
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

287 | P a g e

www.ijacsa.thesai.org

Validation: Conceptual versus Activity Diagram

Approaches

Sabah Al-Fedaghi

Computer Engineering Department

Kuwait University

Kuwait

Abstract—A conceptual model is used to support development

and design within the area of systems and software modeling.

The notion of validation refers to representing a domain in a

model accurately and generating results using an executable

model. In UML specifications, validation verifies the correctness

of UML diagrams against any constraints and rules defined

within the model. Currently, significant research has been

conducted on generating test sets to validate that UML diagrams

conform to requirements. UML activity diagrams are a specific

focus of such efforts. An activity diagram is a flexible instrument

for describing a system’s behaviors and the internal logic of

complex operations. This paper focuses on the notion of

validation using activity diagrams and contrasts that process

with a proposed method that involves an informal validation

procedure. Accordingly, this informal validation involves

comparing requirements to specifications expressed by a

diagram of a modeling language called thinging machine (TM)

modeling. The informal validation is a type of model checking

that requires the model to be small enough for the verification to

be done in a limited space or time period. In the proposed

method, the model diagram is divided into subdiagrams to

achieve this purpose. We claim the TM behavioral model comes

with a particular dispositional structure that allows a designer to

“carve” a model into smaller components for informal validation,

which is shown through two case studies.

Keywords—Validation; conceptual model; activity diagram;

thinging machine; informal validation

I. INTRODUCTION

A conceptual model is a mathematical/logical/verbal
representation (mimic) of a domain (real or proposed),
situation, policy, or phenomenon developed for a particular
study [1][2][3]. A conceptual (in contrast to an intentional
mental representation such as sensation [4]) model describes
“how we conceive of that domain” [5]. It is used to support
development and design within the area of systems and
software modeling (e.g., databases or business processes).

An example of such a model is a description developed
using the Unified Modeling Language (UML) to construct a
representation of a domain using primitive constructs and
concepts such as the “lens” through which reality is perceived
to capture that domain’s meaning [5]. Nonconceptual models
such as mathematical models are presented in terms of
variables and quantitative relationships (i.e., equations). By
contrast, in conceptual models, the variables and relationships
between variables are represented visually as a system of icons
in a diagram [5]. Visual representations can help to shift the

focus to enhanced qualitative conceptual reasoning, serve as
representations of an internal (mental) model, and provide a
means for communication and analysis. In the context of
conceptual modeling, to ensure a system’s quality, it is critical
that the model that represents the domain be semantically
correct. This is confirmed by checking that the model satisfies
some correctness properties and the system requirements.

A. Validation

Validation is the process of confirming that models are
understood, defined well, documented, and based on
established fundamentals [6][7]. It conveys a sense that “a
scientific effort must be justified in some logical, objective,
and algorithmic way” [6]. However, determining whether a
particular model fulfills requirements by validating it over the
complete domain of its intended applicability often is not
possible (e.g., due to cost and time). Instead, tests and logical
reasoning are conducted until adequate assurance is achieved
that the model can be considered valid for its intended
application.

Regarding UML, as a semi-informal notation, significant
research efforts have gone into the so-called model-driven
testing of UML diagrams. Such efforts mostly involve
generating high-level test cases that can be used to validate
both specifications and implementations [8]. Specifically,
activity diagrams are highly useful for validating requirements
with customer representatives [9]. Activity diagrams have
become an established modeling notation for various levels of
abstraction, ranging from fine-grained descriptions of
algorithms to high-level workflow models in business
applications [10].

B. Problem: Semantics of the UML Diagram

According to Tariq, Sang, Gulzar, and Xiang [11], the
absence of formal semantics for UML activity diagrams makes
it difficult to build automated tools for analyzing and validating
such diagrams. Recently, UML 2.0 introduced token-driven
semantics for activity diagrams inspired by Petri nets. One of
the goals of the Foundational UML Subset (fUML [12]) is to
provide a well-defined execution of UML activity diagrams.
Accordingly, additional validation tools are needed for
diagrammatic representation in the context of conceptual
modeling. This paper proposes such a tool using a new type of
conceptual model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

288 | P a g e

www.ijacsa.thesai.org

C. Approach and Limitations

This paper focuses on works that solely examine the notion
of validation using activity diagrams, as an example of the
current state of research in the validation field. Validation of
UML activity diagrams using directed test cases is very
promising [8]. The present paper complements such studies by
examining validation under “equivalent” representations using
a diagrammatic model based on thinging machine (TM)
modeling. The aim is to propose a particular technique for
model validation based on TM.

II. REVIEW

An UML activity diagram is a semi-formal semantic
specification that is intuitive and flexible. It is used to describe
a system’s behaviors and the internal logic of complex
operations. Therefore, it is widely utilized as a front-end tool
for system-level design of software and/or hardware systems.

A. Review: Graphs, Petri Nets, and Event B

The validation literature on developing test cases for
activity diagrams is extensive (e.g., [8]). According to Chen
and Mishra [8], “Most directed test case generation work is
performed by human intervention. Hand-written test cases
entail laborious and time-consuming effort of verification
engineers who have deep knowledge of the design. Due to the
manual development, it is difficult to generate all directed test
cases to achieve a coverage goal. The problem is further
aggravated due to the lack of comprehensive functional
coverage metrics.” Many tools and methods have been
developed to support test specifications and test case
generation. For example, dSPACE developed a tool that uses
activity diagrams for test descriptions and test script generation
[13]. Chen, Poon, Tang, and Tse [14] presented a framework
with which to construct test cases from specifications by
identifying a set of input categories for the activity diagrams as
test cases. Hettab, Kerkouche, and Chaoui [15] converted
activity diagramming into grammar rules for graphs to capture
all the relevant features for test case generation. Shirole,
Kommuri, and Kumar [16] transformed activity diagrams into
extended control flow graphs. Sunitha [17] incorporated Object
Constraint Language (OCL) into activity diagramming for test
case generation involving difficulties identifying complete
behavior and static changes [18]. Chen et al. [19] matched Java
program traces with behavior activity diagramming to identify
changes resulting in a failure to identify static changes [18].
Sapna and Mohanty [20] converted UML activity diagrams
into tree structures to prioritize scenarios by assigning weights
to nodes and edges; however, this approach lacks in-depth code
coverage and cannot identify static changes [18]. Some authors
have developed frameworks to transform a UML activity
diagram into Petri nets automatically using a model checker for
analysis (e.g., [21][22]). A different approach involves
transforming UML activity diagrams into Event B to specify
and verify the distributed and parallel workflow solicitations
[23].

B. Approach in this Paper: Informal Validation

In our approach to validation, we first produce an
equivalent TM representation of the activity diagram. We
consider the complexity of the representation and thus aim for

quick model checking by adopting informal reasoning. All of
the reviewed validation methods discussed in the previous
subsection can be applied to TM. Informal validation leads to
discussing formal validation.

Formal specifications can be used to deliver a precise
addition to different descriptions and can be validated, leading
to specification faults being detected. Formal validation
verifies the correctness of specifications, so it can be used to
guarantee the quality of models (e.g., UML [8]). Despite the
long interest in formal validation methods, “It seems that
practitioners judge formal methods to be insufficiently
beneficial to outweigh pragmatic problems” [24]. According to
Amey [25], “Customers are often ‘aghast’ at the idea of formal
methods being used to develop their products and might say
‘couldn’t you use UML?’” Amey [25] suggests overcoming
such prejudices through “formality by stealth” and cites
semantically strengthened UML as an example [24].

On the other hand, informal validation techniques rely on
the opinions of modelers to draw a conclusion [26]. According
to Petty [27], “Informal methods are more qualitative than
quantitative and generally rely heavily on subjective human
evaluation, rather than detailed mathematical analysis. Experts
examine an artifact, for example, a conceptual model expressed
as UML diagrams, and assess the model based on that
examination and their reasoning and expertise.” Examples of
informal methods include inspection, face validation, the
Turing test, desk checking, and walkthroughs [27]. According
to Banks [26], “In all cases though it is important to note that
informal does not mean it is any less of a true testing method.
These methods should be performed with the same discipline
and structure that one would expect in ‘formal’ methods. When
executed in such a way, solid conclusions can be made.”

The purpose of informal validation is to examine the
accuracy of a domain’s representation in a conceptual model
and in the results produced by the executable model [27]. In
this type of validation, the concept of a system is viewed as a
group of interacting components, and its desired functionality
is articulated by graphical means [28].

Accordingly, in our proposed approach, the validation
process involves requirements (e.g., expressed in English)
versus specifications (expressed by TM diagrams). The
validation here involves showing that the TM model is the
correct model for the requirements. Thus, informal validation
is a type of model checking that requires “the model to be
small enough so that the verification can be done in a limited
space or time” [29]. Accordingly, the TM diagram is divided
into subdiagrams for this purpose. Our claim is that the TM
behavioral model comes with a particular dispositional
structure that allows a designer to “carve” a diagram into
smaller components for informal validation.

C. Outline

The next section reviews the basic constructs of a TM
model. Section 4 presents a case study of validating the process
of buying a beverage from a vending machine. Section 5
presents a second case study of validating an online shopping
system.

https://en.wikipedia.org/wiki/Informal_Methods_(Validation_and_Verification)#cite_note-textbook-2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

289 | P a g e

www.ijacsa.thesai.org

III. THE THINGING MACHINE

TM modeling is a way of understanding how things and
processes have come to be structured (see [30] and its TM-
related references by the author of the present paper). As
shown in Fig. 1, a TM can be described as the following
generic (basic) actions:

Arrive: A thing moves to a machine.

Accept: A thing enters the machine. For
simplification, we assume that all arriving things are accepted;
hence, we can combine the arrive and accept stages into one
stage: the receive stage.

Release: A thing is ready for transfer outside the
machine.

Process: A thing is changed, but no new thing results.

Create: A new thing is born in the machine.

Transfer: A thing is input into or output from a
machine.

Additionally, the TM model includes the mechanism of
triggering (denoted by a dashed arrow in this study’s figures),
which initiates a flow from one machine to another. Multiple
machines can interact with each other through the movement of
things or triggering. Triggering is a transformation from one
series of movements to another.

A Thinging-Machine
Model.

IV. VALIDATING A VENDING MACHINE

Sapna and Arunkumar [20] considered an example of an
activity diagram for the process of buying a beverage from a
vending machine (Fig. 2).

Fig. 2. Partial Views of the Diagrams used to Model the Process of Buying a

Vending Machine Beverage Found in Sapna and Arunkumar [20].

In this section, we first produce the corresponding TM
models and then apply the validation strategy to this vending-
machine example.

A. Static Model

Fig. 3 shows the corresponding static TM model. In Fig. 3,

Fig. 3. The Static TM Model of a Vending Machine.

Process

Create

Drink type

Drink, price

Process

Equal

Release Not equal

Process

Amount
Price

>=

<

Drink

Receive

Receive

Receive

Release Transfer Transfer Receive Release Transfer

Transfer
Release Create Transfer

Receive

Process

Transfer

Create Release Transfer Transfer

Coin

Release

Transfer

Receive

Create

Transfer
Create

Transfer Transfer Release

Transfer Transfer Release

Change

Receive

User

1 2

3

Finding the
price

4

6

7

8

Drink

Process Create

Release
10

11

Create

12
13

14

15

Process

Coin

Transfer

Release

Transfer

Release
16 17

18

19

20 21

22

23

24

25 27 26 Messag

e

9

5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

290 | P a g e

www.ijacsa.thesai.org

 The user creates (circle 1) a drink selection that flows to
the machine (2), where it is sent to a module that finds
the (drink, price) record (3). The drink data are found
by extracting records (drink, price) (4) one by one and
comparing the input drink with the drink data in the
matching record.

- If the drink data inside the record are not equal to
the input drink (5), then the next record is released
from the set of records and processed (7) to trigger
the creation of drink data (8). Note that the drink
item is created in the sense that it was not known to
the machine as an independent thing before it was
extracted from the record.

- If the drink data inside the record match the input
drink (9), then this triggers processing of (10) the
record to extract the price (11). (Note that, in the
activity diagram, the price is a thing “dropped from
the sky”. There is no connection between the drink
and its price.)

 Meanwhile, the user inputs coins (12), which are
processed (13) inside the machine to calculate their
value (14). (Note that the activity diagram does not
distinguish the coins as physical objects from their
amount and value.) Then, the coins are stored in coin
boxes (15).

 Both the amount (16) and the price (17) flow to a
module that compares them (18).

- If the amount is equal to or greater than the price
(19), then the drink is released to the user (20 and
21). Additionally, the coin storage is processed (22)
to create change, which flows to the user (23 and
24).

- If the amount is less than the price (25), then a
message is created and flows to the user (26 and 27).

B. Behavioral Model

To produce the TM behavioral model, we must identify all
events in the vending-machine model. An event in TM
modeling is formed from a subset of the static model in
addition to a time subthimac. For example, Fig. 4 shows the
event the machine receives a drink selection.

Identifying a phenomenon’s behavior involves dividing it
into component parts and then fitting the behaviors of these
parts into a whole. Accordingly, the static model (Fig. 3) can
be divided into events as shown in Fig. 5, which shows only
the regions of the events for simplification. The resulting list of
events is as follows.

Fig. 4. The Event the Machine Receives a Drink Selection.

Fig. 5. The TM Events Model of the Vending Machine.

Time

Process

Drink type

Receive

Release Transfer Transfer Receive

User Machine

Region
Event

Release Transfer Transfer Create

Process

Create

Drink type

Drink, price

Process

Same

Release Not same

Process

Amoun

t Price

>=

<

Drink

Receive

Receive

Receive

Release Transfe

r

Transfe

r

Receive Release Transfe

r

Transfe

r Release Create Transfe

r

Receive

Process

Transfe
r

Create Release Transfe

r

Transfe

r Coin

Release

Transfe
r

Receive

Create

Transfer
Create

Transfe

r

Transfe

r

Release

Transfe

r

Transfe

r

Release

Change

Receive

User

E1

Finding price

Drink

Process Create

Release

Create

Process

Coin

Transfe
r

Release

Transfe
r

Release

Messag

e

E2

E3 E4

E5

E10

E9

E7
E6

E8

E16

E11

E13 E12

E15

E21

1

E18
E17

E19

E20

E14

E22

1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

291 | P a g e

www.ijacsa.thesai.org

Event 1 (E1): The machine receives a drink selection.

Event 2 (E2): The selected drink flows to the price-finding
module.

Event 3 (E3): A record (drink, prices) is retrieved from the
list.

Event 4 (E4): The selected drink is extracted from the
record.

Event 5 (E5): The drink is sent for comparison with the
input drink.

Event 6 (E6): The input drink is compared with the stored
drink.

Event 7 (E7): The input drink is not the same as the stored
drink.

Event 8 (E8): The input drink is the same as the stored
drink.

Event 9 (E9): The price is extracted.

Event 10 (E10): The user inputs coins.

Event 11 (E11): The amount of the coins’ value is
calculated.

Event 12 (E12): The coins are deposited into the coin boxes.

Event 13 (E13): The amount flows to a comparison with the
price.

Event 14 (E14): The price flows to a comparison with the
amount.

Event 15 (E15): The amount and the price are compared.

Event 16 (E16): The amount is equal to or greater than the
price.

Event 17 (E17): The coin boxes are processed.

Event 18 (E18): The change is extracted from the coin
boxes.

Event 19 (E19): The change flows to the user.

Event 20 (E20): The drink is released to the user.

Event 21 (E21): The input amount is less than the price.

Event 22 (E22): A message is sent to the user.

Fig. 6 shows the behavioral model for the vending
machine.

C. Validation Strategy

Until this point, we have focused only on the modeling
notations. It is time to ask whether the vending-machine
blueprint fulfills the requirements. Requirements typically are
written in natural language, but the behavioral diagram
provides a skeletal structure of events.

Plato famously employed the “carving” metaphor as an
analogy for the reality of Forms (Phaedrus 265e): As if we
were animals, the world comes to us predivided. Ideally, our
best theories will be those that carve nature at its joints [31].
The behavioral model comes with a particular dispositional
structure rooted in the five generic types of events: create,
processes, release, transfer, and receive.

Validation in TM modeling refers to event validity, which
involves the model’s events being compared to those of the
reality to determine whether they are similar. In TM modeling,
a general approach to validating the developed model can be
developed using a logical process in which one takes higher-
level events produced by the carving process and reduces them
to the constituent events, which, in turn are based on generic
events. This implies validating each generic action or sequence
of these actions. However, because of space limitations and the
informal nature of this study, we will not employ such a
process but rather simply sketch operational descriptions of
events with which to validate the model. This method assumes
that the model’s validity can be determined from observations.

Fig. 7 shows the decomposition of the behavioral model
(Fig. 6) into three parts (super-events), for which the joints
suggest division among three super-events as follows.

 Super-event 1: Selecting a drink and finding the price

- The machine shall accept requests for n types of
drinks.

- The machine determines the price of the selected
drink.

Fig. 8 shows the events involved: E1 through E9. The figure
shows that the verification method involves feeding, internally,
all drinks stored in the machine to the machine to verify that
the machine performs the two requirements specified above.
This verification process covers all legitimate inputs to E1. An
actual verification system can be constructed to input the tuples
to E1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

292 | P a g e

www.ijacsa.thesai.org

Fig. 6. The Behavioral Model.

Fig. 7. Three Super-Events in the Behavioral Model.

Fig. 8. Verifying that All Drinks have Prices.

 upper-event 2: Validating the coins

- The machine accepts all specified coin types,
assuming there are three types.

- The machine calculates the digital values of these
coins.

- The machine stores the coins in their appropriate
places.

Input drink

E2

E3

E15

E16

E14

E13

E17 E18 E19

E1

E4 E5 E6

E7

E8 E9

E10

E11

E21

E20

E12 E22

Compare the inputs and stored drinks

Coins

Stored

drink

Next stored

drinks

Price

Amount

Compare the amount and price

>=

<

Output drink

Change

Message

 Input drink
E2

E3

E15

E16

E14

E13

E17 E18 E19

E1

E4 E5 E6

E7

E8 E9

E10

E11

E21

E20

E12 E22

Compare the inputs

and stored drinks

Coins

Stored

drink

Next stored

drinks

Price

Amount

Compare the

amount and

price

>=

<

Output drink

Change

Message

Input
drink

E2

E3

E1

E4 E5 E6

E7

E8 E9

Compare the input and

stored drinks

{(Drink, price)}

Next stored

drinks

Price

Extracting the

drink from

(drink, price)

N tuples

Verification of selecting a drink and finding the
price

Verification version of E1: loop for all drinks:
Read a tuple from the (drink, price)
Extract the drink from the tuple
Perform E2, E3, E4, E5, E6, E7, E8, and E9
If (ERROR), then process a report

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

293 | P a g e

www.ijacsa.thesai.org

Fig. 9. Validating All Combinations of Coins to be sorted in their Boxes and

Generating the Right Amount.

Fig. 9 shows the validation of all combinations of coins to
be stored in their boxes and the generation of the correct
amount.

We assume that the machine initially has some coins from
each of the assumed three types of coins, to return change
when the input amount is greater than the price. For validation
purposes, this initial amount is increased to cover all types of
combinations of input amounts. Accordingly, different
combinations of coins are fed to E10, which are distributed to
their appropriate places (E14), and their amount is generated
(E11). It is not difficult to develop such an internal system in a
vending-machine factory with which to test each machine.

 Super-event 3: Comparing the amount and price and
outputting the result

The third validation process involves comparing the
amount and price and observing the results of that comparison,
as shown in Fig. 10.

Fig. 10. Validating All Types of Output.

- All prices and amounts produced in phases 1 and 2
are fed to E15, during which the amount and price
are compared. The results of this comparison are as
follows.

If the amount is less than the price, then a message is
produced (E21 and E22).

If the amount is equal to or greater than the price, then the
correct change is produced by processing the coins (E17, E18,
and E19).

- A drink is output.

We assume that a validation system takes the outputs of
super-events 1 and 2 and produces the physical activities above
in super-event 3. The level at which all possible variations of
inputs are exhausted depends on the amount and price values
produced in the first two super-events.

Nevertheless, in reality, the level of testing is a subjective
decision based on evaluations conducted as part of the model-
development procedure.

V. VALIDATING AN ONLINE SHOPPING SYSTEM

Bures, Ahmed, and Zamli [32] proposed a model-based
test-case-generation algorithm that uses directed graphs and
test requirements to model the system being tested. They
proposed a method using a directed graph and a set of test
requirements to try to satisfy a defined test-coverage level
together. They modeled an online shopping system, as
presented in Fig. 11, as a running example to document the
presented concepts and algorithms. Fig. 12 shows the TM
model constructed to reflect the given activity diagram of
Fig. 11.

Fig. 11. Partial Views of the Diagrams used in Modeling the Online Shopping

System in [31].

E14
E10

E11

Coins

Amount

Process

E15

E16
E13

E18 E19

E9

E11

E21

E20

E12

E22 Price

Amount

Compare

amount and

price

>=

<

Output drink

Change

Message

E17

Coins

Process

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

294 | P a g e

www.ijacsa.thesai.org

Fig. 12. The Static TM Model of the Online Shopping System.

First, the customer applies for registration (circle 1), which
is processed by the system (2) to create a login account (3) that
is added to the set of registered accounts (4 and 5). Note how
the login account file is processed to add a new account.

 The customer requests to log in (6) and the request is
processed (7) to extract the login account from the
request (8). Additionally, the accounts file is processed
(9) to retrieve an account (10), which is compared with
the input account (11). If the two accounts are not the
same, then the next account in the accounts file is
retrieved for comparison. This process continues until
the two accounts are found to be the same (13). Here,
we ignore the situation in which the account is not filed
in the file because the activity diagram does not
mention it. Here, we can add a trigger for an error
message to flow to the customer.

 Then, the system sends a request for a discount (14),
which is processed by the user (15), to reply (16) with a
code (no discount is a type of code). The code is
processed (17) to be compared with the set of codes
(18, 19, 20, and 21). When the code is found, the
percentage of discount is calculated (22) and, together
with the price (23), is processed to calculate the
payment (24) and invoice (25).

 Accordingly, the system requests the method of
payment (26), and the customer processes (27) that
request to input such a method (28), which flows to the
system, where it is processed (29). According to the
payment method, the system either sends an invoice
online (30) or to the branch (31).

Create

Request

discount

Transfe

r

Transfe

r

Receiv

e

Release

Process

Process:

compare

Process

Create

Release
Transfe

r

Transfe
r

Process

Login

accounts

Process

Payment

Request

payment method

Create Release

Found

Release

Process Transfe

r

Transfe

r

Receiv

e

Create Release
Process: Add

Transfe

r

Release
Registration

Login

request
Transfer

Receive

Transfe

r

Release Process Transfe

r

Receiv

e

Process Transfe
r

Transfe
r

Receiv
e

Create Release

Response (code)
Discount

code Release

Transfer

Receive

Discount %

Transfe

r

Release Process Transfe

r

Receiv

e

Release

Process Transfe

r

Transfe

r

Receiv

e
Create Release

Payment method

Transfe

r

Receiv

e

Final

payment

Transfe

r

Release

Create

Release Branch Onlin

e

Invoice

Create

Found Else

Transfe

r

Transfe

r

Else

Customer

1 2 Login account

Transfe

r

Transfe

r

Process

3

5
6 7 8

9

10

11

12
13

14 15

16 17

18
19

20

21

22 23

24

25

26 27

28

29

30 31

4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

295 | P a g e

www.ijacsa.thesai.org

Fig. 13. Events Model. Note that in the Activity Diagram, the Price is considered an Input to the Whole Process.

The events in the model can be specified as follows (see
Fig. 13).

Event 1 (E1): A customer registers to log in.

Event 2 (E2): The system creates a new login account.

Event 3 (E3): The system adds the new account to the
accounts file.

Event 4 (E4): A customer sends a login request.

Event 5 (E5): The system extracts the login account from
the request and sends it to be checked as a legal account.

Event 6 (E6): The accounts file is processed to retrieve an
account, which is sent for comparison with the input account.

Event 7 (E7): The input account is compared with the
account retrieved from the file.

Event 8 (E8): The input account is not the same as the
account from the file.

Event 9 (E9): The input account is found among the
legitimate accounts; hence, a request for the discount code is
sent to the customer.

Event 10 (E10): The customer sends a discount code
(possibly a code for no discount).

Event 11 (E11): The code is sent to find its corresponding
discount percentage.

Event 12 (E12): The list of codes is processed to retrieve
one code at a time.

Event 13 (E13): The retrieved code is sent to be processed.

Event 14 (E14): The code is compared with the list of codes.

Event 15 (E15): The code is found; thus, a request for the
payment method is sent to the customer.

Event 16 (E16): The customer sends the payment method.

Event 17 (E17): The payment method is processed.

Event 18 (E18): The payment method is in the branch.

Event 19 (E19): The online payment method is chosen.

Event 20 (E20): The code is found; thus, the discount
percentage is extracted.

Event 21 (E21): The price is received.

Event 22 (E22): The discount percentage and price are used
to calculate the required payment.

Event 23 (E23): The payment is used in generating the
invoice.

Event 24 (E24): The invoice is sent to the branch.

Event 25 (E25): The invoice is sent to the online payment
system.

Process: Add

Create

Request

discount

Transfe

r

Transfe

r

Receiv

e

Release

Process

Process:

compare

Process

Create

Release
Transfe

r

Transfe

r

Process

Login

accounts

Process

Payment

Request payment

method

Create Release

Found

Release

Process Transfe
r

Transfe
r

Receiv
e

Create Release Transfe
r

Release
Registration

Login

request
Transfer

Receive

Transfe
r

Release Process Transfe
r

Receiv
e

Process Transfe

r

Transfe

r

Receiv

e

Create Release
Response (code)

Discount code (%) Release

Transfer

Receive

Discount %

Transfe

r

Release Process Transfe

r

Receiv

e

Release

Process Transfe

r

Transfe

r

Receiv
e

Create Release
Payment method

Transfe

r

Receiv

e

Final payment

Transfe

r

Release

Create

Release Branch Onlin

e
Invoice

Create

Found Else

Transfe

r

Transfe
r

Else

Customer

Login account

Transfe
r

Transfe
r

Process

E2
E3

E4 E5

E6
E7

E8
E9

E10
E11

E12
E13

E14

E15

E17

E18 E19
E20

E21

E22 E23

Branc

h
Online

E24
E25

E16

Process

E1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

296 | P a g e

www.ijacsa.thesai.org

Fig. 14. The Behavioral Model.

Fig. 15. Carving Small Components from the Behavioral Model.

Fig. 14 shows the behavioral model decomposed into three
parts (super-events), in which the joints suggest division
among five super-events. As shown in Fig. 15, these super-
events are as follows.

- Registration component

- Login component

- Discount percentage component

- Payment component, and

- Method-of-payment component

Apparently, our hypothesis that TM representation would
lend itself to such division of high-level events is true for this
shopping-system representation. We can apply the same type
of informal validation.

However, it is important to point out that the super-events
may have relationships with “use cases”; thus, UML use case
diagrams are a topic to be investigated in future research.

VI. CONCLUSION

This paper focused on examining the notion of validation
using activity diagrams and proposed an informal validation
process. This validation process involved requirements, versus
specifications expressed by a diagram. Informal validation is a
type of model checking that requires the model to be small
enough to verify in a limited space or time. Accordingly, the
model diagram is divided into subdiagrams for this purpose.
We claimed that the TM behavioral model comes with a
particular dispositional structure that allows designers to
“carve” a diagram into smaller components for informal
validation. This was shown through two case studies
concerning vending machine and online shopping systems.

This result seems plausible because TM modeling is
founded upon five generic actions. Thus, generic events have
no subevents, and higher-level events are built from these
generic events. Generic events can happen in diverse regions,
and they can reoccur. It seems the building structures from the
five generic actions “collapse” into smaller structural partitions
according to certain aspects such as functionality. The number

E1 E2 E3

E4 E5

E6 E10 E8 E7 E9

Price

E11

E13

E15 E17

E19

E21

E12

E14 E16

E18

E20

E22 E23

E24
E25

Registratio

n

Login
Discount

code

Discount

(%)

Payment

method

Online

payment

Branch

payment

Invoice

Payment

amount

Branch
Online

 E1 E2 E3

E4 E5

E6 E10 E8 E7 E9

Price

E11

E13

E15 E17

E19

E21

E12

E14 E16

E18

E20

E22 E23

E24
E25

Registration

Login
Discount

code

Discount

(%)

Payment

method

Online

payment

Branch

payment

Invoice

Payment

amount

Branch
Online

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 6, 2021

297 | P a g e

www.ijacsa.thesai.org

(e.g., 7 ± 2) and nature (e.g., basic) of these actions seem to be
crucial features that determine the system’s overall level of
complexity. Additionally, the TM model (Fig. 1) seems to
generate nested hierarchies or levels with loosely coupled
connections (through only transfers and triggers), which inhibit
large structural complexity.

These explanations are still a type of speculation and
require further research to be applied in different aspects of
modeling systems beyond validation.

REFERENCES

[1] R. G. Sargent, “Verification and validation of simulation models,” in
Proc. 1994 Winter Simulation Conference, J. D. Tew, M. S.
Manivannan, D. A. Sadowski, and A. F. Seila, Eds. Piscataway, NJ:
IEEE, 1994, pp. 77–87.

[2] H. C. Mayr and B. Thalheim, “The triptych of conceptual modeling,”
Software and Systems Modeling, vol. 20, no. 1, pp. 7–24, 2021.

[3] J. Fischer, B. Møller-Pedersen, A. Prinz, and B. Thalheim, “Models
versus model descriptions,” Modelling to Program: Second International
Workshop, vol. 1401, pp. 67–89, May 2021.

[4] D. Pitt, “Mental representation,” in The Stanford Encyclopedia of
Philosophy, E. N. Zalta, Ed. Stanford, CA: Stanford University, 2018.

[5] N. Guarino, G. Guizzardi, and J. Mylopoulos, “On the philosophical
foundations of conceptual models,” in Frontiers in Artificial Intelligence
and Applications [e-book], vol. 321, Information Modelling and
Knowledge Bases XXXI, IOS Press, 2019, pp. 1–15. DOI:
10.3233/FAIA200002

[6] G. B. Kleindorfer, L. O’Neill, and R. Ganeshan, “Validation in
simulation: Various positions in the philosophy of science,”
Management Science, vol. 44, no. 8, pp. 1087–1099, 1998.

[7] R. G. Sargent, “Verification and validation of simulation models: An
advanced tutorial,” 2020 Winter Simulation Conference (WSC), Dec.
14–18, 2020. DOI: 10.1109/WSC48552.2020.9384052

[8] M. Chen, P. Mishra, and D. Kalita, “Efficient test case generation for
validation of UML activity diagrams,” Des. Autom. Embed. Syst, vol.
14, pp. 105–130, 2010. DOI: 10.1007/s10617-010-9052-4

[9] L. Fernandez-Sanz and S. Misra, “Practical application of UML activity
diagrams for the generation of test cases,” Proc. Romanian Academy,
series A, vol. 13, no. 3/2012, pp. 251–260, 2012.

[10] H. Gronniger, D. Reiß, and B. Rumpe, “Towards a semantics of activity
diagrams with semantic variation points,” 13th International Conference,
MODELS 2010, Proceedings, Part I. Lecture Notes in Computer Science
6394. Springer, 2010, pp. 331–345. ISBN 978-3-642-16144-5

[11] O. Tariq, J. Sang, K. Gulzar, and H. Xiang, “Automated analysis of
UML activity diagram using CPNs,” 8th IEEE International Conference
on Software Engineering and Service Science, pp. 24–26, Nov. 2017.
DOI: 10.1109/ICSESS.2017.8342881

[12] OMG, “fUML 1.3 specifications,” OMG [online], 2017.

[13] L. Lavagno and W. Muller. “UML as a next-generation language for
SoC design,” Electronic Design, 2006.

[14] O. T. Chen, P. Poon, S. Tang, and T. Tse, “Identification of categories
and choices in activity diagrams,” in International Conference on
Software Quality, pp. 55–63, 2005.

[15] A. Hettab, E. Kerkouche, and A. Chaoui, “A graph transformation
approach for automatic test cases generation from UML activity
diagrams,” Proceedings of the Eighth International Conference on
Computer Science & Software Engineering, pp. 88–97, 2015. DOI:
10.1145/2790798.2790801

[16] M. Shirole, M., Kommuri, and R. Kumar, “Transition sequence
exploration of UML activity diagram using evolutionary algorithm,”

Proc. 5th India Software Engineering Conference, pp. 97–100, 2012.
DOI: 10.1145/2134254.2134271

[17] E. V. Sunitha and P. Samuel, “Enhancing UML activity diagrams using
OCL,” IEEE International Conference on Computational Intelligence
and Computing Research, 2013.

[18] P. K. Arora and R. Bhatia, “Agent-based regression test case generation
using class diagram, use cases and activity diagram,” Procedia
Computer Science, vol. 125, pp. 747–753, January 2018. DOI:
10.1016/j.procs.2017.12.096

[19] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, and X. Li, “UML activity
diagram-based automatic test case generation for Java programs,” The
Computer Journal, vol. 52, no. 5, pp. 545–556, 2006. DOI:
10.1093/comjnl/bxm057

[20] P. G. Sapna and B. Arunkumar, “An approach for generating minimal
test cases for regression,” Procedia Computer Science, vol. 47, pp. 188–
196, 2015. DOI: 10.1016/j.procs.2015.03.197

[21] Y. Rahmoune, A. Chaoui, and E. Kerkouche, “A framework for
modeling and analysis UML activity diagram using graph
transformation,” Procedia Computer Science, vol. 56, pp. 612–617,
2015.

[22] T. S. Staines, “Intuitive mapping of UML 2 activity diagrams into
fundamental modeling concept Petri net diagrams and colored Petri
nets,” Engineering of Computer-Based Systems, ECBS 2008. 15th
Annual IEEE International Conference and Workshop, pp. 191–200,
March 2008.

[23] L. J. Ayed and N. Hamdi, “From UML activities diagrams to event B,”
IFAC Proceedings, vol. 42, no. 4, pp. 420–425, 2009.

[24] C. Snook and M. Butler, “UML-B: Formal modeling and design aided
by UML,” ACM Transactions on Software Engineering and
Methodology, vol. 15, no. 1, pp. 92–122, January 2006. DOI:
10.1145/1125808.1125811

[25] P. Amey, “Dear sir, yours faithfully: an everyday story of formality,”
Practical Elements of Safety, Proceedings of the 12th Safety-Critical
Systems Symposium, pp. 3–15, 2004.

[26] C. M. Banks, “Introduction to modeling and simulation,” in Modeling
and Simulation Fundamentals: Theoretical Underpinnings and Practical
Domains, J. Sokolowski and C. Banks, Eds. Wiley, 2010.

[27] M. D. Petty, “Verification, validation, and accreditation,” in Modeling
and Simulation Fundamentals: Theoretical Underpinnings and Practical
Domains, J. Sokolowski and C. Banks, Eds. Wiley, April 2010.

[28] F. D. McKenzie, “Systems modeling: Analysis and operations research,”
in Modeling and Simulation Fundamentals: Theoretical Underpinnings
and Practical Domains, J. Sokolowski and C. Banks, Eds. Wiley, April
2010.

[29] S. Dupuy-Chessa and L. du Bousquet, “Validation of UML models
thanks to Z and Lustre,” Proc. FME: Formal Methods for Increasing
Software Productivity, International Symposium of Formal Methods
Europe, 2001. DOI: 10.1007/3-540-45251-6_14

[30] S. Al-Fedaghi, “UML sequence diagram: An alternative model,”
International Journal of Advanced Computer Science and Applications
(IJACSA), vol. 12, no. 5, 2021. DOI: 10.14569/IJACSA.2021.0120576

[31] M. H. Slater and A. Borghini, “Introduction: Lessons from the scientific
butchery,” in Carving Nature at Its Joints: Natural Kinds in Metaphysics
and Science, J. Keim Campbell, M. O’Rourke, and M. H. Slater, Eds.,
MIT Press, 2013. DOI: 10.7551/mitpress/9780262015936.003.0001

[32] M. Bures, B. S. Ahmed, and K. Z. Zamli, “Prioritized process test: An
alternative to current process testing strategies,” International Journal of
Software Engineering and Knowledge Engineering, vol. 29, no. 07, pp.
997–1028, 2019. DOI: 10.1142/S0218194019500335.

https://dx.doi.org/10.14569/IJACSA.2021.0120576

