
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

A Succinct Novel Searching Algorithm
Celine1, Shinoj Robert2, Maria Dominic3

Research Scholar
Department of Computer Science

Sacred Heart College, Tirupattur, India

Abstract—A searching algorithm was found to be effective in
producing acutely needed results in the operation of data
structures. Searching is being performed as a common operation
unlike other operations in various formats of algorithms. The
binary and linear search book a room in most of the searching
techniques. Going with each technique has its inbuilt limitations
and explorations. The versatile approach of different techniques
which is in practice helps in bringing out the hybrid search
techniques around it. For any tree representation, the sorted
order is expected to achieve the best performance. This paper
exhibits the new technique named the biform tree approach for
producing the sorted order of elements and to perform efficient
searching.

Keywords—Time complexities; space complexities; searching
algorithm; biform tree; pre-order traversal

I. INTRODUCTION
Data structure performs as fundamental in the area of

computing. The efficient search and sort are possible only if
the data is organized into the headed process as structured
delegacies.

The data organization plot is exemplified as a well-known
data structure representation from Fig. 1 and clearly states the
individual representation on data-based classification. It also
projects the clear representation takes away to the immediate
access and handling of data. Understanding data structure and
algorithm is very difficult unless searching and sorting are not
made and also brought into effect. Each desirable algorithm is
chosen based on the data structure type [1]. All searching
algorithms lead to efficient retrieval of a specific element from
the listed aggregation of elements [2]. Until the desired result
is found the search process continuous in all versatile
techniques.

Fig. 1. Data Organization Representation.

II. SEARCHING TECHNIQUES

A. Eccentrics of Searching
Searching is a process of accruing and discovering factors

from the given list. The searching and sorting algorithms assist
in arranging the elements in some order. In deliverance to the
efficiency of algorithms including merge and sort technique,
sorting is needed [3]. In general, searching is applied to
alphabets, strings, and characters other than numbers.

The search algorithms projected in Fig. 2 are on the mind
map view featuring significant divisions and classifications of
search algorithms that are widely applied on Artificial
Intelligence techniques-based algorithms. From the root of the
search algorithm, the classification is divided into major
divisions as clueless (uninformed) and communicated
(informed). The first division clueless of searching explicit the
exploration in each step. The goal is to split into each state of
activity and explored if not. Less domain knowledge is
expected in this type of search and it increases in time
complexity. The operations are executed in a brute force
method and the result of the current step advances to the next
level of implementation. The brute force carries the selective
information of traversing from a tree to a festinated step. The
communicated search comes with information patterns in each
step to find the solution which results quickly in the process.
This pattern includes the domain knowledge that results in the
heuristic way of approach within fair timing. The complex
rich problems are focused and lead to a better solution in this
way of approach [4]. The classifications above represent the
different searching techniques by all possible means of
representing the utmost classification needed.

Fig. 2. Searching Types Classifications.

646 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

B. Handed-Down (Traditional) Searching Techniques
The search algorithm is one of the class algorithms among

the existing classifications on constant, logarithmic, linear,
quadratic, and exponential algorithms. The searching is to fill
one more piece of the above classifications that are valuable.
A searching algorithm is a kind of obvious statement where
the word is predominantly mentioned mechanism in the web
portal. A search is a way to find a group of items from an
implicit or an explicit way of collection. Any searching
technique is made easy along with the properties provided.
The properties search to reach completeness including the
time and space complexities. Every sorting technique comes
with a prerequisite in which the effective searching was done
looking over the data provided. The comparison is on existing
traditional searching techniques assures the complexities they
built-in. The searching is made reasonable and efficient
through the possibilities as figured and mentioned in search
type classifications.

Fig. 3. Searching Proficiencies.

Fig. 3 projects the searching operations on two main
classes as external searching and internal searching. The
external searching is colligated with auxiliary memory
occupies in the files hived away on disk storage. Internal
searching is concerned with minimum data that resides on the
data processor's main memory [5].

Fig. 4. Searching Classifications.

The searching technique has the base classification of
Traditional sorting and searching as projected in Fig. 4. The
comparative analysis of the different searching algorithms is
possible from the base classification field.

III. COMPARATIVE ANALYSIS

A. Comparison on Searching Performance
The performance and efficiency of each algorithm differ

based on the data provided for each separate or repeated task.
The methodology applied to assess the performance is time &
space complexity which have a better modification of words
over time and memory space in CPU [6]. Any search
algorithms are calculated based on certain attributes of their
complexities. Efficient searching fulfills the completeness of
the searching algorithm. Table I projects the performance of
the binary searching on sorted techniques that is brought
through a comparative study in three strategies Performance,
effectiveness & output.

TABLE I. A COMPARATIVE STUDY ON DIFFERENT SEARCHING
ALGORITHMS OVER SEARCHING

Algorithm Technique
Performance
Best-
face

Worst-
face Fair-face

Binary search Divide &conquer O(1) O(log2 n) O(log n)

Sequential
Search Linear search O(1) O(n) O(n)

Hash Search Hashing O(1) O(n) O(1)
Tree search Divide & conquer O(1) O(n) O(n)

Interpolation
search Binary search O(1) O(n) O(n)

Jump Search Linear search O(1) O(n) O(1)

Hybrid Search Interpolation &
Binary O(1) O(√n) O(n)

Exponential
search Sorting O(1) O(log n) O(log n)

Fibonacci search Comparison-based O(1) O(log n) O(log n)

DFS Graph data
structure O(1) O(|V|

+|E|) O(n+m)

BFS Graph data
structure O(m) O(b^m) O(|V|

+|E|)

Heuristic search Greedy search G(n) O(bm) O(bm)
Bi-directional Graph search O(bd) O(bd/2) O(bd/2)

Sequential
Search Linear search O(1) O(n) O(n)

Fig. 5. Set of N Random Elements.

The purpose of the comparison table is to equate the
different searching techniques based on the individual
effective performance. The running complexities include best,
worst, and average (fair) cases as a comparative study.
Beginning with the binary search each algorithm is classified
with the technique built-in. The sequential algorithm derived
from linear search finds for a particular element starting
apiece, considered to be efficient with classified order.
Hashing searching techniques have got their advantage over
larger data volume of data sets. The results are implemented
without any collision possible actions through open and close
addressing methods such as family collisions [7]. Tree search
addresses the issue of involving combinations with the basic
idea of divide and conquer in better measure and conquer
technique and the process continues till it pruned [8]. The
interpolation search falls another page from the binary search
techniques for the particular data set provided the best effort
with the sorted factors. Jump search has a limitation over
certain block representations with the intervals and has control
as block search. Hybrid search is constructed over the sorted
and unsorted distribution of arrays. It blends from the staple of
binary and interpolation search for efficient search acquiring
the advantage point over both algorithms [9]. The exponential
search is selfsame to binary search in which the proportions
are equal at the depth of the node, this projects the minor level
enhanced by an increasing factor of 2 [10]. This exponents the
children at each level in order.

{N = 23, 10, 75, 05, 15, 82, 19, 07, 31,100}

647 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

From the classification on different searching algorithms,
BST is one of the best-practiced techniques of linear data
representation types. BST holds a special name in terms of
representing in sorted order which pushes the process much
effective & easier. It results in optimal performance for the
end-user. The construction of a binary tree protrudes from the
root node [11]. The tree has the best picture once it is
portrayed in the hierarchy of parent-child with a single
character as a parent node (root node).

IV. PROPOSED METHODOLOGY
The success story of each searching algorithm will result

in finding the desired element. This paper proposes the
construction of effective searching. This methodology was
applied to reduce the time complexities of searching
principles. This paper effort in the construction of an
algorithm that is capable of causing searching efficiently. To
achieve such efficiency, the given N random numbers will be
converted into binary form and a binary tree for the binary
form will be constructed. Performing the technique of pre-
order traversal on a binary tree provides a sorted set of output.

A. Phase I: Binary Conversion
The given N numbers will find a sorted position so that

any given number is made available in the tree.

The set of N numbers listed is shown as the example for
constructing a binary tree. The step begins by involving
binary conversion for the given 10 digits into binary form.
For the given values projected in Fig. 5, and converted into
binary representation in an unsorted order.

B. Phase II: Grouping
The binary conversion is practiced for the set of given N

numbers. The presentment of numbers into binary format is
projected in Table II. These binary format numbers are
grouped based on the number of bits as depicted below
representation Fig. 6.

C. Phase III: Biform Tree Approach
Construction of biform tree for all groups G1, G2, G3, and

G4 are projected in the respective Fig. 7(a) to 7(d). The tree
construction is initiated from the root node. If the binary
number is 1, then it is skewed to the right-hand side of the root
node otherwise to the left-hand side of the root node. This
operation is continued for all the n bits.

TABLE II. BINARY REPRESENTATION ON N RANDOM ELEMENTS

N

23 10 75 05 15 82 19 07 31 100

101
11

10
10

1001
011

10
1

11
11

1010
010

100
11

11
1

111
11

1100
100

Fig. 6. Elements in Group-Wise.

G1 {101,111} G2 {1010, 1111}

G3 {10011, 10111, 11111}

G4 {1001011, 1010010, 1100100}

Fig. 7. Biform Tree Representation for G1, G2, G3, and G4.

The effective searching for storing any sorted element is
made easy in this way of tree representation. This tree
construction helps in making the search faster and effective in
paving an easy representation. The grouping of digits will help
in looking for the needed elements by avoiding the time in
search of the rest.

R

1

1 0

1
0

1

0

0

1

0

0

0

1

0

0

0

1

0

R

1

1 0

1 0

1 1

1

1

1

1

R

1

1
0

1
1

R

1

1
0

1 1

0 1

G1 = {101, 111}
G2 = {1010. 1111}

G3 = {10111, 10011, 11111}
G4 = {1001011, 1010010, 1100100}

648 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

D. Phase IV: Tree Traversal
As a tree is a self-referential data structure, traversal can

be defined by recursion. The traversal algorithm can be
broadly classified into depth-first and breadth-first search as
shown in Fig. 8. The depth-first algorithm is branched towards
pre-order, in-order, and post-order traversal.

Fig. 8. Traversal Algorithm Classifications.

Classifying the traversal techniques from the depth-first
search algorithm, this paper utilizes pre-order traversal to
receive the numbers in sorted order.

E. Phase V: Searching Outgrowth
To arrange the elements in sorted order and search, pre-

order traversal is performed on the tree in a depth-first manner
as projected in Fig. 7. To search the particular element 1010,
the list made available in the searching process is to be carried
in G2 as follows.

 (a) (b)

(c) (d)

Fig. 9. Searching Process of Each Node.

(a) (b)

(c)

Fig. 10. Searching Process of Each Node (a, b, and c) for Element Not Found.

The traversal begins from the root node R and moves
towards the left child of its own. Since the unavailability in the
left child for R, the tree travels through the right child as
projected in Fig. 9(a). The travel continues through the left
child of the current node as it is shown in Fig. 9(b) and the
process is repeated in the following Fig. of 9(c) and 9(d). The
traveling process is completed once it reaches the leaf node.
Now arrange the visited node from the root node as 1010.
Hence the element is found in G2.

The traversal begins from the root node R and moves
towards the left child and proceeds for the right child as
imaged in Fig. 10(a) by visiting the right child node labeled 1
and to the left child labeled 0. The travel continues for the
right child labeled 1. Instead of the availability for the right
child with the label 1, the left child labeled as 0 presence is
found in the tree. The conclusion is derived from the
unavailability of element 10111 in the G2. In the search made
the availability of left child with label 0 is found but not the
other child named right with the label of 1. Grouping in order
digit representation which the binary conversion is made
emphasizes on a searching part, reckon the given element to
be searched and let's spot the random element as 82. The
element state is to be found and the number of comparisons
made here is spotted as second since it has the immediate
search of prefix value. In case of the element 84, the search is
ineffective resulting in not found status since the given
random element is not found in any of the ordered group in
particular to G4, instead if it is then the searching group falls
under the G4 classification. The searching is made according
to the value given as input. Here the given value is 84, in

R

1

1
0

1

1

1

0

R

1

1 0

1 1

1
0

R

1

1

0

1

1

1

0

R

1

1

0

1

1

1

0

R

1

1

0

1

1

1

0

R

1

1 0

1 1

1 0

R

1

1
0

1

1

1

0

649 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

mechanical the search begins at G4 since the value ranged to
84 lies within that region. The immediate result of found or
not found status on any random search is made possible by
group classifications.

V. PROGRAMME ENCRYPTION OF THE ALGORITHM
The proposed algorithm is assorted into separate parts

classifying sort and search functions. The algorithm produced
is made effective in the C++ language. The algorithm for
sorting and searching is represented easier as the given
element pitch in.

VI. EXPERIMENTAL RESULT
Searching for a particular element is projected clearly

under phase II, classifying bit and group-wise respectively.
The bitwise operation of search is the best fit in the case of
integer data type [12]. Since the main advantage over the
proposed algorithm is found to be effective searching and the
arrangement of given numbers is on bitwise. Searching is
made easier based on group classification.

TABLE III. ALGORITHM REPRESENTATION FOR SORTING

Sorting Representation

Step 1 Consider N random numbers

Step 2 Convert all N numbers into binary form

Step 3
Group the converted binary numbers based on the number of
bits. Let it be m.
 G1(m)=3, G2(m)=4, G3(m)=5, G4(m)=7

Step 4

Step 4: Construct a binary tree for each Group G
 for (i = 1 ; i < = m ; i ++) // where m ≥ 3
 {
 insert (Node node, key values) // Insert a new node in
the tree
 {
 node  input node object
 value  Actual value of the node // values are either
0 or 1
 if (node = = null) then
 return Node (value);
 else if (value [i] = = 0) then
 node.left  insert (node.left , value)
 Else
 node.right  insert (node.right, value)
 return node;
 }
 }

Step 5
 Perform the pre-order traversal in the binary tree to receive
the numbers in sorted order

Step 6 Repeat step 4 and step 5 for all Groups

Step 7 Stop the Process

TABLE IV. ALGORITHM FOR SEARCHING A PARTICULAR ELEMENT IN THE
LIST

searching representation
Step 1 Start a process

Step 2
Get the input from the binary trees Gn, where all the numbers
in sorted order and n are the number of Groups

Step 3

Enter the element to be searched.
 Let it be L.
 Check the element L belongs to which Group.
 Ɐ i Gi where 1<= i <=n
 if (L 𝛜𝛜 Gn)
 {
 Start from the root node R
 for (i = 1 ; i <=Gi(m) ; i ++)
 {
 if (L[i] == 0)
 Perform the searching in left sub-tree
 search (root  left)
 Else
 Perform the searching in right sub-
tree
 search (root  right)
 }
 Else
 print element L is not available in N
 }

Step 4 Stop the process

The algorithm projected in Tables III and IV on sort and
search functionalities is applied to produce the experimented
result on comparison over linear, binary, and the proposed
search. In the next phases of comparisons, the results are
proven over a tried-out study between linear, binary, and the
proposed search. The prediction time, an element found and
the comparison made are taken as measuring facts for the
comparisons. Below Table V shows the comparison involves
the searching technique.

TABLE V. COMPARISON BETWEEN LINEAR, BINARY, AND PROPOSED
SEARCH

Elements
(in random)

Algorithms

Binary Linear Proposed

Prediction Time Prediction Time Prediction Time

1 0.00100 0.00200 0.00000

6 0.00100 0.00200 0.00000

8 0.00100 0.00100 0.000000

12 0.00100 0.00100 0.000000

14 0.00200 0.00100 0.000000

15 0.00100 0.00200 0.000000

18 0.00100 0.00100 0.000000

24 0.00100 0.00000 0.000000

25 0.00100 0.00100 0.000000

31 0.00100 0.00200 0.000000

650 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Fig. 11. The Experimented Result on the Element Found and Not Found in

the Proposed Searching Technique.

Table V focus on emphasizing searching by making a
comparison on linear, binary, and the proposed search
numbers in an individual search mode. The experimented
result is proven with the given number of 10 random numbers
Consider the element 18 to be found in binary search, the
prediction time taken by the binary search includes 0.00100
seconds where linear carries the same.

The biform approach tree technique is the searching time
projected in Fig. 11 consists of 0.000 seconds and considers to
be the quickest in delivering the search result compared with
the two existing searches. In the case of an element not found
represented in Fig. 10, the total time taken for traversal in
search of the given element 5 is found to 0.000000 seconds.
This includes the tree representation as stated in the above
discussion on searching occurrences in the proposed
methodology topic.

VII. GRAPHICAL REPRESENTATION
The graphical representation for the effective searching

over the above discussed different programming on searching
techniques were applied on a set of linear, binary, and the
proposed search.

Fig. 12. Graphical Representation of Binary, Linear, and Biform Search.

A. Graphical Representation of Searching an Element among
for 10 Elements
The graph representation is presented over linear, binary

and the proposed search is exemplified as graphical
representation in Fig. 12. The X-axis represents the random
elements given in numbers and the Y-axis indicates the arrival
of searches in seconds. The individual search includes linear,
binary, and proposed are represented in separate line charts.
The dots connected with blue represents the binary and others
simultaneously. The graph withstands the elements up to 10
combinations in a random approach in the above graphical
representation. The data projected as X-axis is made an
approximate joint on Y-axis in which the total time is taken
for each data and mapped into a line chart representation.
Similarly, the remaining searches for the given set of random
elements take place in the graphical representation.

VIII. GRAPHICAL REPRESENTATION OF SEARCHING AN
ELEMENT AMONG FOR 50 ELEMENTS

The graph projected in Fig. 13 explains the prediction time
taken for each set of linear, binary, and proposed search
techniques. This line chart is represented on 50 random sets of
elements. The comparison time increases when the bit sizes
get increased in each representation.

The maximum threshold for the binary, linear search is
considered as 0.004 seconds while the minimum search
happens and succeeds on the proposed search as 0.001
seconds when the given element bit sizes increase. While the
elements are distributed in random the classification takes
place based on group phases as discussed in the structured
methodology. From the given program for efficient searching,
the line chart is discussed to prove the efficient technique for
searching is on a proposed searching method.

651 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

Fig. 13. Graphical Representation of Binary, Linear, and Biform Search Over

50 Elements.

IX. GRAPHICAL REPRESENTATION OF SEARCHING AN
ELEMENT AMONG FOR 100 ELEMENTS

The Graphical chart representation of Fig. 14 projects the
status for the possible search of carrying a maximum of 100
random values in a given element. Fig. 14 illustrates how the
searching takes place as efficient when more elements are into
it.

As stated in the combination of more than 50 inputs the
same criteria fit in for the case of 100 inputs. Here in Fig. 13
indicates the proposed search goes to the maximum prediction
time of 0.001 seconds when the bit size increases in a large
volume of size while the linear and binary goes to the extent
of 0.004 seconds. From the given every efficient search in the
graphical format of presentments the tree structure stood as a
prerequisite for easier delegacies. Alike sorted data for binary
search, tree structure for the biform tree approach act as a
prerequisite inefficient search. All the above three graphical
representation initialize and emphasizes on searching
techniques that deliver the fast result on any values given in.

Fig. 14. Graphical Representation of Binary, Linear and Proposed Search

over 100 Elements.

X. PRACTICAL APPLICATIONS AND ENHANCEMENTS
The tree structure proposed and experimented in the

graphical representation defined for searching any random
element will be an effective and efficient way. The tree
representation way of organizing the data was brought into
effect by searching for any random value and it is highlighted
in all the experimented results that search took place. Both the
result of found and not found was done efficiently and it was
proven in the sample searching on the experimented result
page. The time complexity for the biform approach search for
best face and fair face is O(log n) and the worst face is O(n).

The biform approach search compared with the existing
(linear and binary) will utilize the tree structure that has a
binary tree nature in organizing the data that act as an integral
to lots of existing applications considering the binary tree
node representation. The pointer includes left-right and parent
deliberated in space consumption in the large representation of
values.

The proposed search was applied in the renowned areas of
acquiring knowledge from a knowledge base using tree
representation, in the prediction grounded model for directly
learn word representation. In the field of synonyms detection
and word prediction where the words are evaluated for easy
word representation. The tree structure is represented as a
prerequisite for any search that is being done in the proposed
method. For effective searching, a data structure in the form of
a sorted order tree structure is a prerequisite like the existing
searches including binary, linear, etc. The biform tree
approach search was found to be effective in the finding of the
learning content for the learner from the repository. Once the
content is identified in the repository the corresponding
knowledge graph has been created for the system to
understand and learn about the learner to provide the needed
learning content. The novel biform tree structure is a
prerequisite for efficient searching and also for sorting the
elements while doing the pre-order traversal over that tree.

XI. CONCLUSION
The different searching techniques make way to crystalize

and clarify the problem in an effective way. It is an
evolutionary method among the infinities in the improvement
of time complexities. The biform tree approach inquiry on
searching techniques introduces the binary representation in
digits that makes the search easier & faster with well-defined
generalized fit in by making a comparison table study over
performance on the search and the new data structure has a
built-in form of tree representation using the searching
technique. The beauty of the biform tree approach is the same
binary tree is utilized to produce the sorted order numbers and
for the element search. The precursor for element searching is
provided by the sorted binary tree in which the elements are in
sorted order. Altogether searching was made effective over
designing a data structure in the form of tree representation
which makes the searches an efficient one with the biform
approach search.

652 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 5, 2021

REFERENCES
[1] N. Sultana, S. Paira, S. Chandra and S.S Alam, “A brief study and

analysis of different searching algorithms”, International conference on
electrical, computer and communication technologies, Vol 4, pp. 1-4,
February 2017.

[2] A. Shoaib “A survey in different searching algorithms”, International
research journal of Engineering and Technology, vol. 7,p. 275, January
2020.

[3] Kamlesh Kumar Pandey and N. Pradhan, “A comparison and selection
on the basic type of searching algorithm in data structure”, International
journal of computer science and mobile computing, Vol 3, pp. 751-758
July 2014.

[4] Choing R, Sultano J. H and W. J. Jap, “ A comparative study on
informed and uniformed search for intelligent travel planning in borneo
island”, International symposium of Information Technology, IEEE.
Vol. 3, pp. 1-5, August 2008.

[5] Ana Bell, Eric Grimson, and John Guttag, “6. 0001 Introduction to
computer science and programming using python, Massachusetts
Institute of Technology: MIT, OpenCourseware, Fall 2016.

[6] K Roopa and J Reshma, “A comparative study on sorting and searching
algorithms, International Journal of engineering and technology, Vol 5,
p. 1416, January 2018.

[7] Dapeng Liu and Shaochum Xu, “An Empirical study on the performance
of Hast table”, Dapeng Liu et all, 13th International conference on
Computer and Information science (ICIS), Vol 3, pp 60-68, January
2015.

[8] Henning Fernau and Daniel Raible, “Searching trees: an essay”,
International conference on Theory and applications of Models of
computation, pp 59-70, May 2009.

[9] A. S. Mohammed, S. E. Amrahov and F. Celebi, “Efficient hybrid
search algorithm on ordered dataset”, computer engineering department,
Turkey, August 2017.

[10] Xinguo Deng, Yangguang Yao, Jia Chen and Yufeng Lin “Combining
breadth-first with depth-first search algorithms for VLSIwire routing”,
International conference on advance computer theory and engineering,
pp. V6-486, 2010.

[11] Inayat Rehman, S. Khan and M. S.H. Khayal, “A survey on maintaining
binary search tree in optimal shape” International conference on
Information Management, and Engineering,pp. 365-369 , June 2009.

[12] K. Yordzhev, “The bitwise operations related to a fast sorting
algorithm”, International Journal of Advanced Computer science and
applications, Vol. 4, pp. 103-107, November 2013.

AUTHORS’ PROFILE
S. Celine is a part-time research scholar in the Department of Computer

Science, Sacred Heart College, Tirupattur district, and working as an
Assistant professor in the Department of Computer Science, Government of
Arts College for Men, Krishnagiri, Tamil Nadu. Her area of research is in the
field of e-Learning using Deep Learning.

Shinoj Robert is a part-time research scholar in the Department of
Computer Science, Sacred Heart College, Tirupattur District, and working as
an Assistant professor from 2014 in the Department of Computer Application,
Don Bosco College, Yelagiri Hills, and His area of research in the field of
Machine learning and E-learning.

Dr. M. Maria Dominic obtained his B.Sc., M.Sc., and M.Phil. and Ph.D.
in Computer Science. He has been working in Sacred Heart College, from
1996 onwards in various capacities He has also worked in Multimedia
University, Malaysia on a Contractual Basis. He has co-authored a book on
OOP using C++ published by Pearson education. He has published more than
20 research articles in International Journals. He has 4 Ph.D. Research
scholars working under him in the field of Artificial Intelligence especially in
Machine learning and deep learning.

653 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Searching Techniques
	A. Eccentrics of Searching
	B. Handed-Down (Traditional) Searching Techniques

	III. Comparative Analysis
	A. Comparison on Searching Performance

	IV. Proposed Methodology
	A. Phase I: Binary Conversion
	B. Phase II: Grouping
	C. Phase III: Biform Tree Approach
	D. Phase IV: Tree Traversal
	E. Phase V: Searching Outgrowth

	V. Programme Encryption of the Algorithm
	VI. Experimental Result
	VII. Graphical Representation
	A. Graphical Representation of Searching an Element among for 10 Elements

	VIII. Graphical Representation of Searching an Element among for 50 Elements
	IX. Graphical Representation of Searching an Element among for 100 Elements
	X. Practical Applications and Enhancements
	XI. Conclusion
	References

