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Abstract—Video analytic is the important tool for smart city 
development. The video analytic application requires more 
memories and high processing devices. The problems of cloud-
based approach for video analytic are high latency and more 
network bandwidth to transfer data into the cloud.  To overcome 
these problems, we propose a model based on dividing the jobs 
into smaller sub-tasks with less processing requirements in a 
typical video analytics application for the development of smart 
city. The object detection, tracking and pattern recognition 
method to reduce the size of videos based on edge network will be 
proposed.  We will design a video analytic model, and simulation 
is performed using iFogSim simulator. We will also propose 
Convolutional Neural Network (CNN) based object tracking 
model. The experimental verification shows that our tracking 
model is more than 96% accurate, and the proposed edge and 
cloud-based model is more than 80% effective than only cloud-
based approach for video analytic applications. 

Keywords—Video analytic; cloud computing; smart city; object 
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I. INTRODUCTION 
Smart city is a city that uses technologies to provide the 

sophisticated lifestyle for humans. It provides improvement in 
transportation, accessibility, social services, sustainability, and 
other services. The smart cities have several types of 
technologies such as Information and Communication 
Technology (ICT), connected physical devices using the 
Internet of Things (IoT), Geographical Information System 
(GIS), Video Analytic System (VAS) and more. 

IoT plays the important roles for the development of smart 
cities. IoT is used to input and transmit large volumes of data 
such as video, audio, text, etc. The suitable infrastructures are 
needed for the processing of large volumes of data from IoT 
devices to the processing devices. Therefore, edge computing 
and cloud computing technologies are the important concepts 
for the development of smart cities to process video data. 

Edge network is a networking environment that focuses on 
bringing computing closer to the data source. It is the local 
processing technique near the Internet of Things (IoT) 
devices. It is the emerging technology used in many fields 
such as video analytics, machine learning, robotics and more. 
Edge computing is a helpful technique to solve the challenges 
of high latency and bandwidth consumption. 

The combination of fog/edge computing architecture with 
IoT devices and the cloud computing is a very important 
research area for smart cities to minimize the resources and 
providing optimization for the users’ benefits. The extension 
of cloud computing towards the IoT devices is called fog/edge 

computing. It is the middle layer between cloud layer and IoT 
layer. The fog computing consists of low processing servers or 
terminals with small storage capacity. It has limited physical 
resources in terms of storage, memory, and processing power 
[1]. Cloud computing architecture is the centralized 
architecture to store and process a huge amount of data. Edge 
computing is an open platform to store and process data at the 
edge of the network. Video analytics applications are 
examples of applications that uses edge computing. 

Video analytic is a kind of analytic system that can be used 
to process and analysis the video files. Video analytic can be 
used for motion detection, facial recognition, license plate 
reading and more. The video data are excessively available in 
social media, traffics, film industry etc. The powerful 
technology is needed to process these data. Therefore, the 
combination of edge computing and cloud computing 
technology is the more powerful technology to process video 
data. In this research, we will propose video analytic system to 
process video data for smart city development. The object 
detection, tracking and pattern recognition methods are more 
important phases of video analytic system. We will propose 
the framework of object detection, tracking and pattern 
recognition of videos using Convolutional Neural Network 
(CNN). We will also propose the CNN based object tracking 
model. 

The rest of the paper is organized as follows: Section II 
presents problem statements and contributions. Section III 
presents the literature review. Section IV describes the details 
of our proposed approach. The experimental results and 
simulation are explained in Section V and Section VI. Finally, 
Section VII presents the conclusion of a paper. 

II. PROBLEM STATEMENTS AND CONTRIBUTIONS 
In traditional video analytic system, video data from the 

data source is directly transferred into the cloud where video 
frames are extracted, and objects are detected and analyzed 
[2]. The traditional cloud based centralized approach has 
suffered from high latency and more network bandwidth when 
transfer data into the cloud. The bandwidth usage problem's 
solution is to develop models that integrate the IoT devices 
with edge and cloud devices. Another problem is more uses of 
network resources in the existing approach. Since addressing 
these problems in a real system is very expensive or 
sometimes impossible, the known methodology to examine 
these problems' solutions is the simulation. The sample 
framework of dividing video analytic into subtasks was 
presented in [3] but was not simulated. In this proposed work, 
we define the details about video analytic pipeline, 
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prototyping model and parameter feed directly into the 
simulator. The video analytics jobs are huge applications 
referred to as edge computing killers [4]. We address this 
problem by assuming different tasks for a common video 
analytics application. The problem of video analytic 
application is that it requires more processing time and 
network bandwidth to transfer large files into the cloud. 
Therefore, the solution of this is to divide the video analytic 
system into more phases and reduce the size of video in the 
consecutive phases. We divide the video analytic into four 
phases which are motion detection, object detection, object 
tracking and pattern recognition. Then we propose the CNN 
method to reduce the video in consecutive phases based on 
edge computing architecture. 

In a common video analytics application, there are many 
object tracking methods. Some of these are just tracking, and 
some are tracking by detection. Some of these methods are 
based on CNN, and some are not. The tracking methods 
without using CNN are faster but have low accuracy [5]. The 
CNN based tracking methods are more accurate, but the 
execution time is high [6].  In this research, we will modify 
the layers of the existing CNN model to decrease the 
execution time of the tracking model. We will also propose 
object detection, tracking and pattern recognition model using 
CNN based on Edge network. 

The main contributions of this study are as follows: 

• Dimensionality reduction: Proposing model for 
dividing video analytic application in different tasks by 
dimension reduction which means dividing them based 
on the processing requirement. The video analytic 
application consists of a number of phases such as 
motion detection, object detection, object tracking etc. 
We will purpose a model for dimensionality reduction 
in each consecutive phase of video analytic application. 

• Object detection and tracking method: An object 
tracking module is a separate part of video analytics. 
There are the large number of object detection and 
tracking techniques for moving objects. We will use 
standard model for the detection of the objects, then 
modify the existing object tracking architecture using 
CNN to reduce the execution time of tracking. 

• Verification of object Tracking method: We will 
experimentally verify our tracking method by using 
public video files and real time videos. 

• Verification of model using iFogSim: The proposed 
model will be verified using iFogSim simulator. It will 
provide the effectiveness of using edge and cloud in 
our model in comparison with only the cloud-based 
architecture. 

III. RELATED WORK 
The uses of fog computing in smart cities have been 

explained in [7]. The service oriented middle wire to reserve 
the issues of smart city development has proposed in [8]. It 
has presented the effective integration and utilization of Cloud 

of Things (CoT) and fog computing. Edge computing focuses 
on bringing the services and utilities of the cloud computing 
closer to the user for fast processing. The cost-effective 
technique for aerial surveillance in which large computation 
tasks are in the cloud and limited computation task in 
Unmanned Aerial Vehicle (UAV) devices using edge 
computing technique has been proposed [9]. The frames with 
normal behaviors are processed into edges and the frames with 
abnormal behaviors are passed into the cloud for abnormal 
behaviors detection. The simulation framework for the 
modelling of IoT and edge computing has been proposed [10]. 
It has extended the capacity of CloudSim to address the 
features of edge and IoT devices. The integration of edge and 
cloud computing with distributed deep learning for smart city 
IoT has been proposed [11]. It developed the hybrid model to 
optimize the system utility and bandwidth allocation. 

The CNN-based framework for multi-object tracking has 
been proposed in [12]. It used RoI-pooling to obtain individual 
features for each target. In this method, spatial-temporal 
attention of the target is learned online to deal draft caused by 
occlusion. In [13], deep neural based appearance feature for 
multi-object tracking has been proposed. An algorithm for 
multi-object tracking was used for online and offline tracker. 
The real time object detection and tracking using deep 
learning OpenCV has been proposed [14]. It used Single Shot 
Detector (SSD) with mobile net framework for object 
detection and tracking. The fast vehicle detection based on 
evolving convolutional neural network has been proposed 
[15]. Tetris has proposed to provide maximum parallel 
processing of videos on a single GPU [16]. It has performed 
CPU-based tiling of active regions to combine the activities of 
video input. It ran the deep learning model and improved the 
GPU utilization. 

In [17], the multiple objects tracking method with 
correlation filter has been proposed. In this method, the SSD 
was used for multi-object detector and CNN was used for 
tracking the objects. The real time object recognition model by 
using deep CNN to extract deep features has been proposed 
[18]. A multi-level three-dimensional convolutional neural 
network for the recognition of moving objects has been 
proposed [19]. 

IV. METHODOLOGY 

A. Fog Computing Architecture for Smart Cities 
Edge-cloud technology is a very important technology for 

wide geographical areas. The storage and processing of 
services in centralized based cloud approach provide more 
latency and bandwidth. We will use IoT-Edge-Cloud 
technology to support mobility with minimal overhead cost. 
The IoT-Edge-Cloud architecture is defined in Fig. 1. It 
consists of three tiers. The end devices such as sensors are 
considered as first tire. The fog/edge devices near the source 
are considered as second tire. The cloud devices joined with 
fog devices and far from the IoT devices are considered as 
third tire. The combination of three tires provides IoT-Fog-
Cloud technology. 
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Fig. 1. Fog Computing Architecture for Smart Cities. 

In the generic architecture, the IoT layer receives the input 
from the first tire. The fog layer consists of terminals, small 
servers, routers, access points, gateways and more [20]. This 
is an intermediate layer connected between IoT and the cloud. 
Cloud is the final layer in which data are transferred from fog 
layers. It has mass storage and processing capacity. 

We propose a method for video analytic system to provide 
dimensionality reduction for object detection and tracking 
based on edge computing architecture. Edge devices are 
responsible to process the videos captured by cameras then 
object detection and tracking are taken place. Then the 
trajectories are sent to the cloud for pattern recognition. The 
testcase scenario of our proposed model is explained in 
section VI. 

B. Object Detection and Tracking Model for Video Analytic 
using CNN 
We will recommend the real video analytic application for 

object detection and tracking in this section. These real 
programs will be recommended in edge devices in our model. 
For the detection of the objects, we will use CNN-based object 
detection method YOLO. For the tracking of the objects, we 
will use deep sort and our own appearance model based on 
residual network. The trajectories created from tracking 
method are passed into the standard machine learning 
algorithms for pattern recognition. 

1) Proposed object detection, tracking and pattern 
recognition model pipeline: The pipeline for this model 
consists of three stages: labelling stage, learning stage and 
prediction stage. In the labelling stage, the raw image data are 
annotated. Similarly, in the learning stage we fit different 
machine learning models on the data. And finally, we use the 
fitted Machine Learning (ML) model in the prediction stage. 
Since we will use two different models: Object Detection 
model and Appearance Model, in our prediction, we will 
apply labelling and learning stages separately for object 
detection and appearance model as illustrated in Fig. 2. 

a) Labelling Stage: The labelling stage is the data 
annotation phase. Human annotators take in the raw data and 
annotate the data for the specific tasks. Since we have two 
models: object detection model and appearance model, we 
have two labelling stages where data gets annotated 
separately. For the detection model, human annotators take in 

the raw images and annotate the bounding boxes for the 
objects present and the corresponding categories of the 
objects. As a result, we get object detection annotation files. 
Similarly, for the appearance model, the human annotators 
take in frames from raw video data and annotate for object re-
identification. They associate the objects with the same 
identities with a common id. This results in our annotated re-
identification files. 

b) Learning Stage: In the learning stage, a data pipeline 
gets created which takes in labelled images and the annotation 
files and creates datasets for the corresponding tasks. These 
datasets are then augmented randomly to increase robustness 
of the models and reduce overfitting. Then, different machine 
learning models with different architectures with varying 
numbers of parameters are learnt and validated by feeding in 
the data pipeline. The models which perform well on the 
validation sets are dumped to the disks. As a result, we have 
models with varying architectures and varying numbers of 
parameters which have different computational requirements. 
Based on the problem criterion, we choose the best model and 
mark it as the selected model for the prediction phase. 

c) Prediction Stage: The prediction stage is the final 
stage. Here, we feed in the video frames and generate the final 
tracking results. First, we pass the video frames to a detector 
model, which we have learned from the learning stage. Then, 
we take in the predictions from the object detector to an 
association and tracking model. This appearance model 
performs deep association by using the appearance model 
we’ve learned earlier. Then the output from the tracking 
model is passed for pattern recognition. 

In our proposed edge-based model, we will recommend 
using YOLO and updated deep Simple Online and Realtime 
Tracking (SORT) for object detection and tracking in edge 
levels. The architecture of this model is presented in Fig. 3. 
The frames of the video file are passed to YOLO method. We 
will use only vehicles class to reduce the timing of the 
detection method. Then YOLO provides classes and the 
bounding box. The bounding box is again passed to the deep 
association metric with residual network CNN architecture for 
object tracking. Finally, trajectory data are passed for pattern 
recognition. In this architecture, the dimensionality of the 
original data is reduced at each stage, which is another 
contribution of our model. 
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Fig. 2. Object Detection, Tracking and Pattern Recognition Model Pipeline. 

2) Object detection model: YOLO is the object detection 
technique. The architecture of the YOLO is under the 
regression problem. In [21] [22], an image in the form of pixel 
values is the input of YOLO and the vector of bounding boxes 
with class predictions is the output. When the image inputs in 
the form of pixels, it passes through the neural network similar 
to CNN, then the vectors of bounding boxes and class 
predictions are in the form of output. The network uses the 
entire image to predict each bounding box. The image is 
divided into the SxS grid that grids are responsible for the 
detection of the objects. Each grid cell predicts B bounding 
boxes as well as C class probabilities. The bounding box 
prediction has 5 components: (x, y, w, h, confidence), 
where (x, y) coordinates represent the centre of the bounding 
box, (w, h) represents the width and height of the bounding 
box. The confidence score is the score of predicting the object 
in a box. The YOLO is implemented in CNN using PASCAL 
VOC dataset. There are mainly two stages in YOLO. During 
the first stage, convolutional layers are used to extract the 
features from the image. During the second stage, the fully 
connected layers are responsible to provide the output 
probabilities and coordinates. It consists of 24 convolutional 
layers followed by 2 fully connected layers. The convolutional 
layers are pretrained in ImageNet dataset that used Darknet 
framework. The layers are presented in Table I. 

The main strength of YOLO is speed. It is best object 
detection algorithm for fast detection. The weakness is more 
localization errors compared to faster R-CNN. The detection 
accuracy is less for very small objects. In this research, we are 
using object detection at edge level. It has light version and 
tiny version. Therefore, it is suitable for small processing edge 
devices. Another reason of using YOLO in this work is 
because of fast processing speed. 

TABLE I. DARKNET-53 CONVOLUTIONAL NETWORK USED BY YOLOV3 

 

Type                                Filters                Size          Output 

Convolutional                 32                    3x3           256x256     
Convolutional                 64                    3x3/2       128x128                          

Convolutional                 32                    1x1              
Convolutional                 64                    3x3    

Residual                                                                     128x128       
                       

1x
x 

Convolutional                 128                  3x3/2           64x64     

Convolutional                 64                    1x1              
Convolutional                128                   3x3    
Residual                                                                       64x64       

                       
  Convolutional            256               3x3/2          32x32     

Convolutional                128                    1x1              
Convolutional                256                    3x3    
Residual                                                                      32x32      

                       

Convolutional                 512                    3x3/2        16x16     

Convolutional                 256                    1x1              
Convolutional                 512                    3x3    
Residual                                                                    16x16       

                       
Convolutional                 1024                  3x3/2         8x8    

Convolutional                 512                    1x1              
Convolutional                 1024                  3x3    
Residual                                                                      8x8       

                       

Avgpool                                                Global 
Connected                                              1000 
Softmax     

2x
x 

8x
x 

8x
x 

4x
x 
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We will use only vehicles classes to reduce the timing of 
the object detection model. We will use light version and 
standard version of the YOLO for the object detection. We 
will recommend light and standard YOLO depends upon the 
capacity of edge devices. 

3) Object tracking using modified deep SORT: Deep 
SORT is a real time object tracking method [6]. It is an 
updated version of SORT. It integrates an appearance model 
which provides the deep appearance features for the detected 
objects in each frame. The method called the association of 
detected objects as a deep association metric. The inclusion of 
deep association metric allowed objects to be tracked in case 
of longer occlusions too and also the number of 
misclassifications were highly reduced. We use our modified 
version of deep SORT in this pipeline. 

The pipeline for the deep SORT association is shown in 
Fig. 3. Video frames are fed into a robust object detector 
model. The object detector outputs the class categories and 
bounding boxes for the objects of interest in the video frames. 
Then, using the bounding boxes, the regions of interest in the 
frames are cropped and passed to the appearance model. The 
appearance model outputs the feature description for each 
detected object. The Deep SORT method leverages these 
feature descriptions for association of the detected objects 
with tracks in addition to the previous SORT based 
association, which uses the Kalman filter for predicting the 
location of the objects in the next timestamp. 

The CNN architecture of our proposed architecture is 
shown in Table II. We use the residual network architecture as 
base line architecture [23]. In our proposed architecture, first 
two convolutional layers are used then pass into six residual 
blocks with same patch size and different stride. Then the 
outputs are passed into another convolutional layer.  We 
employ a wide residual network with three convolutional 
layers and six residual blocks. In dense layer 11, the global 
feature map of dimensionality 128 is computed. This network 
is suited for online tracking. 

 
Fig. 3. Object Tracking Pipeline. 

TABLE II. CNN ARCHITECTURE OF TRACKING 

Name  Patch size/Stride  Output size 

Conv 1     3 × 3/1   32 × 128 × 64  

Conv 2     3 × 3/1   32 × 128 × 64  

Max Pool 3    3 × 3/2  32 × 64 × 32  

Residual 4    3 × 3/1   32 × 64 × 32  

Residual 5    3 × 3/2    64 × 32 × 16  

Residual 6    3 × 3/1   64 × 32 × 16  

Residual 7    3 × 3/2   128 × 16 × 8  

Residual 8    3 × 3/1   128 × 16 × 8  

Conv 9    3 × 3/2   256 × 8 × 4  

Flatten 10        8192 

Dense 11        128  

Batch and l2 normalization          128 

4) Pattern recognition: The tracking model generates the 
trajectories of the moving objects. The large numbers of 
trajectories collected from tracking model are passed to 
machine learning algorithms for pattern recognition. The 
scalable pattern recognition of moving objects has been 
proposed in [5]. The supervised and unsupervised machine 
learning algorithms have been used for the pattern recognition 
of the trajectories. 

V. OBJECT DETECTION AND TRACKING RESULTS 
The object detection and tracking of our proposed model 

was implemented in a machine with an ubuntu operating 
system. It was implemented and tested on Intel Core I5-7300U 
CPU @2.6GHz with 16GB RAM. The programming platform 
for detection and tracking the objects was Python 3.7.6 and the 
OpenCV library. The Python with anaconda environment was 
used for its implementation. Other tools used in this research 
were Pytorch and TensorFlow. 

1) Dataset: The model was trained using marketplace 
dataset for bounding box [24]. The Market-1501 dataset was 
collected with six cameras. The dataset contains 12937 images 
for training datasets and 19732 images for testing dataset. For 
the varification, it used any types of videos on of social media 
or stored in database or can create new videos. Mainly, the 
YouTube videos were collected, and tracking was done in real 
time to test this system. 

The sample pictures of online tracking are shown in Fig. 4 
and Fig. 5. Each figure shows the moving objects at a time and 
rectangle around objects shows travelling of motion of 
objects. 
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Fig. 4. Object Tracking Result Sample 1. 

 
Fig. 5. Object Tracking Result Sample 2. 

One objective of this research is the dimensionality 
reduction in each successive phase. The dimensionality of data 
in each phase is extremely reduced in our proposed model. 
The proof of dimensionality reduction has presented in Table I 
and Table II in methodology chapter. When the frames of the 
video are passed into proposed model then size of output data 
is reduced in each layer. 

We also present the dimensionally reduction of input video 
in Table III. First input video is passed into YOLO method for 
object detection that produces the dimension reduced 
bounding box. The bounding box is passed into tracking 
method that produces the trajectories in the form of text data. 
In this experiment, we passed similar quality of video data. 

TABLE III. DATA SIZE REDUCTION 

Video 
number 

Input size 
(kb) 

No of 
frames After detection After 

tracking (kb) 

Video1 526 122 Bounding 
boxes 12.3 

Video2 720 140 Bounding 
boxes 16.8 

Video3 655 131 Bounding 
boxes 15.0 

Video4 912 185 Bounding 
boxes 25.1 

TABLE IV. RECALL, PRECISION AND TRACKING ACCURACY OF 
DIFFERENT VIDEOS 

Based on objects in 
videos TP FP FN Recall Precision Accuracy 
Number of 
Vehicles in 
Highway 

500 8 9 0.98 0.98 98 

Number of 
Vehicles in city 
road 

450 12 9 0.98 0.97 98 

TABLE V. COMPARISON OF EXECUTION TIME OF PROPOSED TRACKING 
WITH YOLOV3 TINY AND YOLOV3 

Type of YOLO Average video size 
(KB) 

Execution time 
(seconds) 

YOLOv3 512 320 
YOLOv3 tiny 512 80 

TABLE VI. COMPARISONS OF EXECUTION TIME OF THE TRACKER 

Tracking  Average video size 
(MB)) 

Execution time fps 
(frame per second) 

POI [25] 1.8 0.18 
Baseline Deep sort [6] 1.8 0.72 
Improved Deep sort 
(Proposed Model) 1.8 0.75 

The proposed model is trained by using marketplace data 
set and the performance is calculated on test data. We use two 
versions of YOLO that depends upon the size of edge devices 
which was defined on previous unit. The light YOLO goes to 
the small size edge device and the normal YOLO goes to the 
large size fog device. The execution time of the light YOLO is 
less than normal YOLO that is presented in Table V. The 
tracking accuracy of this model is around 98% which is 
explained in Table IV. The execution time of our proposed 
tracking model is faster than current deep sort model and 
Person of Interest (POI) model which is explained in 
Table VI. 

VI. TEST SCENARIOS, SIMULATION AND COMPARISON OF 
RESULTS 

A. Test Scenarios 
In this research, we use video surveillance system of 

moving vehicles as test scenario for smart city. If we pass 
video files directly into the cloud, more memories are needed. 
In addition, centralized process takes more latency and uses 
more network bandwidth. Therefore, processing of videos in 
decentralized methods are more advisable methods nowadays. 
In our method, we will extremely reduce the size of video 
files, then pass to the cloud for further processing. We will 
recommend decentralized method for the processing of video 
files using edge computing architecture. 

The overall performance of our proposed model will be 
measured by iFogSim simulator. We have four stages in the 
video analytic system: motion detection (s1), object detection 
(s2), object tracking (s3), and pattern recognition (s4) shown 
in Fig. 6. 
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Fig. 6. Video Analytic Pipeline Scenario. 

Motion detection (s1): The video camera continuously 
captures the raw video stream to detect the motion then 
forwarded to an object detection module. 

Object detection (s2): The object detection module 
receives the video streams of detected motion from the motion 
detection module. This module is responsible to detect the 
objects then pass into the object tracking module. 

Object tracking (s3): The object tracking module receives 
the results from object detection module. Then, the object 
tracking module tracks the path of moving objects and pass 
into pattern recognition module. 

Pattern recognition (s4). It receives the tracking path from 
object tracking module. It is responsible to find the pattern of 
moving objects then recommend the patterns to the users. 

The unique part of this work is to divide the video analytic 
into tasks which works as a pipeline. It is very close to real 
system because the output of one module is the input of 
another module such as the output of object detection is the 
input of object tracking. 

CASE 1: In this case, edge and cloud are used for video 
processing. The motion detection (s1) from video camera goes 
to the edges for object detection (s2) and object tracking(s3). 
Finally goes to the cloud for pattern recognition (s4). 

CASE 2: In this case, only edges are used for video 
processing. All the stages of video analytic application which 
are motion detection (s1), object detection (s2), object tracking 
(s3), and trajectory pattern recognition (s4) are performed on 
edge devices. 

CASE 3: In this case, only cloud is used for video 
processing. The detected motion (s1) from video camera 
directly goes to cloud for object detection (s2), object tracking 
(s3), and pattern recognition (s4). 

B. Simulation Tool and Physical Topology 
The iFogSim simulator is used in this research. iFogSim 

[26] is a discrete event simulator for simulation and modelling 
of edge/fog computing environment. It is based on the 

CloudSim simulator. In this paper, new model is simulated in 
which each module is used for monitoring and its output 
results is the input of another module i.e. pipeline. The 
simulation has been achieved using a personal computer with 
Windows 10 operating system. It has simulated on Intel Core 
I5 CPU @2.3GHz with 8GB RAM. The programming 
language java with eclipse has been used for the 
implementation. 

The physical topology consists of the cloud data center at 
the top of the network called first tire. The second tire is the 
proxy server which is connected between cloud and fog 
devices. The fog devices are called third tire containing fog 
nodes. The number of fog devices can be added in different 
places depending upon the demand of applications. The 
number of video cameras is connected to the fog devices for 
our proposed video analytic model for intelligent surveillance 
application. The physical topology is presented in Fig. 7. 

Cameras

Cloud

Cameras Cameras

Edge 
device

Edge 
device

Edge 
device

Proxy 
server

 
Fig. 7. Physical Experimental Set Up. 
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C. Defining Simulation Data 
The video data is the input of video analytic system. The 

CNN-based object tracking method explained in previous 
chapter has video data as an input. For the simulation of video 
analytic model, we will input the video data similar to our 
CNN-based object tracking model into our simulator. The 
videos are not automatically read into iFogSim simulator. 
Therefore, in this simulation, moving vehicle video data first 
need to convert into pixel file. The data rate is bits per pixel 
i.e. bpp. This CSV file contains bpp of videos. There are 13 
attributes which are tuple id, total number of pixels, dilation, x 
coordinate, y coordinate, z coordinate, frame difference, 
moving rate frame per second, motion ptz, contours, grey 
color, black color and final contours. There are 65535 rows of 
data on that file. 

Based on the topology designed for the simulation, various 
fog devices are created and assigned on the nodes of the 
topology. The fog devices are represented as uniquely 
working nodes such as camera, edge device, proxy server and 
cloud. Each fog device has its own processing capacity and 
configuration like CPU, RAM, upload/download bandwidth, 
power consumption which setting is defined in Table IX. In 
this simulation, camera is the sensor that creates the tuples and 
passed into another device. The different application modules 
such as motion detection, object detection and so on are 
assigned to the fog devices according to their capacity. 
Following are the details about the device configuration 
parameters: 

CPU (MIPS): It is the processing capacity of a CPU given 
on millions of instructions per second. Higher the processing 
capacity of a device, higher will be the task execution rate. 

RAM: It is the temporary data storage medium where the 
processing data are stored while the device is online. 

Up/Down Bandwidth: It is the speed of the device at which 
the data are uploaded and downloaded to and from the device. 

Power Consumption: It is the electrical power in watt that 
a device consumes while operating. 

The tuple CPU length is the size of data to be passed from 
one module to another module. The network length 
(bandwidth) is the rate of transfer of data from one module to 
another module.  In case of object tracking module, after 
completed a tracking process, the size of data transferred into 
another module is tuple CPU length and transferred rate is 
network bandwidth which setting is defined in Table VII. 

D. Parameter Settings and Network Configuration 
The choice of configuration values is based on the 

minimum requirement of video surveillance in the real-world 
scenarios that is referred from the iFogSim Simulator. The 
Table VII below outlines the configuration of application 
module components in the video surveillance application. 
Table VIII presents the latencies configuration between the 
source and the destination nodes. It explains how the 
communication between the nodes is managed. Table IX 
describes the capacities of fog nodes and cloud. It presents the 
size of different devices in our physical topological structure. 

TABLE VII. VALUES FOR MONITORING APPLICATION 

Tuple types Tuple CPU 
length (MIPS) 

Network length 
(Bandwidth) 

Raw video stream 1000 2000 

Motion video stream 2000 2000 

Detected objects 1000 100 

Tracking points 1000 800 

TABLE VIII. NETWORK LATENCIES CONFIGURATION 

Between  Latency (Milliseconds) 

Cloud to Proxy server 100 

Proxy server to fog devices 50 

Fog devices to camera 1 

TABLE IX. CAPACITY OF FOG NODES 

Device CPU 
(MIPS) 

RAM 
(Bytes) 

Up 
bandwidth 
(Mbps) 

Down 
bandwidth 
(Mbps) 

Power 
consumption 
(Watt) 

Cloud 40000 40000 1000 10000 450 (B) 250 
(I) 

Proxy 
server 2800 40000 10000 10000 200(B) 100 

(I) 

Fog 
device 2500 4000 1000 10000 100 (B) 83 (I) 

Camera 500 1000 100 100 87(B) 82 (I) 

E. Performance Evaluation 
The evaluation of the performances in our proposed model 

is resource utilization, bandwidth, latency, and power 
consumption. These performances are measured in three test 
cases which was explained in the above section. Test cases are 
a) Using cloud and edges, b) Using only edges and c) Using 
only cloud. There are four configurations for simulation 
results. The number of areas and number of cameras in each 
place is varied on these configurations. The setting of the 
configuration is presented in Table X. 

The network performance is calculated by the 
configuration of Table X. We test the results in three 
scenarios. The first scenario is testing our proposed model in 
the combination of fog devices and cloud. The second 
scenario is testing our proposed model in fog/edge devices 
only. The third scenario is testing our proposed model in cloud 
devices only. The four parameters of the performance matrix 
are measured. They are resource utilization, latency, 
bandwidth, and energy consumption. The resource utilization 
is the how much resources are utilized to process the data. 
The Latency/loop delay is the time taken for an application 
loop to execute. In the application, this loop starts with the 
camera sensors producing the video stream, goes through the 
motion detector, object detector, object tracking, and finally 
pattern recognition. The maximum amount of data which can 
be transmitted over the network on specific time is called 
bandwidth. Energy consumption refers to the amount of 
energy used to process in the system. 
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TABLE X. CONFIGURATION FOR SIMULATION 

Configuration Areas Cameras 

Config1 3 1 

Config2 5 2 

Config3 8 4 

Config4 10 6 

The results are explained in Fig. 8 to Fig. 11 in three 
scenarios cloud and edges, only edges, and only cloud. The 
Fig. 8 presents the comparison of network bandwidth. The 
edge and cloud architecture saved the network bandwidth by 
81% in comparison with only cloud-based architecture. The 
Fig. 9 presents the comparison of resource utilization in these 
three scenarios. The edge and cloud architecture saved more 
resources which is around 88.3% in comparison with only 
cloud-based architecture. Fig. 10 describes the comparison of 
latency in these three scenarios. The edge and cloud 
architecture has less latency in comparison with only cloud-
based approach; the latency has saved by 97.4%. Similarly, 
only fog-based approach is slightly better than the 
combination of cloud and fog devices. Fig. 11 presents the 
comparison of energy consumption in these three scenarios. 
The energy consumption in the system is around same for all 
scenarios. 

 
Fig. 8. Comparison of Bandwidth. 

 
Fig. 9. Comparison of Resource Utilization. 

 
Fig. 10. Comparison of Latency. 

 
Fig. 11. Comparison of Energy Consumption. 

VII. CONCLUSION AND FUTURE WORK 
The combination of edge computing and the cloud 

computing is the main paradigm for video analytic system to 
build smart city application.  In this paper, we developed the 
new approach for video analytic application to process the 
data in edge devices and the cloud for smart city in which 
modules are working as pipeline. We proposed the 
dimensionality reduction of data in the consecutive steps of 
video analytic application to increase the network 
performance. The proposed edge computing technique for 
video analytic will result in less traffic on the internet because 
only a small portion of the data will pass into the cloud. One 
contribution is separating the job into pipeline of sub-tasks 
and another contribution is implementing the sub-tasks by 
using deep learning methods. This research also proposed 
scalable object detection and tracking of moving objects based 
on CNN. The large numbers of moving vehicles can be tested 
by our prototype model. Dividing a video analytic job into 
pipeline of sub-tasks will help to process large number of 
videos with low latency and low network bandwidth and less 
cost of resource utilization. The experimental results show that 
proposed tracking by detection method is more than 96% 
accurate. 

We simulated a proposed model using iFogSim, the result 
shows that latency, bandwidth, and resource utilization are 
97.4%, 81% and 88.3% efficient than only the traditional 
cloud- based approach. 
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We simulated our model on large number of fog devices 
using iFogSim simulator, but we tested a smaller number of 
videos in CNN-based model. This is a limitation of this work. 

The future work will improve the deep learning-based 
object detection and tracking method. We will improve the 
performance and compare with different Convolutional Neural 
Network architecture with large number of video files. 
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