro-acoustic guitar. The musical
instruments were connected to the mobile application through
an iRig 2 audio interface. The guitarists selected in the list of
the main interface of the mobile application, several of the 128
sounds that were available to be emulated and they played the
guitar obtaining the sound expected. Additionally, they were
able to observe the frequency of the note played, as well as its
transformation to a MIDI note in real time.

The mobile application was subjectively evaluated with the
feedback obtained from the guitarists, who pointed out the
great usefulness of this mobile application because it broadens
their possibilities of interpretation with their musical
instrument, without requiring more than their mobile device
and an audio interface. On the other hand, they mentioned that
they noticed a slight latency between the moment they played
the guitar and the emulation of the chosen sound, which could
be reduced using a low-level programming language. Two
examples of the mobile application in operation are shown in
Fig. 5 and Fig. 6.

Fig. 5. Example of the Execution of a Musical Note a 440 Hz with the
Guitar using the Alto Saxophone Sound through the Mobile Application.

Fig. 6. Example of Playing a Musical Note a 440 Hz with the Guitar using

the Acoustic Grand Piano Sound through the Mobile Application.

414 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

VI. DISCUSSION
The mobile application was developed with the Java

programming language. Due to Java uses a virtual machine
(Java Virtual Machine, JVM), which processes the instructions
before being executed [19], a considerable latency was
obtained in the results. To those who want to return to this
article for their research, they are advised to use a lower-level
programming language such as C or C++, with which the
latency would be reduced considerably and obtain better
results, because the instructions are executed directly. Guitar
effects pedals commonly use recommended programming
languages [20].

VII. CONCLUSION
The development of mobile applications has acquired great

relevance due to the variety of areas where they can be used.
As mentioned, there are applications that allow communication
between people, planning travel routes, requesting food
delivery and entertainment, to name a few examples.
Additionally, the applications have allowed people to count
with tools that provide the opportunity to explore, grow and
develop in other areas such as music, which contributes to their
comprehensive training. The mobile application presented in
this work benefits this aspect because the user has a synthesizer
in the palm of his hand that is capable of emulating
monophonic sounds of different musical instruments or other
types of sounds with a guitar. This synthesizer, unlike the ones
available on the market, is affordable, easily transportable and
usable anytime, anywhere. Applications as the one described
above allow the practice of music to be accessible to huge
number of people.

It has been considered as future work, to make this mobile
application a polyphonic synthesizer, where to obtain the
polyphony generated by the guitar, the frequency spectrum
obtained by the FFT Radix-2 algorithm will be taken up, and
search and decision mechanisms will be used. It is also planned
to adapt the mobile application to a lower-level programming
language like C++ for lower latency.

ACKNOWLEDGMENT
This work was supported by Instituto Politécnico Nacional,

COFAA, EDD and SIP. (Project SIP20200832).

REFERENCES
[1] REAL ACADEMIA ESPAÑOLA, “Diccionario de la lengua española”,

23.ª ed. [Online]. Available: https://dle.rae.es. [Accessed 6 April 2021].
[2] R. Bennett, “Léxico de música”, Madrid: Ediciones Akal S.A., 2003.
[3] Electro-Harmonix, “MEL9”, 2016. [Online]. Available:

https://www.ehx.com/products/mel9. [Accessed 25 March 2021].
[4] BOSS, “SY-1000”, 2019. [Online]. Available:

https://www.boss.info/mx/products/sy-1000/. [Accessed 25 March
2021].

[5] ROLAND, “GR-55”, 2011. [Online]. Available:
https://www.roland.com/mx/products/gr-55/. [Accessed 25 March
2021].

[6] University College Ghent, “TarsosDSP”, 2019. [Online]. Available:
https://github.com/JorenSix/TarsosDSP. [Accessed 8 March 2021].

[7] B. Farmer, “Midi Driver”, 2021. [Online]. Available:
https://github.com/billthefarmer/mididriver/. [Accessed 8 March 2021].

[8] R. Neuenfeld, M. Fonseca y E. Costa, “Design of optimized radix-2 and
radix-4 butterflies from FFT with decimation in time”, 2016 IEEE 7th
Latin American Symposium on Circuits & Systems (LASCAS), pp. 171-
174, 2016.

[9] J. Strawn, C. Abbott, J. Gordon and P. Greenspun, “The Computer
Music Tutorial”, London: The MIT Press, 1996.

[10] R. W. Heath, “Introduction to Wireless Digital Communication”, United
States of America: PRENTICE HALL, 2017.

[11] V. Montero, “Software para identificación de música”, Sevilla:
Universidad de Sevilla, 2020.

[12] D. Takahashi, “Fast Fourier Transform Algorithms for Parallel
Computers”, Japan: Springer, 2019.

[13] J. Jamrich, “New Perspectives on Computer Concepts”, United States of
America: Cengage Learning, 2018.

[14] P. Blanchard and D. Volchenkov, “Random Walks and Diffusions on
Graphs and Databases An Introduction”, Germany: Springer, 2011.

[15] R. Izhaki, “Mixing audio concepts, practices and tools”, Great Britain:
Routledge, 2017.

[16] M. Association, “General MIDI”, [Online]. Available:
https://www.midi.org/specifications-old/item/general-midi. [Accessed 6
April 2021].

[17] R. S. Pressman and B. R. Maxim, “Software Engineering: A
Practitioner's Approach”, New York: Mc Graw Hill Education, 2019.

[18] R. Mall, “Fundamentals of Software Engineering”, Sonepat: PHI
Learning Private Limited, 2018.

[19] Oracle, "Java Virtual Machine Technology", [Online]. Available:
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/index.html.
[Accessed 6 April 2021].

[20] B. Holmes, “Guitar Effects-Pedal Emulation and Identification”, Belfast:
Queen’s University Belfast, 2019.

415 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Theoretical Aspects
	A. Monophonic Sound Recognition
	B. Fast Fourier Transform (FFT)
	C. MIDI

	IV. Methodology
	A. Logical Block Diagram of the Structure of the Mobile Application
	B. Operation of the Mobile Application

	V. Results
	VI. Discussion
	VII. Conclusion
	Acknowledgment
	References

