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Abstract—The main challenge presented by the design of
laminated composite material is the laminate layup, involving a
set of fiber orientations, composite material systems, and stacking
sequences. In nature, it is a combinatorial optimization problem
with constraints that can be solved by the genetic algorithm.
The traditional approach to solve a constrained problem is
reformulating the objective function. In the present study, a new
variant of the genetic algorithm is proposed for the design of
composite material by using a mix of selection strategies, instead
of modifying the objective function. To check the feasibility of
a laminate subject to in-plane loading, the effect of the fiber
orientation angles and material components on the first ply failure
is studied. The algorithm has been validated by successfully
optimizing the design of cross-ply laminate under different in-
plane loading cases. The results obtained by this algorithm are
better than works in related literature.
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I. INTRODUCTION

Composite materials offer improved strength, stiffness,
fatigue, corrosion resistance, etc. over conventional materials,
and are widely used as materials for applications ranging from
the automotive to shipbuilding industry, electronic packaging
to golf clubs, and medical equipment to homebuilding. How-
ever, the high cost of fabrication of composites is a critical
drawback to its application. For example, the graphite/epoxy
composite part may cost as much as 650 to 900 per kilogram.
In contrast, the price of glass/epoxy is about 2.5 times less.
Manufacturing techniques such as sheet molding compounds
and structural reinforcement injection molding are used to
lower the costs for manufacturing automobile parts. An al-
ternative approach is using hybrid composite materials.

The mechanical performance of a laminate composite is
affected by a wide range of factors such as the thickness, mate-
rial, and orientation of each lamina. Because of manufacturing
limitations, all these variables are usually limited to a small set
of discrete values. For example, the ply thickness is fixed, and
ply orientation angles are limited to a set of angles such as 0,
45, and 90 degrees in practice. So the search process for the
optimal design is a discrete optimization problem that can be
solved by the GA. To tailor a laminate composite, the GA has
been successfully applied to solve laminate design problems
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. The GA
simulates the process of natural evolution, including selection,
crossover, and mutation according to Darwin’s principle of
”survival of the fittest”. The known advantages of GAs are
the following: (i) GAs are not easily trapped in local optima
and can obtain the global optimum. (ii) GAs do not need

gradient information and can be applied to discrete optimiza-
tion problems. (iii) GAs can not only find the optimal value
in the domain but also maintain a set of optimal solutions.
However, the GA also has some disadvantages, for example,
the GA needs to evaluate the target functions many times to
achieve optimization, and the cost of the search process is
high. The GA consists of some basic parts, the coding of the
design variable, the selection strategy, the crossover operator,
the mutation operator, and how to deal with constraints. For
the variable design part, there are two methods to deal with the
representation of design variables, namely, binary string and
real value representation [1], [4], [12], [13]. Michalewicz [14]
claimed that the performance of floating-point representation
was better than binary representation in the numerical opti-
mization problem. Selection strategy plays a critical role in the
GA, which determines the convergence speed and the diversity
of the population. To improve search ability and reduce search
costs, various selection methods have been invented, and they
can be divided into four classes: proportionate reproduction,
ranking, tournament, and genitor(or ”steady state”) selection.
In the optimization of laminate composite design, the roulette
wheel [1], [15], where the possibility of an individual to be
chosen for the next generation is proportional to the fitness.
Soremekun et al. [16] showed that the generalized elitist
strategy outperformed a single individual elitism in some
special cases.

The data structure, repair strategies, and penalty functions
[17] are the most commonly used approaches to resolve con-
strained problems in the optimization of composite structures.
Symmetric laminates are widely used in practical scenarios,
and data structures can be used to fulfill symmetry constraints,
which consists of coding half of the laminate and considering
the rest with the opposite orientation. Todoroki [4] introduced
a repair strategy that can scan the chromosome and repair the
gene on the chromosome if it does not satisfy the contiguity
constraint. The comparison of repair strategies in a permutation
GA with the same orientation was presented by Liu et al. [5],
and it showed that the Baldwinian repair strategy can sub-
stantially reduce the cost of constrained optimization. Haftka
and Todoroki [1] used the GA to solve the laminate stacking
sequence problem using a penalty function subject to buckling
and strength constraints.

In typical engineering applications, composite materials are
under very complicated loading conditions, not only in-plane
loading but also out-of-plane loading. Most of the studies on
the optimization of the laminate composite material minimized
the thickness [18], [7], weight [19], [20], [21], and cost and
weight [20], [22], or maximized the static strength of the
composite laminates for a targeted thickness [7], [8], [23],
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[24]. In the present study, the cost and weight of laminates
are minimized by modifying the objective function.

To check the feasibility of a laminate composite by im-
posing a strength constraint, failure analysis of a laminate is
performed by applying suitable failure criteria. The failure
criteria of laminated composites can be classified into three
classes: non-interactive theories (e.g. maximum strain), inter-
active theories (e.g. Tsai-wu), and partially interactive theories
(e.g. Puck failure criterion). Previous researchers adopted the
first-ply-failure approach using Tsai-wu failure theory [25],
[26], [19], [27], [28], [29], [22], [30], Tsai-Hill [31], [32],
the maximum stress [33], or the maximum strain[33] static
failure criteria. Akbulut [11] used the GA to minimize the
thickness of composite laminates with Tsai-Hill and maximum
stress failure criteria, and the advantage of this method is it
avoids spurious optima. Naik et al. [34] minimized the weight
of laminated composites under restrictions with a failure
mechanism-based criterion based on the maximum strain and
Tsai-wu. In the present study, Tsai-wu Static failure criteria
are used to investigate the feasibility of a laminate composite.

II. CLASSICAL LAMINATION THEORY

A laminate structure consists of multiple laminae bonded
together through their thickness. Considering a laminate com-
posite plate that is subject to in-plane loading of extension,
shear, bending, and torsion, the classical lamination theory
(CLT) is taken to calculate the stress and strain in the local
and global axes of each ply, as shown in Fig. 1. Based on
fiber orientation, material, and fiber thickness, there are a few
special cases of laminate: the set of fiber angles in Fig. 2 only
includes 0 and 90, which is called cross-ply laminate.

A. Stress and Strain in Lamina

For a single lamina, the stress-strain relation in local axis
1-2 is: [

σ1

σ2

τ12

]
=

[
Q11 Q12 0
Q12 Q22 0

0 0 Q66

][
ε1

ε2

γ12

]
, (1)

where Qij are the stiffnesses of the lamina that are related

Fig. 1. Local and Global Axes of an Angle Lamina.

0

90

· · ·
0

90

Fig. 2. Model for Cross-ply Laminate.

to engineering elastic constants given by

Q11 =
E1

1− v12v21
,

Q22 =
E2

1− v12v21
,

Q66 = G12,

Q12 =
v21E2

1− v12v21
,

(2)

where E1, E2, v12, G12 are four independent engineering
elastic constants, which are defined as follows: E1 is the
longitudinal Young’s modulus, E2 is the transverse Young’s
modulus, v12 is the major Poisson’s ratio, and G12 is the in-
plane shear modulus.

Stress strain relation in the global x-y axis:[
σx
σy
τxy

]
=

 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

[ εx
εy
γxy

]
, (3)

where

Q̄11 = Q11c
4 +Q22s

4 + 2 (Q12 + 2Q66) s2c2,
Q̄12 = (Q11 +Q22 − 4Q66) s2c2 +Q12

(
c4 + s2

)
,

Q̄22 = Q11s
4 +Q22c

4 + 2 (Q12 + 2Q66) s2c2,
Q̄16 = (Q11 −Q12 − 2Q66) c3s− (Q22 −Q12 − 2Q66) s3c,
Q̄26 = (Q11 −Q12 − 2Q66) cs3 − (Q22 −Q12 − 2Q66) c3s,
Q̄66 = (Q11 +Q22 − 2Q12 − 2Q66) s2c2 +Q66

(
s4 + c4

)
.

(4)

The c and s denote cosθ and sinθ, respectively.

The local and global stresses in an angle lamina are related

to each other through the angle of the lamina θ[
σ1

σ2

τ12

]
= [T ]

[
σx
σy
τxy

]
(5)

where

[T ] =

 c2 s2 2sc
s2 c2 −2sc
−sc sc c2 − s2

.

 (6)

B. Stress and Strain in a Laminate

[
Nx
Ny
Nxy

]
=

[
A11 A12 A16

A12 A22 A26

A16 A26 A66

] ε0
x

ε0
y

γ0
xy


+

[
B11 B12 B16

B11 B12 B16

B16 B26 B66

][
kx
ky
kxy

]
[
Mx

My

Mxy

]
=

[
B11 B12 B16

B12 B22 B26

B16 B26 B66

] ε0
x

ε0
y

γ0
xy


+

[
D11 D12 D16

D11 D12 D16

D16 D26 D66

][
kx
ky
kxy

]
(7)

Nx, Ny - normal force per unit length
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Nxy - shear force per unit length

Mx,My - bending moment per unit length

Mxy - twisting moments per unit length

ε0, k- mid-plane strains and curvature of a laminate in x-y
coordinates

The mid-plane strain and curvature is given by

Aij =

n∑
k=1

(Qij)k(hk − hk−1)i = 1, 2, 6, j = 1, 2, 6,

Bij =
1

2

n∑
k=1

(Qij)k(h2
k − h2

k−1)i = 1, 2, 6, j = 1, 2, 6,

Dij =
1

3

n∑
k=1

(Qij)k(h3
k − h3

k−1)i = 1, 2, 6, j = 1, 2, 6,

(8)

where the [A], [B], and [D] matrices are called the exten-
sional, coupling, and bending stiffness matrices.

III. FAILURE THEORY

A. Failure Process

A laminate will fail under increasing mechanical loading;
however, the procedure of laminate failure may not be catas-
trophic. In some cases, some layers fail first, and the rest are
able to continue to take additional loading until all the plies
fail. A ply is fully discounted when a ply fails; then, the ply is
replaced by a near-zero stiffness and strength. The procedure
for finding the first ply failure in the present study follows the
fully discounted method:

1) Compute the reduced stiffness matrix [Q] referred
to as the local axis for each ply using its four
engineering elastic constants E1, E2, E12, and G12.

2) Calculate the transformed reduced stiffness [Q̄] refer-
ring to the global coordinate system (x, y) using the
reduced stiffness matrix [Q] obtained in step 1 and
the ply angle for each layer.

3) Given the thickness and location of each layer, the
three laminate stiffness matrices [A], [B], and [D]
are determined.

4) Apply the forces and moments, [N ]xy, [M ]xy solve
Equation 7, and calculate the middle plane strain
[σ0]xy and curvature [k]xy .

5) Determine the local strain and stress of each layer
under the applied load.

6) Use the ply-by-ply stress-strain and related failure
theories to determine the strength ratio.

B. Tsai-wu Failure Theory

Many different theories about the failure of an angle lamina
have been developed for a unidirectional lamina, such as the
maximum stress failure theory, maximum strain failure theory,
Tsai-Hill failure theory, and Tsai-Wu failure theory. The failure
theories of a lamina are based on the stresses in the local axes
in the material. There are four normal strength parameters and
one shear stress for a unidirectional lamina. The five strength
parameters are:

(σT1 )ult = ultimate longitudinal tensile strength

(σC1 )ult = ultimate longitudinal compressive strength

Evaluate all individuals

Is Converge?

Selection

Crossover

Mutation

End

No

Yes

Fig. 3. Traditional GA Model.

(σT2 )ult = ultimate transverse tensile strength

(σC2 )ult = ultimate transverse compressive strength

(τ12)ult = and ultimate in-plane shear strength

In the present study, Tsai-wu failure theory is taken to
decide whether a lamina fails, because this theory is more
general than the Tsai-Hill failure theory, which considers two
different situations, the compression and tensile strengths of a
lamina. A lamina is considered to fail if

H1σ1 +H2σ2 +H6τ12 +H11σ
2
1 +H22σ

2
2

+H66τ
2
12 + 2H12σ1σ2 < 1

(9)

is violated, where

SR =
Maximum Load
Load Applied

(10)

The maximum load refers to that can be applied using Tsai-
wu failure theory.

IV. GENETIC ALGORITHM MODEL

The genetic algorithm starts with multiple individuals with
limited chromosome lengths, in which maybe none of these
individuals fulfill the constraints. The GA is assumed to derive
appropriate offspring based on the initial population as the
GA continues. The traditional way to handle the constrained
search of the GA is either to introduce repair strategies or to
use a penalty function. Fig. 3 shows the classic flow chart
of a GA framework, which includes selection, crossover, and
mutation operators. However, GA is originally proposed to
solve unconstrained problems; therefore, we suggest a new
approach to address the constrained GA search problem in an
unconstrained way.

Because of the existence of constraints, the population not
only can be sorted by the fitness (obtained by the objective
function) but also sorted by the constraint value obtained by
the constraint function (assuming a constraint function exists),
so the parents of the next generation can be chosen by the
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following three approaches. First, the population is sorted by
fitness in ascending order, and individuals with smaller fitness
are selected. These selected individuals form a group named
as a proper group. Second, remove individual which satisfies
constraints, and sort population by the difference between the
individual’s constraint value and the threshold of the constraint
in descending order, and individuals with bigger differences
are chosen to be the parents of the next generation. The group
which forms are called potential group, and an individual from
this group is referred to as a potential individual. Third, the
population is sorted by fitness from low to high after removing
individuals which fail to fit the constraints, select individuals
with bigger fitness, and these individuals form the proper
group. So the final parents’ pool is consists of three groups,
active group, potential group, and proper group. The number of
active individuals, potential individuals, and proper individuals
are called, respectively, active number, potential numbers, and
proper number.

Each group in the parents’ population has its role in
the searching process. The problem within traditional GA
is premature and has weak local search ability, therefore,
traditional GAs are more likely to get stuck in a local optimum.
To prevent the GA from experiencing early convergence and
to improve the local search performance, the active group is
proposed to overcome this problem. As its name suggests,
this group would always live in the population. Because both
active individual’s fitness and constraint value are small, each
individual can be treated as an independent gene clip. So their
existence enriches the gene clip variety of the mating pool.
The offspring of two active individuals are more likely to be
active individuals, which can maintain the active group.

For an individual in the potential group, it doesn’t satisfy
the constraint, however, it’s supposed to evolve into a proper
individual after multiple generations by modifying its chromo-
some structure or length. The crossover operation could happen
between a potential individual with an active individual, or a
potential individual, or a proper individual. The child of an
active individual and a potential individual is more likely to be
a potential individual, and this active individual could inject a
new gene clip into this potential individual, therefore providing
a new evolution direction.

A proper individual means a feasible solution, which fulfills
all the constraints. However, there are still some drawbacks
within it, for example, its fitness is low. The crossover opera-
tion could happen between a proper individual and any other
individuals.

The mutation operator for an active group is different from
the potential group and proper group because their roles in the
searching process are different: the target of the potential group
and proper group is to obtain a feasible solution; however, the
role of the active group is to maintain the variety of gene clips
in the mating pool.

Fig. 4 shows the flow chart of the proposed GA. First, the
population is divided into three groups, active group, potential
group, and proper group by the above-mentioned method.
Second, select an appropriate number of individuals from each
group as parents, and the various selection scheme can be taken
for each group.

The searching process can be divided into two phases
according to whether proper individuals are generated or not.
During the initial stage, no individual in the population is
appropriate, which means the number of individuals in the
proper group is zero. Both active group and potential group

are full. After a couple of generations, some proper individuals
could be produced. Then, the GA comes to its second phase,
the number of proper individuals begins to increase, finally,
the number in the proper group reaches its upper bound.

V. EXPERIMENT

First, we formulate a constrained problem by searching
the optimal stacking sequence of cross-ply laminate under
in-plane loading under the constraint whose strength ratio is
not less than two. Each lamina dimensions 1000 × 1000 ×
0.165mm3 is adopted in this experiment, each graphite/epoxy,
and glass/epoxy layer is assumed to cost 2.5 and 1 monetary
unit, respectively. The other material properties are shown in
Table I.

TABLE I. COMPARISON OF THE GRAPHITE/EPOXY AND GLASS/EPOXY
PROPERTIES

Property Symbol Unit Graphite/Epoxy Glass/Epoxy

Longitudinal elastic modulus E1 GPa 181 38.6
Traverse elastic modulus E2 GPa 10.3 8.27
Major Poisson’s ratio v12 0.28 0.26
Shear modulus G12 GPa 7.17 4.14
Ultimate longitudinal tensile strength (σT

1 )ult MP 1500 1062
Ultimate longitudinal compressive strength (σC

1 )ult MP 1500 610
Ultimate transverse tensile strength (σT

2 )ult MPa 40 31
Ultimate transverse compressive strength (σC

2 )ult MPa 246 118
Ultimate in-plane shear strength (τ12)ult MPa 68 72
Density ρ g/cm3 1.590 1.903
Cost 2.5 1

A. Problem Formulation

In the present experiment, the optimal composite se-
quences, and the number of layers for a targeted strength

Evaluate all individuals

Is converge?

No

Yes

populationEnd

active group

active parents

potential group

potential parents

classification

selection

proper group

proper parents

offspring

crossover

active offspring
mutation

potential and proper offspring

Fig. 4. General Flowchart of Proposed GA Model in which the Parents is
Consist of three Different Groups.
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ratio under in-plane loading conditions are investigated. The
aim is to minimize the mass of a laminate composite for a
targeted strength ratio based on the Tsai-wu failure theory.
The design variables are the ply angles and the number of
layers. Ply orientation restricted to a discrete set of angles
(0, and 90 degrees). The problem can be formulated as the
following equation:

Find: {θk, n} θk ∈ {0, 90},

Minimize: weight,

Subject to: strength ratio.

B. GA Operation

In the present study, floating encoding is adopted to rep-
resent a solution for the layup design of cross-ply laminate,
Fig. 5(a) shows two parents P1 and P2 represent two cross-ply
laminates, the corresponding laminates layups are [03/907] and
[06/904], respectively; Fig. 5(b) shows two offspring of parents
P1 and P2 are consist of half of each parent’s chromosome;
Fig. 5(c) and 5(d) display the offspring after length and angle
mutation, respectively.

For the length mutation of chromosome, calculate the
chromosome’s strength ratio based on its sequence, if its
strength ratio is less than the threshold, then increase its length;
otherwise, reduce it. We introduce the term length mutation
coefficient to control the length mutation. As shown in Fig.
5(b), the strength ratio of O1 chromosome is 0.0854, and the
strength ratio threshold is five. Suppose the length mutation
coefficient takes two, then the corresponding increase length
is the multiplication result of length mutation coefficient and
the difference between current strength ratio and the threshold:
the result is 5× (2− 0.0854), round this number to its closest
integer, which is 9. So the length of offspring O1 changes
from 10 to 19 after length mutation. For the angle mutation,
randomly swap the gene from 0 to 90 in the chromosome, or
the otherwise.

90 90 0 0 0 90 90 90 90 90P1:

0 0 90 90 90 0 0 90 0 0P2:

(a): Parents P1 and P2

90 90 0 0 0 0 0 90 0 0O1:

0 0 90 90 90 90 90 90 90 90O2:

(b): Offspring O1 and O2

90 90 90 · · · 90 90 0 · · · 0 0

10 9

O1:

(c): Offspring O1 after lenght mutation

90 90 90 · · · 90 0 0 · · · 0 0

O1:

(d): Offspring O1 after angle mutation

Fig. 5. Examples of Crossover, Length Mutation, Angle Mutation Operator
for Proposed GA.

Fig. 6. Percentage of Active Individuals from Active Group, Potential
Individuals from Potential Group, and Proper Individuals from Proper Group

in Parent Population.

C. GA Parameters

Table II shows related GA parameters: the population is 40,
and 50 percent is as the mating pool, so the parent population
is 20; as shown in Fig. 6, the percentage of active individuals
from the active group, potential individuals from the potential
group, and proper individuals from the proper group are 0.3,
0.3, and 0.4, which means the corresponding number of these
three types of individuals are 6, 6, and 8, respectively.

VI. NUMERICAL RESULTS AND DISCUSSION

To figure out how the number of individuals in each
group varies during the GA process, we conduct a one-
time experiment and show the number of individuals in each
generation with respect of GA generation. Second, to verify its
performance and stability, the GA is run one hundred times: the
best, worst case, and average results are presented, respectively.
Finally, we compare the results with the work in the other
literature.

TABLE II. PARAMETERS OF PROPOSED GA MODEL

Parameter Value

Population 40
Initial length range [3-15]
Encoding Integer
Percentage of parent 0.5
Percentage of active group 0.3
Percentage of potential group 0.3
Percentage of proper group 0.4
Selection strategy for active group Ranking
Selection strategy for potential group Ranking
Selection strategy for proper group Ranking
Crossover strategy One-point
Mutation strategy Mass mutation
Length mutation coefficient 5
Angle mutation rate 0.1
Crossover rate 0.3
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Fig. 7 shows the number of individuals in each group
during the one-time GA process. For both active group and
potential group, the number of individuals is fixed, and equal to
its upper bound from the beginning to the end of the searching
process. However, for the proper group, at the initial stage
of GA, no individual fulfills the constraint, so the number
of proper individuals is zero. As seen from Fig. 7, after
forty generations, proper individuals appear, and its population
increases very quickly up to its upper bound.

There are two approaches that the GA could obtain a
better solution: the first is increasing the length of the chro-
mosome; the second one is adjusting the internal structure
of a chromosome. The GA process can be divided into two
phases by whether there are proper individuals or not. Fig. 8
shows the GA process in which the dashed vertical line is the
watershed between the initial phase and the last phase. In the
initial phase, no individual’s strength ratio is over the specified
threshold, and the main reason that the fitness gets smaller
gradually is the increase of chromosome’s length; At point 1
on the fitness curve, the fitness suddenly goes up, however, the
corresponding strength ratio of point 1, denoted by the point
1′ on the generation-strength ratio curve, also increases. it is
because of the adjustment of a chromosome’s layup. Then GA
comes to its second phase. During this phase, the GA already
found proper individuals which could satisfy the constraint,
so the target in this stage is to improve fitness. This means
GA needs to adjust its inner structure, at the point 2 and 3
on the generation-fitness curve, the fitness curves go up, and
the corresponding strength ratio of these two points slightly
go down, but both of them still satisfy the constraint.

Table III shows the searching results after conducting
this experiment one hundred times in two length mutation
coefficient cases for glass-epoxy and graphite-epoxy material,
respectively. The best, worst case, and average experiment
results are showed in this table. For the glass-epoxy material,
if the length mutation coefficient takes one, the best and worst
sequences are [040/9026]s, [9024/038/9̄0]s; the average mass,
cost, and the number of layers are 7.83, 123, 123. If we
increase its length mutation coefficient, suppose it is five,
the number of layers for best and worst cases are 125 and
136; the average mass, cost, and number of layers are 8.55,
131, 131. When graphite-epoxy is taken as the experiment

Fig. 7. Number of Individuals in Each Group as a Function of Generation.

b

TABLE III. THE OPTIMUM LAYUP FOR THE LOADING Nx = 1e6 N WHEN
CHANGING THE LENGTH MUTATION COEFFICIENT, THE PERFORMANCE

OF THE GA CAN BE IMPROVED WHEN THE LENGHT MUTATION
COEFFICIENT IS SMALLER.

Length mutation
coefficient Material case Stacking sequence Strength ratio Mass Cost Layer

1

glass-epoxy
worst [040/9026]s 2.010 8.58 132 132
best [9024/038/9̄0]s 2.078 8.12 125 125

average 2.012 7.83 123 123

graphite-epoxy
worst [09/904/0̄]s 2.17 1.41 68 27
best [09/901/0̄]s 2.15 1.10 53 21

average 2.018 1.47 70 28

5

glass-epoxy
worst [036/9032]s 2.009 8.84 136 136
best [036/9026/9̄0]s 2.003 8.12 125 125

average 2.008 8.55 131 131

graphite-epoxy
worst [09/9012]s 2.006 2.20 105 42
best [08/903/0̄]s 2.001 1.20 57 23

average 2.022 1.54 73 29

material, similar experiment results are found. Comparing
these two results, we see that a bigger value of length mutation
coefficient can improve this GA’s performance. This is because
the mutation coefficient can control both the convergence speed
and search performance, a small mutation coefficient would
slow the convergence speed, however, it would lead to small-
grained exploitation in the local space.

Table IV shows the optimal cross-ply sequences by the
proposed GA and Choudhury and Mondal’s [30] study. For
the loading case Nx = 1 MPa m, the optimal layups are a
[068/9072] cross-ply laminate if glass-epoxy is taken; however,
in the present study, a [9024/038/9̄0]s glass-epoxy cross-
ply laminate is found which significantly reduces both the
cost and weight, and it satisfies the constraint. Similarly, if
graphite-epoxy is taken, compared with the [017/9018] cross-
ply laminate, an alternative solution is found, its layup is
[09/901/0̄]s. For both cases, we can see that the experiment
results show that using the present proposed GA can obtain
better results.

Fig. 8. The Fitness is the Negation of the Individual’s Mass. The Solid
Curve is the Fitness of the Best Individual in the Population in Respect to
the Generations; and the Dotted Line Denotes its Corresponding Strength
Ratio. If no Individuals in the Population Satisfy the Constraint, the best

Individual is the one with the Biggest Strength Ratio; if not, the best
Individual is the one with the Smallest Mass.
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TABLE IV. COMPARISON OF EXPERIMENT RESULTS OF CHOUDHURY
AND MONDAL’S[30] AND CURRENT STUDY UNDER IN-PLANE LOADING
Nx = 1e6 N. THE RESULTS OF PRESENT STUDY IS FROM PREVIOUS

EXPERIMENT.

Cross Ply [0M/90N ] Choudhury and Mondal’s study Present study

Material Glass-Epoxy Graphite-Epoxy Glass-Epoxy Graphite-Epoxy
M 68 17 76 19
N 72 18 49 2

no. of lamina(n) 140 35 125 21
SR 2.01 2.10 2.078 2.15

weight 9.10 1.84 8.12 1.10
cost 140 87.5 125 53

VII. CONCLUSIONS

In this paper, we reviewed the use of the proposed genetic
algorithm framework, classical lamination theory, and Tsai-
Wu failure theory for the layup design for cross-ply laminate
under different loading cases. The principal applications of
this genetic algorithm are in the design of composite laminate
material with imposed constraints.

The main contribution of the present work is the ge-
netic algorithm framework for constrained problems since
the traditional genetic algorithm is primarily concerned with
solving the unconstrained problem, which is not suitable for
a constrained case. We deal with these constrained problems
by the use of mixing strategies of selection methods instead
of adding any punishment terms into the objective function.
The performance of this algorithm is heavily influenced by
the coefficient of the length mutation. Both for the glass-
epoxy and graphite-epoxy material cases, if the coefficient
takes a relatively low value, this algorithm can obtain better
results than when the coefficient value is high. However, The
algorithm converged more quickly with a high coefficient value
of length mutation.

This variant of the genetic algorithm provides a new
approach to address the constrained search, and this method
can be easy to apply in other domains. A drawback of the
proposed genetic algorithm is more parameters involving in
this GA, which makes fine-tuning more difficult.
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