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Abstract—Automatically real-time synthesizing behaviors for
a six-legged walking robot pose several exciting challenges, which
can be categorized into mechanics design, control software, and
the combination of both. Due to the complexity of control-
ling and automation, numerous studies choose to gear their
attention to a specific aspect of the whole challenge by either
proposing valid and low-power assumption of mechanical parts
or implementing software solutions upon sensorial capabilities
and camera. Therefore, a complete solution associating both
mechanical moving parts, hardware components, and software
encouraging generalization should be adequately addressed. The
architecture proposed in this article orchestrates (i) interlocutor
face detection and recognition utilizing ensemble learning and
convolutional neural networks, (ii) maneuverable automation of
six-legged robot via hexapod locomotion, and (iii) deployment
on a Raspberry Pi, that has not been previously reported in
the literature. Not satisfying there, the authors even develop one
step further by enabling real-time operation. We believe that our
contributions ignite multi-research disciplines ranging from IoT,
computer vision, machine learning, and robot autonomy.
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I. INTRODUCTION AND MOTIVATION

Controlling a multi-legged robot receives a vast research
endeavor in the literature. At first, researchers scrutinized
the advantages of a legged robot over a wheeled one by
investigating the degrees of freedom, mechanical structure,
gait generation, and body stabilization on difficult terrain
[1]. Then a scheme of the locomotion control approach by
mimicking the biological movement of legs and basic motion
pattern was investigated. The simulation and modeling were
developed on either the eight-legged or six-legged robot. The
feedback taken from the environment was collected from motor
sensors [2]. By mimicking the physical structure of legged
animals, engineers can implement a more stable and faster
walking robot. A six-legged walking robot whose kinetic chain
of legs based on the biomechanics of the cockroach was
prototyped by [3]. The motion mechanisms were controlled
by a PLC controller, and the two-degree-of-freedom robot
only moved in a straight direction. Another work researched
dynamic forward legged locomotion toward a static object
using a single monolithic controller. Two virtual quadrupedal
robots were used [4]. Another two papers have done intensive
experiments and modeling of the robot stability and energy
consumption analysis [5], [6]. Many other research articles
have strengthened the aspect of sensor-based feedback, and
mechanics can be found in [7], [8], [9].

Computer vision on Raspberry Pi is overwhelming on its
own field [10], [11], [12]. The tasks can be narrowed to object
detection and recognition, home automation, and surveillance,
combining camera and software libraries [13], [14]. The idea of
real-time face detection deployed on a telepresence robot was
proposed in [15], where two Raspberry Pi boards were utilized
to achieve real-time detection. They developed a technique to
enable real-time detection on a Raspberry Pi and using the
result to control the pan and tilt unit of a telepresence robot.
The user can either robot’s movement by turning or rotating
the smartphone or set the robot to follow the face of someone
who is at the robot place.

This article aims to bring the two separate research direc-
tions into one choir where robot automation, IoT, computer
vision, and machine learning operate several complex tasks
in real-time. Many contributions of owner work are follows.
First, we propose a prototype and mechanical structure of a
six-legged working robot. Second, we propose an architecture
of convolutional neural networks that work very effectively
regarding highly accurate face recognition and be able to
deploy on a Raspberry Pi. Third, we implement a complete
robot automation solution.

The article is organized as follows. Section (II) briefly
presents the background on Haar-like features, boosting tech-
nique in machine learning, the cascade of weak classifiers to
form a strong one, and convolutional neural networks. These
materials help readers understand the underlying techniques
that address the tasks of face detection and recognition. Section
(III) summarizes several main hardware components used in
the experimental robot. Many software libraries, e.g., espe-
cially related to convolutional neural networks, are introduced
in Section (IV). Our main contributions of this research article
are presented in Section (V), where the authors describe the
system architecture and its three sub modules, e.g., face de-
tection, owner recognition, and kinematic automation. Section
(VI) present the experiments and experimental remarks. And
Section (VII) concludes our work.

II. BACKGROUND AND STATE OF THE ART

A. Haar-like Features

Object detection utilizing Haar feature-based cascade clas-
sifiers is an effective object detection method [16].It is a
machine-learning-based model where a cascade function is
trained from a lot of positive and negative observations. In
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our experiments, images of and images without faces are the
positive and negative observations, respectively.

Concretely, a general image makes up of pixel in which
a person or a computer vision algorithm can recognize many
distinctive shapes or patterns, partly depending on the level
of contraction. During the creation of a Haar cascade, various
parts of the image are cropped and scaled so that we consider
only a few pixels that we call a window at a time. We will
subtract some of the grayscale pixel values from others to
measure the window’s similarity to specific common shapes
where a dark region meets a light area. If a window is very
similar to one of these archetypes, it can be selected as a
feature at similar positions and magnifications relative to each
other. We expect to find similar features across all images of
the same investigated subject.

The problem of determining the face of a person in an
image is the problem of binary classification: face or not. To
identify faces with Haar features, we apply Haar’s features
throughout the image, areas that are considered to be most
similar to Haar features will be marked. Haar-like featuring
is the most basic method of facial recognition. It will add a
Haar feature to the whole image. The area that looks like it
will identify it as the face. There will be many areas in the
image where the algorithm recognizes a face. However, we do
not just use a Haar feature but use a lot of features in different
image positions and sizes to exclude these areas.

B. Adaptive Boosting

In machine learning [17], [18], we might take random
guessing as a default baseline for evaluation reference to other
learning models. A learning model is weak when it is slightly
better than random guessing, while the strong one accurately
classifies elements most of the time. In practice, it may not
be competent to entirely rely upon the performance of just
one machine learning model. Ensemble learning [19], [20]
offers a systematic solution to combine the predictive power of
multiple learners referring to learning a weighted combination
of base models [21], [22]. The resultant model gives the ag-
gregated output from several models. The aggregation models
could be either from the same learning algorithm or different
learning algorithms. The objective is to produce a classifier
called C, where the output is the prediction confidence. We
denote N as the number of observations. Hence, the total error
E of classifier C is defined as follows:

E(C) =

N∑
i=1

exp(−ciC(xi)) , (1)

where ci = ±1 for the classification of observation xi. Note
that we consider binary classification for a simplified discus-
sion. In Equation (1), ci and C(vi) have the same sign if C
highly confidently assign sample xi with large absolute value
of C(xi). Consequently, its exponential error exp(−ciC(xi))
contribute very little to the total error E(C) and visa versa.

AdaBoost, short for Adaptive Boosting, is widely used
as an ensemble learner. It focuses on classification prob-
lems and aims to convert a set of weak classifiers into a
strong one. It uses in conjunction with many other types of

learning algorithms to improve performance. Conceptually,
AdaBoost iteratively generates a series of classifiers Cm. In
each iteration, the classifier is improved by concentrating on
the misclassified observations. Therefore, each classifier is
more accurate than its predecessor. It is generated as a linear
combination of weak classifiers, and their coefficient gives the
confidence of these weak classifiers.

Let initialize C1 to the weak classifier f1(x) which misclas-
sifies the least training samples. We denote β1 as its coefficient,
and the value is chosen concerning minimize the following
error:

E(C1) =

N∑
i=1

exp(−ciβ1f1(xi))

=
∑

ci 6=f1(xi)

exp(β1) +
∑

ci=f1(xi)

exp(−β1) ,
(2)

where ci and f1(xi) obtain the values of +1 or −1. Then, the
difference with respect to β1 is calculated as follows:

dE(C1)

dβ1
=

∑
ci 6=f1(xi)

exp(β1)−
∑

ci=f1(xi)

exp(−β1) . (3)

We denote NA as the number of observations that have
been accurately classified. Hence, we have

dE

dβ1
= (N −NA) exp(β1)−NA exp(−β1) . (4)

By setting Equation (4) to zero, we solve for β1 to find the
extreme as follows:

exp(2β1) =
NA

N −NA

β1 =
1

2
log

NA

N −NA
.

(5)

As previously mentioned, the weak learners should be
better than random guessing. Consequently, NA cannot be less
than N/2, and the more considerable value of NA is, the more
confidence it indicates. The total error through m iterations is
calculated as follows:

E(Cm) =

N∑
i=1

exp(−ciCm−1(xi))− ciβmfm(xi)

=

N∑
i=1

exp(−ciCm−1(xi)) exp(−ciβmfm(xi))

= exp(−βm)
∑

ci=fm(xi)

vi,m

+ exp(βm)
∑

ci 6=fm(xi)

vi,m ,

(6)
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where vi,m is the weights.

Weight is the exponential error that the current weak
classifier produces when predicting observation xi. Hence,
Equation (6) can be split as follows:

E(Cm) = exp(−βm)

N∑
i=1

vi,m

+ (exp(βm)− exp(−βm))
∑

ci 6=fm(xi)

vi,m .
(7)

As we can see in Equation (7), the second summation
depends on the classifier fm. Consequently, the classifier which
produces the sum of weights over the accurately classified
observations is the largest should be selected.

Assuming that km is selected, we differentiate the total
error concerning βm and set the resultant difference to zero,
solving for βm. Then βm is as follows:

βm =
1

2
log

∑
ci=fm(xi) vi,m∑
ci 6=fm(xi) vi,m

. (8)

The more accurate observations fm classifies, the larger its
weights are. The higher the weights are, the more confident it
gets. The more assured it achieves, the larger βm is produced.

C. Cascade of Classifiers

We will have a sequence of classifiers, in which each
classifier is built using the Adaboost algorithm. Now, let all
the windows go through this sequence of classifiers. The
first classifier eliminates the most negative sub-windows and
passes through the positive sub-window. Here, the classifier
is very simple, and therefore, the computational complexity
is also very low. Of course, because it is so simple, among
the windows that are recognized as faces, there will be a
large number of windows that are misidentified (not faces).
The windows passed by the first classifier will be viewed as
considered by the classifier later: if the classifier thinks it’s not
the face is removed, if the classifier thinks it’s a face, then we
pass through and move to the rear class. Later the classifier
is more complex, demanding more calculation. People call
sub-windows (templates) that the classifier doesn’t remove as
patterns that are hard to identify. The deeper these patterns
get into the sequence of classifiers, the harder it is to identify.
Only windows that pass through all the classifiers will decide
that face.

D. Convolutional Neural Networks

The high-level general CNN architecture is illustrated in
Fig. 1. Input layers are places that raw images are loaded
into. The raw images are specified by their width, height,
and number of channels. Typically, RGB values of each pixel
form three channels. Convolutional layers apply a patch of
locally connecting neurons to transform the input data from
the previous layer. Consequently, the layer calculates a dot
product between the area of the neurons in the input layer and
the weights to which they are locally connected in the output

layer. Typically, a convolution is defined as a mathematical
operation describing a rule for how to merge two sets of
information. Within this work, the authors briefly present the
CNN background that leads to the proposed architecture in
Section V-B. Further details on CNN and its next-generation
investigating transfer learning [23], [24], [25], [26], [27] leaves
to interesting readers.

Fig. 1. High-level General CNN Architecture.

III. HARDWARE COMPONENTS

A. Raspberry Pi 3 Model B

The Raspberry Pi (RP) is a small, cheap, single-size, single-
chip computer board that comes with CPU, GPU, USB ports,
and I/O pins and is capable of performing several functions.
Simple as a regular calculator [28], [29]. RP 3 Model B comes
with a 64-bit quad-core processor on a circuit board with
WiFi and Bluetooth and USB features. It has a processing
speed of 700 MHz to 1.4 GHz in which the RAM ranges
from 256 to 1GB. The device’s CPU is considered to be
the brain of the device responsible for executing instructions
based on mathematical and logical operations. The board is
equipped with Broadcom video core cable, which is mainly
used to play video games through the device. RP 3 comes with
GPIO (General Purpose Input Output) pins that are essential
for maintaining a connection with other electronic devices.
These input terminals receive commands and operate based
on the device program. An Ethernet port is integrated on this
device to establish a communication line with other devices.
The board has four USB ports that can be used to connect a
keyboard, mouse, or USB 3G connection to access the internet
and an SD card added to store the operating system. The power
connector is a basic part of the circuit board used to supply 5
V to the board. We can use any source to set the power for
the circuit board. However, we prefer to connect the power
cable via the laptop’s USB port to provide 5 V. HDMI port is
used to connect LCD or TV, can support cables versions 1.3
and 1.4. RCA Video port is used to connect the old TV screen
using 3.5mm jack without supporting the HDMI port.

B. 32 Channel USB/UART Servo Motor Controller Driver
Board

A 32 Servo control circuit can be used with the software on
the computer, wireless controller PS2, Android app, Arduino
(or other microcontrollers) through UART communication
[30]. UART stands for Universal Asynchronous Receiver/-
Transmitter. It is a physical circuit in a microcontroller, or
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a stand-alone IC. A UART’s main purpose is to transmit and
receive serial data. The 32 Servo control circuit is capable
of simultaneously controlling 32 servos smoothly, from which
users can coordinate applications to control systems for robotic
arms, industrial production lines, and machines. Servo Con-
troller software and instruction can be found at RTROBOT1.

Several important technical specifications of the board
are summarized as follows. Physical size 63mm x 45mm.
Operation voltage 5V. Servo Motor Input Voltage is 4.2V to
7.2V (According to a specific servo). CPU 32bit. Baud Rate
(USB) 115200. Baud Rate (Bluetooth UART) 4800, 9600,
19200, 38400, 57600, and 115200. Flash Capacity 16M. Servo
Motor Controller the Number Of Simultaneous 32. Max Action
Groups 256. Control precision 1us. LEDs are dedicated to CPU
power, servo motor power, and wireless remote control.

C. Camera Pi v1.3

Raspberry Pi camera has a built-in 5 Megapixel camera
with high light sensitivity, able to shoot well in many different
lighting conditions, both indoors and outdoors. A special
feature that the camera brings is high-definition photography
during movie recording. No additional USB ports are needed
for the camera as the camera is securely attached to the CSI
socket. This helps limit bandwidth bottlenecks for USB pro-
cessing chips on Raspberry circuits. The camera cable length
has been carefully calculated when it reached the required
length while ensuring the speed of image transmission from
the module to the RP. The important technical specifications of
the Pi camera follow. Resolution 2592 x 1944 (5 megapixels).
Lens f = 3.57 mm, f / 2.8. 65-degree viewing angle. Focus
range 0.69m to infinity (at 1.38m). Support 1080p @ 30 fps
with H.264 (AVC) codec, 720p @ 60fps and 640x480p @
60/90 fps. CSI interface. Three dimensions are 25 mm x 25
mm x 10 mm. Weight about 2.8g.

D. Digital RC Servo LD-1501MG Motor

Digital RC Servo LD-1501MG motor is used in complex
structured robots such as the humanoid robot, biped Robot, and
spider robot due to the outstanding characteristics2 compared
to the traditional Analog RC Servo MG995 and MG996. RC
servos or RC actuators convert electrical commands from the
receiver or control system, back into physical movement. A
servo plugs into a specific receiver, gyro, or FBL controller
channel to move that specific part of the RC model. This
movement is proportional, meaning that the servo will only
move as much as the transmitter stick on your radio is moved,
or as much as the gyro/FBL system instructs it to move.
Digital RC Servo LD-1501MG motor has a metal gearbox,
fast response speed with strong traction according to manufac-
turer torque figures up to 17Kg.cm. The important technical
specifications of the motor are the following. The operation
voltage is 5 to 7.4VDC. No-load current of 100mA, with load
¿ 500mA. Speed 0.16sec / 60◦ at 7VDC. Traction torque of
13Kg.cm at 6VDC; 15KG.cm at 6.5VDC; 17KG.cm at 7VDC.
Weight 60g. Dimensions 40 x 20 x 40.5mm. Cable length
30cm. We use 18 motors in the implementation to achieve
4 degrees of freedom of the robot’s body, which encourages
us to implement complex movement and dancing.

1https://rtrobot.org/software/
2https://www.rchelicopterfun.com/rc-servos.html

E. Power supply and Low voltage circuit board

The AC power cord (AC) 220V is connected to L and N
pins at the input on the power supply (12V, 10A). The 12V
output of power adapter, V+ pin, and V- pin, are connected to
positive pin (+) and negative pin (-) on the low voltage circuit
board. The low voltage circuit board consists of 2 outputs;
one output can be adjusted voltage from 1.25 - 32V used to
power the servo motor control module, the other output is a 5V
USB port used to power the RP. In this case, the appropriate
voltage to supply the servo motors is 6 - 6.5V. We can adjust
by rheostat on the low voltage circuit board.

F. Mechanic legs

This robot model is inspired by real spiders. However,
we can only partially reproduce the movements of spiders on
this robot because of the limits of joints on the robot and
the complexity of the control. The simple robot model will
have fewer joints, so the number of servos (actuators) will be
less beneficial, which can include benefits such as reducing
the weight of the robot, reducing power consumption and
increasing working time The minimum condition for a robot
to move is that each leg must be made up of two or more
moving joints. The fact that our robot has three motion joints
makes the robot move smoothly and motion control easier. The
spider robot model has six legs, each of which consists of three
servos (actuators) that are caught in the coal. Each side of the
robot consists of three legs that allow the robot to move. The
3D sketch is done by Glovius CAD3.

IV. SOFTWARE LIBRARIES

The Tensorflow library [31] is an open-source library
developed by Google and made available to the developer
community in 2015. Google Brain has developed the platform
for image search, voice recognition, traces data, and many
Google services. Keras [32], [33] is an open-source library
for neural networks written in the Python language. Keras is
a high-level API that can be used in conjunction with deep
learning libraries such as Tensorflow, Theano, and CNTK. In
this article, we use the Keras library in combination with the
Tensorflow library [34]. OpenCV library [35] is a leading
open-source library for computer vision, image processing,
machine learning, and GPU acceleration features in real-time
operation. OpenCV is designed for efficient computing and
with a heavy focus on real-time applications. Raspberry Pi
uses multiple operating systems: Raspbian, Ubuntu, Windows
10 IoT, and Chromium OS. In this article, the system uses
the Raspian operating system4 [36], [37] Raspian is the basic
and most common operating system and is provided by the
Raspberry Pi Foundation.

V. SYSTEM DESIGN

The system architecture can be disintegrated into three sub
modules, e.g., face detection, owner recognition, and kinematic
automation. The principal task in the face detection module is
to detect faces from sequential pictures taken by the Raspberry
camera. This task is discussed in Section V-A in more details.
Then, only the cropped faces go through the process of owner

3https://www.glovius.com/
4https://www.raspbian.org/
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recognition module where (i) the robot owners are recognized,
and (ii) robot behaviors and kinematic locomotion are exe-
cuted. We are going to describe these progress in Section V-B.
The last module is more on the kinematics aspect, referred to
Section V-C, where the authors discuss how to control the
legs in case of owner detection and no owner detection. We
have associated several techniques to achieve the harmonic
maneuverability of detection, recognition and automation in
real-time. The proposed system architecture is illustrated in
Figure 2. Our hardware design and implementation of a six-
legged walking robot are presented in Figure 3.

Fig. 2. The Overall Software and Hardware Architecture.

A. Module 1: Face Detection

The facial detection system is a computer application that
automatically identifies a face and then identifies someone
from a digital photo or a video resource. One way to do
this is to compare pre-selected facial features from the image
and a face database to remove non-face components. Building
an automatic control program for spider robots using control
signals as a result of the face recognition system with input
data is frames cut from the video directly from the camera
through the method of using Use the Haar Cascade technique.
This RP analyzes the image and returns framed and stored
faces for data training later. In general, the method is built
on a combination of four components, e.g., Haar features, an
integral image, Adaboost, and a cascade of classifiers. The
progress of module 1 face detection is illustrated in Fig. 4.

After the faces are detected, they will be manually reclas-
sified to verify faces, to eliminate false positives in the photo
set. After the test is stored with the same number of three
image files of three team members, these three files will be
three data files used to train for the program in the next face
recognition.

B. Module 2: Owner Recognition

In this study, the machine learning model used to classify
faces is a CNN model, also known as a convolution neural
network. The model has two parts: feature learning and classi-
fication. We briefly describe them in Section V-B1 and Section
V-B2.

1) Feature learning: This section includes layers: Conv2D,
MaxPooling2D, and Dropout. They extract the image features,
learn the image features (during training), reduce the image
size, and blur the image. The function of Conv2D is to
extract image specifications, learn these specifications (during
training). The Conv2D layers use filters to get image features
(curves and lines).

The element retained during the training of extracting these
properties is not the image channel. If all channels are stored,
the data of the model after training will be very large. Besides,
adding a new image and predicting will be no different from
finding value in the database. So the values stored in this
section are mostly kernels. The initial values of the kernels
are randomly generated, or we can assign the initial values
to them. The kernel matrix values will be updated during the
Backpropagation process.

2) Classification: This part is two fully connected layers,
which consists of 1 dense layer containing 512 nodes and
one dense layer consisting of 3 nodes, calculating values and
make a classification. Note that the output contains three nodes
because we set the number of robot’s owners is three. The
values stored after training in this part are the weights that
are updated during the backpropagation process. The sigmoid
activation function is used in the last layer to predict the
percentage of an object with an input sample. The class with
the highest score will be the final prediction.

We proposed the CNN architecture presented in Fig. 5. We
implemented the experimental model in Keras and TensorFlow.
The model consists of four convolution Conv2D layers. The
first, second, and fourth convolution layers accompany a Max-
Pooling2D a Dropout layers. The third convolution layer is
just attached to a MaxPooling2D layer. The last two layers
are dense. Default Adam [38] is the optimization method.
Categorical cross entropy [39], [40] is the loss measurement.

C. Module 3: Maneuverable Automation

A multi-legged robot [41], [42] maintains a tremendous
potential for maneuverability over different terrain, particularly
in comparison to wheeled robot. It possesses less complexity
than a human-like walking robot regarding stability and de-
velopment effort. A six-legged robot inspired by biology is
one of the most common design [43], [44]. It is important to
develop a good control mimicking the kinematic behavior of
the complex six-legged robotic mechanism. The overall design
of our proposed automation is presented in Fig. 7. We use
the OpenCV library to process data received from the RP
camera. The system selects one frame out of five received
frames. The reason is that the robot takes a certain amount
of time to complete the current motion, then we perform the
identification and send the next control signal. During the
experiment, we found that this ratio gives the most natural
motion of the robot. When there is a frame, the system will
detect the face cut, if any. These cropped faces are then
processed by the machine learning model developed on the
Keras and TensorFlow library. Next, the system controls the
movements of the robot according to the predicted result.
The system checks the current rotation angle of each servo
motor and finds the appropriate pulse value for the action to
be performed. The control signal will be transmitted to each
motor, and the robot forms a motion.

We program the robot to perform some basic movements
based on the results of the face recognition of the owner. The
specific movements of the robot are as follows. If the owner is
Hoai Bao, the robot performs the stand-up move. If the owner
is Hung Tam, the robot performs the sit-down operation. If the
owner is Nam Tran, the robot will move towards the owner. If
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Fig. 3. Several Views of the Six-legged Walking Robot.

Fig. 4. The Architecture of Module 1: Face Detection.

one of the three owners is not recognized, keep the previous
movement. To control the rotation of the servo motor, we make
a change in the pulse value. For LD-1510MG servo motors
used in this study, the pulse range is from 500 to 2400 us.
Fig. 6 depicts the pulse and sweep angle of the motor.

VI. EXPERIMENTS

A. Hardware and Software Setup

Our six-legged walking robot consists of several hardware
components such as one RP 3 model B, one 32 channel US-
B/UART servo motor controller driver board, one RP camera

Fig. 5. The Architecture of Module 2: Face Recognition.

Fig. 6. Motion Angle of a Motor.
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Fig. 7. The Architecture of Module 3: Maneuverable Automation.

v1.3, 18 digital RC servo LD-1501MG motors, one power
supply 12V 10A, one low voltage circuit board, mechanic legs,
and other components. The hardware connection is presented
in Table I. The RP 3 model B is considered the robot brain
where most of the controls are calculated from here.

TABLE I. CONNECTIONS OF MAIN HARDWARE DEVICES

Device Connector Type Device

Raspberry Pi

CSI - CSI Pi Camera v.1.3
RX - TX 32 Channel USB/UART Servo

Motor Controller Driver BoardTX - RX
GND - GND

32 Channel USB/UART Servo
Motor Controller Driver Board

GND - GND
ServosVCC - VCC

heart beat signals

B. Legs Controller

Each servo motor is then connected to the control circuit.
For ease of programming and maintenance, we specify the
wiring order as follows: 6 front two-servo motors will be
connected to pin 1 to 6 of the motor control module. The
six servo motors of the middle two legs will be connected to
pin 7 to 12. And the last six servo motors of the rear legs are
connected to pin 13 to 18. To check whether the servo motors
are correctly installed, we connect the servo motor control
module to the computer via the USB interface and use the
software5 to check the operation of each servo.

In the program, after having information on face recogni-
tion, this signal is the input for the control signal for the spider
robot. The signals are transmitted except the Raspberry Pi to
the servo control circuit by UART communication. Now we
need to determine the pulse level for each leg of the robot is the
servo. The balance joints smoothly work together, similar to
the movements of spiders, in reality, to shape the movements
of the spider robots. The control signals are transmitted in
the form of pulses with an execution time of ms. Example
#1P2500T100 where 1 is the pin position 1, P2500 means
2500 pulses, and T100 is the execution time of 100ms. The
simulation of robot moving forward, backward and turning-left
is presented in Fig. 8, 9, and 10.

Control angles are calculated manually using RTROBOT
control simulation software. We check and select the appro-
priate pulse width to create motion for 18 robot leg joints.

5https://rtrobot.org/software/

The settings are saved into a configuration file containing foot
control information and pulse value for each motor. Activities
are grouped into blocks. The time taken for a moving group is
fixed the same by 1 second to avoid control signal congestion.
After detecting a face, the RP calls control signals that are
pre-configured according to each face we have previously
classified. The control signal is executed in series, but the
execution speed of the foot joints is fast so that it will see
simultaneous movements.

Fig. 8. Simulation of Robot Moving Forward.

Fig. 9. Simulation of Robot Moving Backward.

Fig. 10. Simulation of Robot Turning Left.

C. Face Detection and Image Collection

To apply the Haar recognition method with Adaboost, we
use the detectMultiScale function to search for faces in the
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image. Each image will be scanned in turn, and the program
will confirm whether it is a human face or not and determine
the number of faces in that frame by sliding the Haar symbols
on the image, helping us identify All faces in the photo. The
detectMultiScale function is a face search, which is part of the
CascadeClassifier class. The codes are presented in Listing
(1).

1 c a s c a d e = cv . C a s c a d e C l a s s i f i e r (
h a a r c a s c a d e f r o n t a l f a c e d e f a u l t . xml )

2 g ray = c o n v e r t t o g r a y ( imagePa th )
3 f a c e s = c a s c a d e . d e e t e c t M u l t i S c a l e ( gray ,

s c a l e F a c t o r = 1 . 1 ,
4 s c a l e N e i g h b o r =5 , minSize ( 5 , 5 ) , maxSize

( 1 0 0 , 1 0 0 ) )

Listing 1: Detect faces with detectMultiScale function.

The .xml file in Listing (1) contains the classifiers built on
the standard database sets that is part of the OpenCV library.

The face detection on video is similar to the image because
the video is a series of frames. Then we will capture each
frame and save it. The program will read the captured frames
again. Then we let the face detection program run on all image
data and save all identifiable faces into another folder with the
purpose of building data for the training set to be used in the
recognition face. The codes in Listing (2) present how images
are captured from Pi camera.

1 cap=cv . VideoCap tu re ( 0 )
2 i =0
3 w h i l e ( i ! = 1 5 ) :
4 f rame =cap . r e a d ( )
5 f rame =cv . f l i p ( frame , − 1 )
6 cv . imshow ( ” Frame ” , f rame )
7 name= ”\%s ” %( i )
8 name= name + ” . png ”
9 i = i +1

10 cv . i m w r i t e ( name , f rame )
11 cap . r e l e a s e ( )
12 cv . des t royAl lWindows ( )

Listing 2: Images are captured using Pi camera.

Faces after being detected, the image will be manually
reclassified to check again to identify faces correctly, removing
false identities included in the image file. After the test is
stored with the same number of three image files of three
team members, these three files will be three data files used
to train for the program in the next face recognition. Through
experiments with model haarcascade frontalface default.xml
with images containing human faces, the program recognized
at a good level.

To increase the data for training, we use the solution
augmentation technique to provide more data. ImageDataGen-
erator function is used in the implementation. The codes is
presented in Listing (3).

1 image gen = I m a g e D a t a G e n e r a t o r ( r e s c a l e
= 1 . / 2 5 5 , h o r i z o n t a l f l i p = True ,

2 zom range = 0 . 2 5 , r o t a t i o n r a n g e =45)
3 t r a i n d a t a g e n = image gen .

f l o w f r o m d i r e c t o r y ( b a t c h s i z e =1000 ,
4 d i r e c t o r y =”C:\\ T e s t \\ Image\\ o u t p u t \\ ” ,

s h u f f l e =True ,

5 t a r g e t s i z e =(IMG HEIGHT , IMG WIDTH) )

Listing 3: ImageDataGenerator function for augmentation.

D. Face Recognition

1) Datasets: The experimental dataset is a set of images
of the face of the robot’s owners. This volume is divided into
three parts, one part is used to train the machine learning
program (training set), the other part is used for validation
(validation set), and one part is used to check the accuracy.
The original image’s resolution taken by Pi Camera is 2048
x 1536. Then face regions are detected and cropped to 150 x
150.

The training set consists of 2250 photos divided into three
folders. Each folder contains pictures of a specific person (Hoai
Bao, Nam Tran, Hung Tam). These samples were taken from
Pi cameras in environments with different light intensity and
different angles. Besides, we also use augmentation methods
such as: rotating the image with an angle of x degrees (with x
being the number of degrees), enlarging the image, zooming
the image, flipping the image, or combining many of them to
get more photo patterns and to avoid overfitting. The validation
set of 750 photos is also divided into three folders. Each folder
contains pictures of a specific person (Hoai Bao, Nam Tran,
Hung Tam). These images are also taken from the Pi camera.
However, they are received at random. These samples will be
reviewed after each epoch (number of model training) as one
of the model’s goodness test metrics. Similar to the validation
set, the test set of 741 images is also divided into three folders
corresponding to three people who are considered the owners
of the robot.

2) Evaluation Metrics: Suppose we are solving a binary
classification task with a labeled dataset D = {xi, yi}. Given
a threshold parameter φ that guilds our decision rule g(x) and
count the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). We also define
m+ the total of condition positives, m− the total of condition
negatives, m̂+ the total predicted condition positives, m̂− the
total predicted condition negatives, and m the total population.

We can compute the sensitivity, also known as true positive
rate (TPR) or recall by using:

TPR =
TP
m+
≈ P (ŷ = 1|y = 1) . (9)

Similarly, we can compute the fall-out, also known as false
positive rate or probability of false alarm by using:

FPR =
FP
m−
≈ P (ŷ = 1|y = 0) . (10)

The true negative rate (TNR) or specificity is defined as
follows:

TNR =
TN
m−
≈ P (ŷ = 0|y = 0) . (11)

The false negative rate (FNR) or miss rate is calculated as
follows:
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FNR =
FN
m+
≈ P (ŷ = 0|y = 1) . (12)

If we work with a dataset for binary classification when
the number of negatives is very large or a dataset for multi-
class text prediction when a class imbalance exists, considering
TPR, FPR, TNR, and FNR themselves is not very informative.
Before going further, we define positive predictive value (PPV)
or precision as follows:

PPV =
TP
m̂+
≈ P (y = 1|ŷ = 1) . (13)

By combining Equation (9 and 13), we can compute F1-
score as follows:

F1-score = 2
precision · recall

precision + recall
. (14)

3) Evaluation Results: Model trained on a 2-core 4-thread
laptop, 12GB RAM, Nvidia GTX 950M GPU. The size of
each batch is 32 images. Model converges after 10 epochs.The
model is then tested on test data to evaluate its final accuracy.
The TP, FN, and FP over the test set are presented in Table II.

TABLE II. THE TP, FN, AND FP OVER THE TEST SET

No. Owner face TP FN FP
1 Nam Tran 247 16 8
2 Hung Tam 247 12 5
3 Hoai Bao 247 15 3

Total 741 43 16

From the evaluation result presented in Table II, we can
easily calculate Precision ≈ 0.98, Recall ≈ 0.95, and F1-score
≈ 0.96.

4) Experimental Remarks: Model training can be done on
Raspberry or regular computers. Because RP is an embedded
computer, the hardware configuration and processing speed are
relatively limited. Training on Raspberry takes a lot of time.
In this case, the training time for one epoch is more than 2
hours (the model used in this topic is ten epoch training) for a
training set of 2250 images, and each image size is 150x150.
Besides, we have to turn off all the applications so that the
training program has enough Ram to execute. However, we still
achieved experimental results similar to those done on laptops.
During experiments, we also try the VGG-16 model [45],
which is very lightweight to compare the prediction accuracy
with our proposed CNN model. However, the VGG-16 model
cannot fit into RP’s memory when loading images. Note that
the image’s resolution is only 150 x 150.

VII. CONCLUSIONS

Throughout the article, the authors present Haar-like fea-
tures, ensemble learning, and CNN as the methodology back-
ground. We discuss hardware components and mechanical
legs, which build a six-legged working robot. The critical
contribution is the proposed system design, where three sub
modules, e.g., face detection, face recognition, and kinematic

automation, work harmonically in real-time. Therefore, a com-
plete solution associating both mechanical moving parts of a
walking robot, IoT hardware components, and software has
been adequately demonstrated. The proposed design and im-
plementation has orchestrated several complex tasks. First, we
address the task of interlocutor face detection and recognition,
utilizing ensemble learning and convolutional neural networks.
Second, we develop maneuverable automation of a six-legged
robot via hexapod locomotion. And last but not least, we
deploy the proposed system on a Raspberry Pi that has not
been previously reported in the literature. The experiments
are well described to encourage further reproducibility and
improvement.
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