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Abstract—In this paper, an alternative methodology to obtain
the strength ratio for the laminated composite material is pre-
sented. Traditionally, classical lamination theory and related fail-
ure criteria are used to calculate the numerical value of strength
ratio of laminated composite material under in-plane and out-of-
plane loading from a knowledge of the material properties and its
layup. In this study, to calculate the strength ratio, an alternative
approach is proposed by using an artificial neural network, in
which the genetic algorithm is proposed to optimize the search
process at four different levels: the architecture, parameters,
connections of the neural network, and active functions. The
results of the present method are compared to those obtained
via classical lamination theory and failure criteria. The results
show that an artificial neural network is a feasible method to
calculate the strength ratio concerning in-plane loading instead
of classical lamination and associated failure theory.

Keywords—Classical lamination theory; genetic algorithm; ar-
tificial neural network; optimization

I. INTRODUCTION

Fiber-reinforced composite materials have gained increas-
ing attention due to their superior mechanical performance
in stiffness, strength, and specific gravity of fibers over
conventional materials. Laminated composite material takes
advantage of fiber-reinforced composite material, and finds
wide application in a variety of applications, which include
electronic packaging, sports equipment, homebuilding, medical
prosthetic devices, high-performance military structures, etc.
The mechanical properties of composite laminated are deter-
mined by stacking sequence, ply thickness, fiber orientation,
and material for each ply. Strength ratio[1], [2], [3], [4], [5],
[6], [7], [8] is a critical index to predict the performance of a
laminated composite material. There are two approaches for
solving this problem: analytical methods, such as classical
lamination theory(CLT); data-driven methods, such as artificial
neural networks (ANN).

The analytical approach involves a two-step procedure
to obtain strength ratio: first, develop the stress and strain
relationship among in-plane loading using classical lamination
theory based on a knowledge of the composite laminate
properties of the individual layers and the laminate geometry;
then calculate the strength ratio according to associated failure
criteria, such as Tsai-Wu failure criterion, based on the above-
obtained stress and strain relationship. However, the use of
CLT needs intensive computation since it involves massive
matrix multiplication and integration operation.

The other approach to this problem is using an artificial
neural network, which is a data-driven method, instead of

an analytical method. ANN, heavily inspired by biology and
psychology, is a reliable tool instead of a complicated math-
ematical model, which can accelerate the calculation process
and reduce the computation cost. It has been widely used to
solve various practical engineering problems in applications
[9], [10], such as pattern recognition, nonlinear regression,
data mining, clustering, prediction, etc. Evolutionary artificial
neural networks are a subclass of artificial neural networks,
in which evolutionary algorithms are introduced to design
the topology of an ANN. For an artificial neural network,
the number of layers, the connection between neurons, the
activation functions used in every neuron, etc. are critical
components to its performance. The design of an ANN can
be treated as an optimization procedure of discrete variables,
which can be solved by a genetic algorithm (GA). It is
claimed that the combinations of artificial neural networks
and evolutionary algorithm [11] can significantly improve the
performance of intelligent systems than that rely on ANNs or
evolutionary algorithms alone.

GA, inspired by Darwin’s principle of survival of the fittest,
is widely adopted to obtain the global optimal for discrete
optimization problems. The techniques used in this algorithm,
such as selection, crossover, mutation, are derived from natural
selection, and individuals with better fitness get more chances
to breed. Therefore, GA can be integrated into the design of
ANN, in which encoding the information of an artificial neural
network into a chromosome [12], [13].

The rest of this paper is organized as the following: Section
II introduces the CLT and the failure criteria, which is used to
check whether the composite material fails or not in the present
study; Section III covers the design of an artificial neural
network for a function approximation; Section IV reviews the
use of the genetic algorithm in the design of neural network
architecture, and the techniques of parameters optimization
during the training process; Section V presents the result of
the numerical experiments in different cases; in the conclusion
part, we present and discuss the experiment results.

II. CLASSICAL LAMINATION THEORY AND FAILURE
CRITERIA

A. Classical Lamination Theory

Classical lamination theory derives from three simplifying
assumptions in laminated composite material: the laminate
consist of plies bonded together through the thickness, the
thickness of each ply is small, and it is consists of homo-
geneous, orthotropic material; the entire laminated composite
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is only under in-plane loading; the Normal cross-section of
the laminate is vertical to the deflected middle surface. Fig.
1 shows the coordinate system used for an angle lamina. The
axis in the 1-2 coordinate system is called the local axis or
the material axis, and the axis in the x-y coordinate system is
called the global axis.

A few cases of laminates, such as symmetric laminates,
cross-ply laminates, play an important role in the application
of laminated composite material. A laminate is called an angle
ply laminate if it has plies of the same material and thickness
and is only oriented at +θ and −θ directions. A model of an
angle ply laminate is as shown in Fig. 2.

1) Stress and Strain in a Lamina: For a single lamina
under in-plane loading whose thickness is relatively small,
suppose the upper and lower surfaces of the lamina are free
from external loading. According to Hooke’s law, the three-
dimensional stress-strain equations can be reduced to two-
dimensional stress-strain equations in the composite material.
The stress-strain relation in local axis 1-2 is[

σ1
σ2
τ12

]
=

[
Q11 Q12 0
Q12 Q22 0

0 0 Q66

][
ε1
ε2
γ12

]
, (1)

where Qij is the stiffness of a lamina. And they are related to
engineering elastic constants as follows:

Q11 = E1

1−v12v21 ,

Q22 = E2

1−v12v21 ,
Q66 = G12,
Q12 = v21E2

1−v12v21 ,

(2)

where E1, E2, v12, G12 are four independent engineering elas-
tic constants, which are defined as follows: E1 is the longitu-
dinal Young’s modulus, E2 is the transverse Young’s modulus,
v12 is the major Poisson’s ratio, and G12 is the in-plane shear
modulus.

Fig. 1. The Left Diagram Shows the Local and Global Axis of an Angle
Lamina, which is from a Laminate as Shown in the Right Diagram.

+θ

−θ
· · ·
−θ
+θ

Fig. 2. Model for Angle Ply Laminate.

Stress-strain relation in the global x-y axis is[
σx
σy
τxy

]
=

 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

[ εx
εy
γxy

]
, (3)

where
Q̄11 = Q11cos

4θ +Q22sin
4θ + 2 (Q12 + 2Q66) sin2θcos2θ,

Q̄12 = (Q11 +Q22 − 4Q66) sin2θcos2θ +Q12

(
cos4θ + sin2θ

)
,

Q̄22 = Q11sin
4θ +Q22cos

4θ + 2 (Q12 + 2Q66) sin2θcos2θ,
Q̄16 = (Q11 −Q12 − 2Q66) cos3θsinθ − (Q22 −Q12 − 2Q66) sin3θcosθ,
Q̄26 = (Q11 −Q12 − 2Q66) cosθsin3θ − (Q22 −Q12 − 2Q66) cos3θsinθ,
Q̄66 = (Q11 +Q22 − 2Q12 − 2Q66) sinθ2cosθ2 +Q66

(
sinθ4 + cosθ4

)
.

(4)

2) Stress and Strain in a Laminate: For forces acting on
laminates, such as in plate and shell structures, the relationship
between applied forces and displacement can be given by

[
Nx
Ny
Nxy

]
=

[
A11 A12 A16

A12 A22 A26

A16 A26 A66

] ε0xε0y
γ0xy


+

[
B11 B12 B16

B11 B12 B16

B16 B26 B66

][
kx
ky
kxy

]
,

(5)

where Nx, Ny refers to the normal force per unit length; Nxy
means shear force per unit length; ε0 and kxy denotes mid
plane strains and curvature of a laminate in x-y coordinates
The mid-plane strain and curvature is given by

Aij =

n∑
k=1

(Qij)k(hk − hk−1)i = 1, 2, 6, j = 1, 2, 6,

Bij =
1

2

n∑
k=1

(Qij)k(h2k − h2k−1)i = 1, 2, 6, j = 1, 2, 6,

Dij =
1

3

n∑
k=1

(Qij)k(h3k − h3k−1)i = 1, 2, 6, j = 1, 2, 6.

(6)

The [A], [B], and [D] matrices are called the extensional,
coupling, and bending stiffness matrices, respectively. The
extensional stiffness matrix [A] relates the resultant in-plane
forces to the in-plain strains, and the bending stiffness matrix
[D] couples the resultant bending moments to the plane
curvatures. The coupling stiffness matrix [B] relates the force
and moment terms to the midplane strains and curvatures.

B. Failure Criteria for a Lamina

Failure criteria for composite materials are more difficult
to predict due to structural and material complexity. The
failure process of composite materials can be regarded from
microscopic and macroscopic points of view. The most popular
criteria about the failure of an angle lamina are from the
macroscopic point of view, which are according to the tensile,
compressive, and shear strengths. As shown in Fig. 3, there are
two types of failure criteria [14], [15], [16], [17], [18], [19],
[20], [21] according to failure surfaces. The first failure surface
is a rectangle that includes the maximum stress failure criterion
[22], and maximum strain failure criterion. The second failure
surface is ellipsoidal that includes Tsai-Wu [23], [24], Chamis,
Hoffman, and Hill criteria. In the present study, the two most
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reliable failure criteria are adopted, Maximum stress and Tsai-
wu. Both these failure criteria are based on the stress in the
local axis instead of principal normal stress and maximum
shear stresses, in which four normal strength parameters and
one shear stress are involved. The five strength parameters are:

(σT1 )ult = ultimate longitudinal tensile strength(in direc-
tion 1),

(σC1 )ult = ultimate longitudinal compressive strength,

(σT2 )ult = ultimate transverse tensile strength,

(σC2 )ult = ultimate transverse compressive strength, and

(τ12)ult = and ultimate in-plane shear strength.

1) Maximum stress (MS) failure criterion: Maximum stress
failure criteria are consist of the normal stress theory and the
shear stress theory. The stress applied to a lamina can be
resolved into the normal stress and shear stress in the local
axis. The lamina fails if either of the normal stress or shear
stress in the local axis of a lamina is equal or exceeds the
corresponding ultimate strengths of the unidirectional lamina.
That is,

σ1 ≥ (σT1 )ult or σ1 ≤ −(σC1 )ult,
σ2 ≥ (σT2 )ult or σ2 ≤ −(σC2 )ult,
τ12 ≥ (τ12)ult or τ12 ≤ −(τ12)ult,

(7)

where σ1 and σ2 are the normal stresses in the local axis
1 and 2; τ12 is the shear stress in the symmetry plane 1-2.

2) Tsai-Wu failure criterion: The Tsai-Wu criterion is one
of the most reliable static failure criteria derived from the von
Mises yield criterion. A lamina is considered to fail if

H1σ1 +H2σ2 +H6τ12 +H11σ
2
1 +H22σ

2
2

+H66τ
2
12 + 2H12σ1σ2 < 1

(8)

is violated, where

XT

YT

XC

YC

XT

YT

XC

YC

Fig. 3. Schematic Failure Surfaces for Maximum Stress and Quadratic
Failure Criteria.

H1 =
1(

σT1
)
ult

− 1(
σC1
)
ult

,

H11 =
1(

σT1
)
ult

(
σC1
)
ult

,

H2 =
1(

σT2
)
ult

− 1(
σC2
)
ult

,

H22 =
1(

σT2
)
ult

(
σC2
)
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,

H66 =
1

(τ12)
2
ult

,
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2

√
1(

σT1
)
ult

(
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)
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(
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)
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)
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(9)

Hi is the strength tensor of the second-order; Hij is the
strength tensor of the fourth-order. σ1 is the applied normal
stress in direction 1; σ2 is the applied normal stress in direction
2; τ12 is the applied in-plane shear stress.

3) Strength ratio: The safety factor, or yield stress, is how
much extra load beyond is intended a composite laminate will
take. The strength ratio(SR) is defined as

SR =
Maximum Load Which Can Be Applied

Load Applied
. (10)

III. EVOLUTIONARY ARTIFICIAL NEURAL NETWORK

A. General Neural Network

In this paper, the feedforward ANN is adopted in the
current study, since it is straightforward to code. For function
approximation through an artificial neural network, Cybenko
demonstrated that a two-layer perceptron can form an arbitrar-
ily close approximation to any continuous nonlinear mapping
[25]. Therefore, a two-layer feedforward ANN is proposed in
the present study. Fig. 4 shows a general framework for a
two-layer ANN, in which the number of nodes in the hidden
layer and the connection with inputs, are critical in the design
of an ANN. The nodes in the hidden layer are treated as
feature extractors or detectors. Therefore, nodes within this
layer should partially be connected with the inputs of an
ANN, since the unnecessary connections would increase the
model’s complicacy, which will reduce an ANN’s performance.
The number of nodes in the hidden layer should be less
than the number of inputs since the nodes in the hidden
layer are features. For the nodes in the last layer, every node
should be fully connected with nodes in the previous layer,
the relationship between the outputs and features should be
direct. The rest, which affects the performance of an artificial
neural network, are the activation function, and ANNs training
method. In the following section, the ith node in the input layer
is denoted as ii, and the jth node in the hidden layered denoted
as hj , respectively.

B. Activation Function

The activation function is one of the critical parts of an
ANN. Liu [12] et al. claims that the performance of neural
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Input:

Hidden:

Output:

i1 i2 ... in−1 in

h1 h2 ... hm

...

Fig. 4. Network Diagram for the Two-layer Neural Network. The Input,
Hidden, and Output Variables are Represented by Nodes, and the Weight

Parameters are Represented by Links between the Nodes. Arrows Denote the
Direction of Information Flow Through the Network During Forward

Propagation.

networks with different activation functions is different, even
if they have the same architecture. A generalized activation
function can be written as

yi = fi(

n∑
j=1

wijxj − θ) (11)

where yi is the output of the node i, xj is the jth input to
the node, and wij is the connection weight between adjacent
nodes i and j. Table I display the most widely adopted
activation functions in the design of an ANN, which is used
in the current study.

C. Weights Learning

The weight training in an ANN is to minimize the error
function, such as the most widely used mean square error
function, which calculates the difference between the desired
and the prediction output values averaged overall examples.
Gradient descent algorithm is widely adopted to reduce the
value of an error function, which has been successfully applied
in many practical areas. However, this class of algorithms is
plagued by the possible existence of local minima or “flat
spots” and “the curse of dimensionality”. One method to
overcome this problem is to adopt a genetic algorithm.

IV. METHODOLOGY

For an angle ply laminate, its strength ratio can be com-
puted based on Tsai-Wu failure theory or maximum stress
theory given the laminate’s lay-up, material properties, in-plane
loading, etc. To model this function, we propose an ANN
framework as shown in Fig. 6, which derives from the previous
two-layer model. There are sixteen inputs of this ANN, which
are in-plane loading Nx, Ny , and Nxy; design parameters of a

TABLE I. EXAMPLES OF WIDELY USED ACTIVATION FUNCTIONS IN THE
DESIGN OF AN ARTIFICIAL NEURAL NETWORK

Type Description Formula Range Encoding

Linear The output is proportional to the input f(x) = cx (−∞,+∞) 00
Sigmoid A family of S-shaped functions f(x) = 1

1+e−cx (0, 1) 01
ReLU A piece-wise function f(x) = max{0, x} (0,+∞) 10
Softplus A family of S-shaped functions f(x) = ln(1 + ex) (0,+∞) 11

laminate, two fiber orientation θ1 and θ2, ply thickness t, total
number of plies N ; five engineering constants of composite
materials, E1, E2, G12, and v12; five strength parameters of a
unidirectional lamina. Two outputs are strength ratio according
to MS theory and strength ratio according to Tsai-Wu theory.

The work involved in the evolution process of ANN con-
sists of three parts: search space, which includes the topology
of an ANN, activation function, etc.; search strategy, which
details how to explore the search space; performance estima-
tion strategy refers to the measurement of the performance of
an artificial neural network.

A. Search Space

We propose a general neural network framework as shown
in Fig. 4. The search space is parameterized by four parts:
(1) the number of nodes m(possibly unbounded) in the hidden
layer, to further narrow down the search space, the assumption
is m less than n; (2) the type of operation every node executes,
e.g., sigmoid, linear, Gaussian; (3) the connection relationship
between the hidden nodes and inputs (4) the weight value in
the connection if a connection exists.

Therefore, the evolution process in an evolutional artificial
neural network can be divided into four different levels: topol-
ogy, learning rules, active functions, and connection weights.
For the evolution of the topology, the aim is to find an optimal
ANN architecture for a specific problem. The architecture

evaluation

reproduction

tasks
weightsfitness

THE EVOLUTION OF
CONNECTION WEIGHTS

THE EVOLUTION OF ACTIVE FUNCTIONS

evaluation of active functions

reproduction of active functions

active functionsfitness

THE EVOLUTION OF LEARNING RULES

evaluation of learning rules

reproduction of learning rules

learning rulefitness

evaluation of topology

reproduction of topology

learning topologyfitness

Fig. 5. A General Framework for Evolutionary Neural Network, in which
Fitness Refers to the Corresponding Value of Objective Function.
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Nx Ny Nxy θ1 θ2 t N E1 E2 G12 v12 σT1 σC1 σT2 σC2 τ12

Tsai-Wu MS

Input:

Hidden:

Output:

h1 h2 ... hm−1 hm

Fig. 6. Diagram for Modeling the Target Function of Strength Ratio Calculating for an Angle Ply Laminate.

TABLE II. THE BINARY REPRESENTATION OF PARENT 1, PARENT 2, AND CHILD CORRESPONDING TO FIG .7(A), (B) AND (C), WITH i1, i2, · · · , i16
DENOTE SIXTEEN INPUTS AND h1, h2, · · · , h12 REFER TO NODES IN THE HIDDEN LAYER. 1 REPRESENTS AN EDGE FROM THE INPUT NODE TO THE

HIDDEN NODE, AND 0 REPRESENTS NO EDGE FROM THE INPUT NODES TO THE HIDDEN NODE.

Hidden Nodes i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 f f

P1

h1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
h2 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1
h3 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0
h4 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1
h5 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1

P2

h1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0
h2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
h3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
h4 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
h5 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1
h6 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1
h7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
h8 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0
h9 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1
h10 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
h11 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1
h12 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1

Child

h1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
h2 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1
h1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0
h2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
h3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
h4 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
h5 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1
h6 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1

of a neural network determines the information processing
capability in an application, which is the foundation of the
ANN. Two critical issues are involved in the search process
of an ANN architecture: the representation and the search
operators. Fig. 5 summarizes these four levels of evolution
in an ANN.

B. Search Strategy

It is necessary to define related operations during the
GA process, which includes the representation of an artificial
neural network, the fitness function that determines how good
a solution is, and the search operators, such as selection,
mutation, and crossover.

For the representation of an ANN, encode the hi node
as an eighteen digits binary string. The initial sixteen digits
in the string correspond to the connections between ii and
hi, with ‘1’ implying there exists a connection between them,
with ‘0’ implying no connection exists. The last two digits in
the string refer to an activation function, such as “01” which
means a sigmoid function. Table II are examples of the binary
representation of ANNs whose architectures are as shown in
Fig. 7.

For the objective function, treat the multiplicative inverse
of the mean squared error, which is the difference between
the target and actual output averaged overall examples, as the
fitness function.
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i1 i2 i3 i4 i5 i6 i7 i8 i9i9 i10 i11 i12 i13 i14 i15 i16

h1 h2 h3 h4 h5

(a) Parent 1

i1 i2 i3 i4 i5 i6 i7 i8 i9i9 i10 i11 i12 i13 i14 i15 i16

h1 h2 h32 h4 h5 h6 h7 h8 h9 h10 h11 h12

(b) Parent 2

i1 i2 i3 i4 i5 i6 i7 i8 i9i9 i10 i11 i12 i13 i14 i15 i16

h1 h2 h3 h4 h5 h6 h7 h8

(c) Child

Fig. 7. Examples of three ANNs, with (a) and (b) as parent ANNs, and (c)
as the child of (a) and (b). child c inherits the connection relationship part

from parent 1 denoted by the darker dashed lines,and the rest from parent 2
denoted by the gray dashed line.

The crossover between individuals results in exploiting the
area between the given two-parent solutions. In the present
study, we search the local area by combining the genes of
half number of nodes from both parents. Fig. 7 illustrates
the crossover operator: Fig. 7(c) is the child of Fig. 7(a)
and Fig. 7(b), the connection relationship of hidden nodes
with inputs are from both parents, and the corresponding
activation functions are also from both parents. In the binary
representation Table II, it is shown that the first two rows of
the child are the same as the first two rows of parent P1, and
the last six rows of the child are the same as the first six rows
of parent P2.

C. Performance Estimation Strategy

The simplest approach to this problem is to perform
standard training and validation of the architecture on a dataset.
However, this method is inefficient and computationally in-
tensive. Therefore, much recent research [26] focuses on
developing strategy reducing the cost of performance esti-
mation. In this work, during the GA process, we adopt the
following straightforward and efficient method to estimate the
performance of an ANN: first, train a neural network one
hundred times on the training dataset; second, do the validation
test; measure the neural network’s performance according to
its fitness of objective function on the test dataset.

TABLE III. COMPARISON OF THE CARBON/EPOXY, GRAPHITE/EPOXY,
AND GLASS/EPOXY PROPERTIES

Property Symbol Unit Carbon/Epoxy Graphite/Epoxy Glass/Epoxy

Longitudinal elastic modulus E1 GPa 116.6 181 38.6
Traverse elastic modulus E2 GPa 7.67 10.3 8.27
Major Poisson’s ratio v12 0.27 0.28 0.26
Shear modulus G12 GPa 4.17 7.17 4.14
Ultimate longitudinal tensile strength (σT

1 )ult MP 2062 1500 1062
Ultimate longitudinal compressive strength (σC

1 )ult MP 1701 1500 610
Ultimate transverse tensile strength (σT

2 )ult MPa 70 40 31
Ultimate transverse compressive strength (σC

2 )ult MPa 240 246 118
Ultimate in-plane shear strength (τ12)ult MPa 105 68 72
Density ρ g/cm3 1.605 1.590 1.903
Cost 8 2.5 1

TABLE IV. EXAMPLES OF THE TRAINING DATA

Input Output

Load Laminate
Structure

Material
Property

Failure
Property MS Tsai-Wu

-70,-10,-40, 90,-90,4,1.27, 38.6,8.27,0.26,4.14, 1062.0,610.0,31,118,72, 0.0102, 0.0086
-10,10,0, -86,86,80,1.27, 181.0,10.3,0.28,7.17, 1500.0,1500.0,40,246,68, 0.4026, 2.5120

-70,-50,80, -38,38,4,1.27, 116.6,7.67,0.27,4.173, 2062.0,1701.0,70,240,105, 0.0080, 0.0325
-70,80,-40, 90,-90,48,1.27, 38.6,8.27,0.26,4.14, 1062.0,610.0,31,118,72, 0.0218, 0.1028
-20,-30,0, -86,86,60,1.27, 181.0,10.3,0.28,7.17, 1500.0,1500.0,40,246,68, 0.6481, 0.9512
0,-40,0, 74,-74,168,1.27, 181.0,10.3,0.28,7.17, 1500.0,1500.0,40,246,68, 1.3110, 3.9619

V. EXPERIMENT

In the previous section, we present the details of our
strategies for designing an ANN. In this section, we explain the
details of the preparation of the training dataset and validation
dataset.

A. Dataset Preparation

For composite material, it is impossible to obtain massive
training data from the practical scenario. Therefore, we use
classical lamination theory and failure theory, which follows a
two-step procedure: first, evaluate the stress and strain accord-
ing to classic lamination theory; second, substitute them into
the corresponding equation to get the strength ratio. Repeat
this procedure to yield 14000 points uniformly distributed over
the domain space, and define the domain of the corresponding
inputs as follows: the range of in-plane loading varies from
0 to 120; the range of fiber orientation θ is from -90 to 90;
ply thickness t is 1.27mm, the number of plies ranges N is
from 4 to 120. Three different composite material is used
in this experiment, as shown in Table III. Table IV shows
part of the training data, which are randomly selected from
the generated training dataset. To speeds up the learning and
accelerate convergence, the input attributes of the dataset are
rescaled to between 0 and 1.0 by a linear function.

B. ANN Training and Validation

The ANN training procedure is carried out by optimizing
the multinomial logistic regression objective using mini-batch
gradient descent [27] with momentum. The batch size is set
to 1000, momentum to 0.9. the learning rate is set to 10−2.
The ratio of the training dataset and validation dataset is 70/30,
with 70% of the entire data for training and 30% for validation.

C. Genetic Algorithm

The genetic algorithm involves the evolution of an artificial
neural network’s topology, activation function, etc. in the
optimizing process. The corresponding parameters are as the
following. The population is 10, the percentage of parents in
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Fig. 8. Fitness and Averaged Sum-of-squares Errors of the Pre-trained
Artificial Neural Network as Generations Proceed.

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

-500k 0 500k 1M 1.5M 2M 2.5M 3M 3.5M 4M 4.5M 5M

Fig. 9. The illustration of the Behaviour of Fitness on the Training Dataset
During the Training Session.

the population is 40%; the strategy of selecting parents is rank-
based; the mutation rate of the offspring is 0.3.

VI. RESULT AND DISCUSSION

In this work, we propose to use an artificial neural network
as an alternative way to compute the strength ratio of compos-
ite material instead of a two-step procedure, based on classical
lamination and failure theory. Fig. 8 shows the changes of the
fitness and error during the evolution procedure. The fitness is
obtained through the performance estimation technique of an
artificial neural network. As shown in this figure, fitness grows
during the initial stage; then, it slowly converges as generation
proceeds. It implies genetic algorithm can find a better artificial
neural network with the evolution of the number of neurons in
the hidden layer, connection relationship, activation functions,
and connection weights.

Fig. 9 shows the rest training of the artificial neural network
obtained from the GA, which is a pre-trained ANN. Continue
to train it with a standard gradient-based descent algorithm
until the error converges. The target neural network converges
rapidly at first, and further training doesn’t reduce the error

TABLE V. ANN PREDICTIONS OF THE TSAI-WU AND MS STRENGTH
RATIO WITH THE NUMBERICAL RESULTS OBTAINED BY CLT.

Input Output

Load Laminate
Structure

Material
Property

Failure
Property

CLT
MS Tsai-Wu

ANN
MS Tsai-Wu

-10,40,20 26,-26,168,1.27 116.6,7.67,0.27,4.17 2062.0,1701.0,70,240,105 0.342 0.476 0.351 0.492
20,-70,-30 10,-10,196,1.27 181.0,10.3,0.28,7.17 1500.0,1500.0,40,246,68 0.653 0.489 0.612 0.445
60,-20,0 82 -82,128,1.27 181.0,10.3,0.28,7.17 1500.0,1500.0,40,246,68 1.663 0.112 1.673 0.189

efficiently. Then, this artificial neural network is used to predict
the strength ratio of laminated composite material.

To present the evaluation result of the ANN straightfor-
wardly, several experiment results from the validation dataset
are displayed in Table V, which are randomly selected. Com-
paring the strength ratio outputs based on CLT and ANN from
Table V, it is shown that the calculation of strength ratio can
be achieved using a two-layer neural network, without the
intensive computation of matrix multiplication.

VII. CONCLUSION

In this paper, an evolutionary artificial neural network
model was developed to predict the strength ratio of laminated
composite material under in-plane loading. We review the
use of genetic algorithms and artificial neural networks as an
alternative approach for calculating the strength ratio of an
angle ply laminate under in-plane loading. Traditionally, it is
obtained through CLT and corresponding failure criteria, such
as Maximum Stress theory and Tsai-Wu failure theory.

The main contribution of this work is as follows: 1) pro-
pose a two-layer diagram model for designing a sophisticated
neural network in simulating the calculation of strength ratio,
and use a genetic algorithm to explore the search space; 2)
suggest an efficient method to compute the strength ratio
instead of adopting the two-step procedure based on classical
lamination theory and related failure criteria. Compared with
experimentally obtained data, it is demonstrated that ANN is an
efficient and simple tool to compute the strength ratio, instead
of the complex analytical mathematical model. Our findings
underline the practical applicability of ANN on the analysis
of composite material.

There are more improvements we can make over the search
strategy and application in the area of laminated composite
material. The future work is to develop a more sophisticated
ANN, which not only can predict the properties for angle
ply laminate, but also the other type of laminated composite
material.
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