
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Edge-based Video Analytic for Smart Cities
Dipak Pudasaini1, Abdolreza Abhari2

Department of Computer Science
Ryerson University

Toronto, Canada

Abstract—Video analytic is the important tool for smart city
development. The video analytic application requires more
memories and high processing devices. The problems of cloud-
based approach for video analytic are high latency and more
network bandwidth to transfer data into the cloud. To overcome
these problems, we propose a model based on dividing the jobs
into smaller sub-tasks with less processing requirements in a
typical video analytics application for the development of smart
city. The object detection, tracking and pattern recognition
method to reduce the size of videos based on edge network will be
proposed. We will design a video analytic model, and simulation
is performed using iFogSim simulator. We will also propose
Convolutional Neural Network (CNN) based object tracking
model. The experimental verification shows that our tracking
model is more than 96% accurate, and the proposed edge and
cloud-based model is more than 80% effective than only cloud-
based approach for video analytic applications.

Keywords—Video analytic; cloud computing; smart city; object
detection; object tracking; edge network

I. INTRODUCTION
Smart city is a city that uses technologies to provide the

sophisticated lifestyle for humans. It provides improvement in
transportation, accessibility, social services, sustainability, and
other services. The smart cities have several types of
technologies such as Information and Communication
Technology (ICT), connected physical devices using the
Internet of Things (IoT), Geographical Information System
(GIS), Video Analytic System (VAS) and more.

IoT plays the important roles for the development of smart
cities. IoT is used to input and transmit large volumes of data
such as video, audio, text, etc. The suitable infrastructures are
needed for the processing of large volumes of data from IoT
devices to the processing devices. Therefore, edge computing
and cloud computing technologies are the important concepts
for the development of smart cities to process video data.

Edge network is a networking environment that focuses on
bringing computing closer to the data source. It is the local
processing technique near the Internet of Things (IoT)
devices. It is the emerging technology used in many fields
such as video analytics, machine learning, robotics and more.
Edge computing is a helpful technique to solve the challenges
of high latency and bandwidth consumption.

The combination of fog/edge computing architecture with
IoT devices and the cloud computing is a very important
research area for smart cities to minimize the resources and
providing optimization for the users’ benefits. The extension
of cloud computing towards the IoT devices is called fog/edge

computing. It is the middle layer between cloud layer and IoT
layer. The fog computing consists of low processing servers or
terminals with small storage capacity. It has limited physical
resources in terms of storage, memory, and processing power
[1]. Cloud computing architecture is the centralized
architecture to store and process a huge amount of data. Edge
computing is an open platform to store and process data at the
edge of the network. Video analytics applications are
examples of applications that uses edge computing.

Video analytic is a kind of analytic system that can be used
to process and analysis the video files. Video analytic can be
used for motion detection, facial recognition, license plate
reading and more. The video data are excessively available in
social media, traffics, film industry etc. The powerful
technology is needed to process these data. Therefore, the
combination of edge computing and cloud computing
technology is the more powerful technology to process video
data. In this research, we will propose video analytic system to
process video data for smart city development. The object
detection, tracking and pattern recognition methods are more
important phases of video analytic system. We will propose
the framework of object detection, tracking and pattern
recognition of videos using Convolutional Neural Network
(CNN). We will also propose the CNN based object tracking
model.

The rest of the paper is organized as follows: Section II
presents problem statements and contributions. Section III
presents the literature review. Section IV describes the details
of our proposed approach. The experimental results and
simulation are explained in Section V and Section VI. Finally,
Section VII presents the conclusion of a paper.

II. PROBLEM STATEMENTS AND CONTRIBUTIONS
In traditional video analytic system, video data from the

data source is directly transferred into the cloud where video
frames are extracted, and objects are detected and analyzed
[2]. The traditional cloud based centralized approach has
suffered from high latency and more network bandwidth when
transfer data into the cloud. The bandwidth usage problem's
solution is to develop models that integrate the IoT devices
with edge and cloud devices. Another problem is more uses of
network resources in the existing approach. Since addressing
these problems in a real system is very expensive or
sometimes impossible, the known methodology to examine
these problems' solutions is the simulation. The sample
framework of dividing video analytic into subtasks was
presented in [3] but was not simulated. In this proposed work,
we define the details about video analytic pipeline,

1 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

prototyping model and parameter feed directly into the
simulator. The video analytics jobs are huge applications
referred to as edge computing killers [4]. We address this
problem by assuming different tasks for a common video
analytics application. The problem of video analytic
application is that it requires more processing time and
network bandwidth to transfer large files into the cloud.
Therefore, the solution of this is to divide the video analytic
system into more phases and reduce the size of video in the
consecutive phases. We divide the video analytic into four
phases which are motion detection, object detection, object
tracking and pattern recognition. Then we propose the CNN
method to reduce the video in consecutive phases based on
edge computing architecture.

In a common video analytics application, there are many
object tracking methods. Some of these are just tracking, and
some are tracking by detection. Some of these methods are
based on CNN, and some are not. The tracking methods
without using CNN are faster but have low accuracy [5]. The
CNN based tracking methods are more accurate, but the
execution time is high [6]. In this research, we will modify
the layers of the existing CNN model to decrease the
execution time of the tracking model. We will also propose
object detection, tracking and pattern recognition model using
CNN based on Edge network.

The main contributions of this study are as follows:

• Dimensionality reduction: Proposing model for
dividing video analytic application in different tasks by
dimension reduction which means dividing them based
on the processing requirement. The video analytic
application consists of a number of phases such as
motion detection, object detection, object tracking etc.
We will purpose a model for dimensionality reduction
in each consecutive phase of video analytic application.

• Object detection and tracking method: An object
tracking module is a separate part of video analytics.
There are the large number of object detection and
tracking techniques for moving objects. We will use
standard model for the detection of the objects, then
modify the existing object tracking architecture using
CNN to reduce the execution time of tracking.

• Verification of object Tracking method: We will
experimentally verify our tracking method by using
public video files and real time videos.

• Verification of model using iFogSim: The proposed
model will be verified using iFogSim simulator. It will
provide the effectiveness of using edge and cloud in
our model in comparison with only the cloud-based
architecture.

III. RELATED WORK
The uses of fog computing in smart cities have been

explained in [7]. The service oriented middle wire to reserve
the issues of smart city development has proposed in [8]. It
has presented the effective integration and utilization of Cloud

of Things (CoT) and fog computing. Edge computing focuses
on bringing the services and utilities of the cloud computing
closer to the user for fast processing. The cost-effective
technique for aerial surveillance in which large computation
tasks are in the cloud and limited computation task in
Unmanned Aerial Vehicle (UAV) devices using edge
computing technique has been proposed [9]. The frames with
normal behaviors are processed into edges and the frames with
abnormal behaviors are passed into the cloud for abnormal
behaviors detection. The simulation framework for the
modelling of IoT and edge computing has been proposed [10].
It has extended the capacity of CloudSim to address the
features of edge and IoT devices. The integration of edge and
cloud computing with distributed deep learning for smart city
IoT has been proposed [11]. It developed the hybrid model to
optimize the system utility and bandwidth allocation.

The CNN-based framework for multi-object tracking has
been proposed in [12]. It used RoI-pooling to obtain individual
features for each target. In this method, spatial-temporal
attention of the target is learned online to deal draft caused by
occlusion. In [13], deep neural based appearance feature for
multi-object tracking has been proposed. An algorithm for
multi-object tracking was used for online and offline tracker.
The real time object detection and tracking using deep
learning OpenCV has been proposed [14]. It used Single Shot
Detector (SSD) with mobile net framework for object
detection and tracking. The fast vehicle detection based on
evolving convolutional neural network has been proposed
[15]. Tetris has proposed to provide maximum parallel
processing of videos on a single GPU [16]. It has performed
CPU-based tiling of active regions to combine the activities of
video input. It ran the deep learning model and improved the
GPU utilization.

In [17], the multiple objects tracking method with
correlation filter has been proposed. In this method, the SSD
was used for multi-object detector and CNN was used for
tracking the objects. The real time object recognition model by
using deep CNN to extract deep features has been proposed
[18]. A multi-level three-dimensional convolutional neural
network for the recognition of moving objects has been
proposed [19].

IV. METHODOLOGY

A. Fog Computing Architecture for Smart Cities
Edge-cloud technology is a very important technology for

wide geographical areas. The storage and processing of
services in centralized based cloud approach provide more
latency and bandwidth. We will use IoT-Edge-Cloud
technology to support mobility with minimal overhead cost.
The IoT-Edge-Cloud architecture is defined in Fig. 1. It
consists of three tiers. The end devices such as sensors are
considered as first tire. The fog/edge devices near the source
are considered as second tire. The cloud devices joined with
fog devices and far from the IoT devices are considered as
third tire. The combination of three tires provides IoT-Fog-
Cloud technology.

2 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Fig. 1. Fog Computing Architecture for Smart Cities.

In the generic architecture, the IoT layer receives the input
from the first tire. The fog layer consists of terminals, small
servers, routers, access points, gateways and more [20]. This
is an intermediate layer connected between IoT and the cloud.
Cloud is the final layer in which data are transferred from fog
layers. It has mass storage and processing capacity.

We propose a method for video analytic system to provide
dimensionality reduction for object detection and tracking
based on edge computing architecture. Edge devices are
responsible to process the videos captured by cameras then
object detection and tracking are taken place. Then the
trajectories are sent to the cloud for pattern recognition. The
testcase scenario of our proposed model is explained in
section VI.

B. Object Detection and Tracking Model for Video Analytic
using CNN
We will recommend the real video analytic application for

object detection and tracking in this section. These real
programs will be recommended in edge devices in our model.
For the detection of the objects, we will use CNN-based object
detection method YOLO. For the tracking of the objects, we
will use deep sort and our own appearance model based on
residual network. The trajectories created from tracking
method are passed into the standard machine learning
algorithms for pattern recognition.

1) Proposed object detection, tracking and pattern
recognition model pipeline: The pipeline for this model
consists of three stages: labelling stage, learning stage and
prediction stage. In the labelling stage, the raw image data are
annotated. Similarly, in the learning stage we fit different
machine learning models on the data. And finally, we use the
fitted Machine Learning (ML) model in the prediction stage.
Since we will use two different models: Object Detection
model and Appearance Model, in our prediction, we will
apply labelling and learning stages separately for object
detection and appearance model as illustrated in Fig. 2.

a) Labelling Stage: The labelling stage is the data
annotation phase. Human annotators take in the raw data and
annotate the data for the specific tasks. Since we have two
models: object detection model and appearance model, we
have two labelling stages where data gets annotated
separately. For the detection model, human annotators take in

the raw images and annotate the bounding boxes for the
objects present and the corresponding categories of the
objects. As a result, we get object detection annotation files.
Similarly, for the appearance model, the human annotators
take in frames from raw video data and annotate for object re-
identification. They associate the objects with the same
identities with a common id. This results in our annotated re-
identification files.

b) Learning Stage: In the learning stage, a data pipeline
gets created which takes in labelled images and the annotation
files and creates datasets for the corresponding tasks. These
datasets are then augmented randomly to increase robustness
of the models and reduce overfitting. Then, different machine
learning models with different architectures with varying
numbers of parameters are learnt and validated by feeding in
the data pipeline. The models which perform well on the
validation sets are dumped to the disks. As a result, we have
models with varying architectures and varying numbers of
parameters which have different computational requirements.
Based on the problem criterion, we choose the best model and
mark it as the selected model for the prediction phase.

c) Prediction Stage: The prediction stage is the final
stage. Here, we feed in the video frames and generate the final
tracking results. First, we pass the video frames to a detector
model, which we have learned from the learning stage. Then,
we take in the predictions from the object detector to an
association and tracking model. This appearance model
performs deep association by using the appearance model
we’ve learned earlier. Then the output from the tracking
model is passed for pattern recognition.

In our proposed edge-based model, we will recommend
using YOLO and updated deep Simple Online and Realtime
Tracking (SORT) for object detection and tracking in edge
levels. The architecture of this model is presented in Fig. 3.
The frames of the video file are passed to YOLO method. We
will use only vehicles class to reduce the timing of the
detection method. Then YOLO provides classes and the
bounding box. The bounding box is again passed to the deep
association metric with residual network CNN architecture for
object tracking. Finally, trajectory data are passed for pattern
recognition. In this architecture, the dimensionality of the
original data is reduced at each stage, which is another
contribution of our model.

3 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Fig. 2. Object Detection, Tracking and Pattern Recognition Model Pipeline.

2) Object detection model: YOLO is the object detection
technique. The architecture of the YOLO is under the
regression problem. In [21] [22], an image in the form of pixel
values is the input of YOLO and the vector of bounding boxes
with class predictions is the output. When the image inputs in
the form of pixels, it passes through the neural network similar
to CNN, then the vectors of bounding boxes and class
predictions are in the form of output. The network uses the
entire image to predict each bounding box. The image is
divided into the SxS grid that grids are responsible for the
detection of the objects. Each grid cell predicts B bounding
boxes as well as C class probabilities. The bounding box
prediction has 5 components: (x, y, w, h, confidence),
where (x, y) coordinates represent the centre of the bounding
box, (w, h) represents the width and height of the bounding
box. The confidence score is the score of predicting the object
in a box. The YOLO is implemented in CNN using PASCAL
VOC dataset. There are mainly two stages in YOLO. During
the first stage, convolutional layers are used to extract the
features from the image. During the second stage, the fully
connected layers are responsible to provide the output
probabilities and coordinates. It consists of 24 convolutional
layers followed by 2 fully connected layers. The convolutional
layers are pretrained in ImageNet dataset that used Darknet
framework. The layers are presented in Table I.

The main strength of YOLO is speed. It is best object
detection algorithm for fast detection. The weakness is more
localization errors compared to faster R-CNN. The detection
accuracy is less for very small objects. In this research, we are
using object detection at edge level. It has light version and
tiny version. Therefore, it is suitable for small processing edge
devices. Another reason of using YOLO in this work is
because of fast processing speed.

TABLE I. DARKNET-53 CONVOLUTIONAL NETWORK USED BY YOLOV3

Type Filters Size Output

Convolutional 32 3x3 256x256
Convolutional 64 3x3/2 128x128

Convolutional 32 1x1
Convolutional 64 3x3

Residual 128x128

1x
x

Convolutional 128 3x3/2 64x64

Convolutional 64 1x1
Convolutional 128 3x3
Residual 64x64

 Convolutional 256 3x3/2 32x32

Convolutional 128 1x1
Convolutional 256 3x3
Residual 32x32

Convolutional 512 3x3/2 16x16

Convolutional 256 1x1
Convolutional 512 3x3
Residual 16x16

Convolutional 1024 3x3/2 8x8

Convolutional 512 1x1
Convolutional 1024 3x3
Residual 8x8

Avgpool Global
Connected 1000
Softmax

2x
x

8x
x

8x
x

4x
x

4 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

We will use only vehicles classes to reduce the timing of
the object detection model. We will use light version and
standard version of the YOLO for the object detection. We
will recommend light and standard YOLO depends upon the
capacity of edge devices.

3) Object tracking using modified deep SORT: Deep
SORT is a real time object tracking method [6]. It is an
updated version of SORT. It integrates an appearance model
which provides the deep appearance features for the detected
objects in each frame. The method called the association of
detected objects as a deep association metric. The inclusion of
deep association metric allowed objects to be tracked in case
of longer occlusions too and also the number of
misclassifications were highly reduced. We use our modified
version of deep SORT in this pipeline.

The pipeline for the deep SORT association is shown in
Fig. 3. Video frames are fed into a robust object detector
model. The object detector outputs the class categories and
bounding boxes for the objects of interest in the video frames.
Then, using the bounding boxes, the regions of interest in the
frames are cropped and passed to the appearance model. The
appearance model outputs the feature description for each
detected object. The Deep SORT method leverages these
feature descriptions for association of the detected objects
with tracks in addition to the previous SORT based
association, which uses the Kalman filter for predicting the
location of the objects in the next timestamp.

The CNN architecture of our proposed architecture is
shown in Table II. We use the residual network architecture as
base line architecture [23]. In our proposed architecture, first
two convolutional layers are used then pass into six residual
blocks with same patch size and different stride. Then the
outputs are passed into another convolutional layer. We
employ a wide residual network with three convolutional
layers and six residual blocks. In dense layer 11, the global
feature map of dimensionality 128 is computed. This network
is suited for online tracking.

Fig. 3. Object Tracking Pipeline.

TABLE II. CNN ARCHITECTURE OF TRACKING

Name Patch size/Stride Output size

Conv 1 3 × 3/1 32 × 128 × 64

Conv 2 3 × 3/1 32 × 128 × 64

Max Pool 3 3 × 3/2 32 × 64 × 32

Residual 4 3 × 3/1 32 × 64 × 32

Residual 5 3 × 3/2 64 × 32 × 16

Residual 6 3 × 3/1 64 × 32 × 16

Residual 7 3 × 3/2 128 × 16 × 8

Residual 8 3 × 3/1 128 × 16 × 8

Conv 9 3 × 3/2 256 × 8 × 4

Flatten 10 8192

Dense 11 128

Batch and l2 normalization 128

4) Pattern recognition: The tracking model generates the
trajectories of the moving objects. The large numbers of
trajectories collected from tracking model are passed to
machine learning algorithms for pattern recognition. The
scalable pattern recognition of moving objects has been
proposed in [5]. The supervised and unsupervised machine
learning algorithms have been used for the pattern recognition
of the trajectories.

V. OBJECT DETECTION AND TRACKING RESULTS
The object detection and tracking of our proposed model

was implemented in a machine with an ubuntu operating
system. It was implemented and tested on Intel Core I5-7300U
CPU @2.6GHz with 16GB RAM. The programming platform
for detection and tracking the objects was Python 3.7.6 and the
OpenCV library. The Python with anaconda environment was
used for its implementation. Other tools used in this research
were Pytorch and TensorFlow.

1) Dataset: The model was trained using marketplace
dataset for bounding box [24]. The Market-1501 dataset was
collected with six cameras. The dataset contains 12937 images
for training datasets and 19732 images for testing dataset. For
the varification, it used any types of videos on of social media
or stored in database or can create new videos. Mainly, the
YouTube videos were collected, and tracking was done in real
time to test this system.

The sample pictures of online tracking are shown in Fig. 4
and Fig. 5. Each figure shows the moving objects at a time and
rectangle around objects shows travelling of motion of
objects.

5 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Fig. 4. Object Tracking Result Sample 1.

Fig. 5. Object Tracking Result Sample 2.

One objective of this research is the dimensionality
reduction in each successive phase. The dimensionality of data
in each phase is extremely reduced in our proposed model.
The proof of dimensionality reduction has presented in Table I
and Table II in methodology chapter. When the frames of the
video are passed into proposed model then size of output data
is reduced in each layer.

We also present the dimensionally reduction of input video
in Table III. First input video is passed into YOLO method for
object detection that produces the dimension reduced
bounding box. The bounding box is passed into tracking
method that produces the trajectories in the form of text data.
In this experiment, we passed similar quality of video data.

TABLE III. DATA SIZE REDUCTION

Video
number

Input size
(kb)

No of
frames After detection After

tracking (kb)

Video1 526 122 Bounding
boxes 12.3

Video2 720 140 Bounding
boxes 16.8

Video3 655 131 Bounding
boxes 15.0

Video4 912 185 Bounding
boxes 25.1

TABLE IV. RECALL, PRECISION AND TRACKING ACCURACY OF
DIFFERENT VIDEOS

Based on objects in
videos TP FP FN Recall Precision Accuracy
Number of
Vehicles in
Highway

500 8 9 0.98 0.98 98

Number of
Vehicles in city
road

450 12 9 0.98 0.97 98

TABLE V. COMPARISON OF EXECUTION TIME OF PROPOSED TRACKING
WITH YOLOV3 TINY AND YOLOV3

Type of YOLO Average video size
(KB)

Execution time
(seconds)

YOLOv3 512 320
YOLOv3 tiny 512 80

TABLE VI. COMPARISONS OF EXECUTION TIME OF THE TRACKER

Tracking Average video size
(MB))

Execution time fps
(frame per second)

POI [25] 1.8 0.18
Baseline Deep sort [6] 1.8 0.72
Improved Deep sort
(Proposed Model) 1.8 0.75

The proposed model is trained by using marketplace data
set and the performance is calculated on test data. We use two
versions of YOLO that depends upon the size of edge devices
which was defined on previous unit. The light YOLO goes to
the small size edge device and the normal YOLO goes to the
large size fog device. The execution time of the light YOLO is
less than normal YOLO that is presented in Table V. The
tracking accuracy of this model is around 98% which is
explained in Table IV. The execution time of our proposed
tracking model is faster than current deep sort model and
Person of Interest (POI) model which is explained in
Table VI.

VI. TEST SCENARIOS, SIMULATION AND COMPARISON OF
RESULTS

A. Test Scenarios
In this research, we use video surveillance system of

moving vehicles as test scenario for smart city. If we pass
video files directly into the cloud, more memories are needed.
In addition, centralized process takes more latency and uses
more network bandwidth. Therefore, processing of videos in
decentralized methods are more advisable methods nowadays.
In our method, we will extremely reduce the size of video
files, then pass to the cloud for further processing. We will
recommend decentralized method for the processing of video
files using edge computing architecture.

The overall performance of our proposed model will be
measured by iFogSim simulator. We have four stages in the
video analytic system: motion detection (s1), object detection
(s2), object tracking (s3), and pattern recognition (s4) shown
in Fig. 6.

6 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Fig. 6. Video Analytic Pipeline Scenario.

Motion detection (s1): The video camera continuously
captures the raw video stream to detect the motion then
forwarded to an object detection module.

Object detection (s2): The object detection module
receives the video streams of detected motion from the motion
detection module. This module is responsible to detect the
objects then pass into the object tracking module.

Object tracking (s3): The object tracking module receives
the results from object detection module. Then, the object
tracking module tracks the path of moving objects and pass
into pattern recognition module.

Pattern recognition (s4). It receives the tracking path from
object tracking module. It is responsible to find the pattern of
moving objects then recommend the patterns to the users.

The unique part of this work is to divide the video analytic
into tasks which works as a pipeline. It is very close to real
system because the output of one module is the input of
another module such as the output of object detection is the
input of object tracking.

CASE 1: In this case, edge and cloud are used for video
processing. The motion detection (s1) from video camera goes
to the edges for object detection (s2) and object tracking(s3).
Finally goes to the cloud for pattern recognition (s4).

CASE 2: In this case, only edges are used for video
processing. All the stages of video analytic application which
are motion detection (s1), object detection (s2), object tracking
(s3), and trajectory pattern recognition (s4) are performed on
edge devices.

CASE 3: In this case, only cloud is used for video
processing. The detected motion (s1) from video camera
directly goes to cloud for object detection (s2), object tracking
(s3), and pattern recognition (s4).

B. Simulation Tool and Physical Topology
The iFogSim simulator is used in this research. iFogSim

[26] is a discrete event simulator for simulation and modelling
of edge/fog computing environment. It is based on the

CloudSim simulator. In this paper, new model is simulated in
which each module is used for monitoring and its output
results is the input of another module i.e. pipeline. The
simulation has been achieved using a personal computer with
Windows 10 operating system. It has simulated on Intel Core
I5 CPU @2.3GHz with 8GB RAM. The programming
language java with eclipse has been used for the
implementation.

The physical topology consists of the cloud data center at
the top of the network called first tire. The second tire is the
proxy server which is connected between cloud and fog
devices. The fog devices are called third tire containing fog
nodes. The number of fog devices can be added in different
places depending upon the demand of applications. The
number of video cameras is connected to the fog devices for
our proposed video analytic model for intelligent surveillance
application. The physical topology is presented in Fig. 7.

Cameras

Cloud

Cameras Cameras

Edge
device

Edge
device

Edge
device

Proxy
server

Fig. 7. Physical Experimental Set Up.

IoT device
(camera)

Motion
Detection

Object
Detection

Object Tracking
 Users

Pattern
Recognition

Raw videos

Tracking points

Detected objects

Behaviors given to the users

7 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

C. Defining Simulation Data
The video data is the input of video analytic system. The

CNN-based object tracking method explained in previous
chapter has video data as an input. For the simulation of video
analytic model, we will input the video data similar to our
CNN-based object tracking model into our simulator. The
videos are not automatically read into iFogSim simulator.
Therefore, in this simulation, moving vehicle video data first
need to convert into pixel file. The data rate is bits per pixel
i.e. bpp. This CSV file contains bpp of videos. There are 13
attributes which are tuple id, total number of pixels, dilation, x
coordinate, y coordinate, z coordinate, frame difference,
moving rate frame per second, motion ptz, contours, grey
color, black color and final contours. There are 65535 rows of
data on that file.

Based on the topology designed for the simulation, various
fog devices are created and assigned on the nodes of the
topology. The fog devices are represented as uniquely
working nodes such as camera, edge device, proxy server and
cloud. Each fog device has its own processing capacity and
configuration like CPU, RAM, upload/download bandwidth,
power consumption which setting is defined in Table IX. In
this simulation, camera is the sensor that creates the tuples and
passed into another device. The different application modules
such as motion detection, object detection and so on are
assigned to the fog devices according to their capacity.
Following are the details about the device configuration
parameters:

CPU (MIPS): It is the processing capacity of a CPU given
on millions of instructions per second. Higher the processing
capacity of a device, higher will be the task execution rate.

RAM: It is the temporary data storage medium where the
processing data are stored while the device is online.

Up/Down Bandwidth: It is the speed of the device at which
the data are uploaded and downloaded to and from the device.

Power Consumption: It is the electrical power in watt that
a device consumes while operating.

The tuple CPU length is the size of data to be passed from
one module to another module. The network length
(bandwidth) is the rate of transfer of data from one module to
another module. In case of object tracking module, after
completed a tracking process, the size of data transferred into
another module is tuple CPU length and transferred rate is
network bandwidth which setting is defined in Table VII.

D. Parameter Settings and Network Configuration
The choice of configuration values is based on the

minimum requirement of video surveillance in the real-world
scenarios that is referred from the iFogSim Simulator. The
Table VII below outlines the configuration of application
module components in the video surveillance application.
Table VIII presents the latencies configuration between the
source and the destination nodes. It explains how the
communication between the nodes is managed. Table IX
describes the capacities of fog nodes and cloud. It presents the
size of different devices in our physical topological structure.

TABLE VII. VALUES FOR MONITORING APPLICATION

Tuple types Tuple CPU
length (MIPS)

Network length
(Bandwidth)

Raw video stream 1000 2000

Motion video stream 2000 2000

Detected objects 1000 100

Tracking points 1000 800

TABLE VIII. NETWORK LATENCIES CONFIGURATION

Between Latency (Milliseconds)

Cloud to Proxy server 100

Proxy server to fog devices 50

Fog devices to camera 1

TABLE IX. CAPACITY OF FOG NODES

Device CPU
(MIPS)

RAM
(Bytes)

Up
bandwidth
(Mbps)

Down
bandwidth
(Mbps)

Power
consumption
(Watt)

Cloud 40000 40000 1000 10000 450 (B) 250
(I)

Proxy
server 2800 40000 10000 10000 200(B) 100

(I)

Fog
device 2500 4000 1000 10000 100 (B) 83 (I)

Camera 500 1000 100 100 87(B) 82 (I)

E. Performance Evaluation
The evaluation of the performances in our proposed model

is resource utilization, bandwidth, latency, and power
consumption. These performances are measured in three test
cases which was explained in the above section. Test cases are
a) Using cloud and edges, b) Using only edges and c) Using
only cloud. There are four configurations for simulation
results. The number of areas and number of cameras in each
place is varied on these configurations. The setting of the
configuration is presented in Table X.

The network performance is calculated by the
configuration of Table X. We test the results in three
scenarios. The first scenario is testing our proposed model in
the combination of fog devices and cloud. The second
scenario is testing our proposed model in fog/edge devices
only. The third scenario is testing our proposed model in cloud
devices only. The four parameters of the performance matrix
are measured. They are resource utilization, latency,
bandwidth, and energy consumption. The resource utilization
is the how much resources are utilized to process the data.
The Latency/loop delay is the time taken for an application
loop to execute. In the application, this loop starts with the
camera sensors producing the video stream, goes through the
motion detector, object detector, object tracking, and finally
pattern recognition. The maximum amount of data which can
be transmitted over the network on specific time is called
bandwidth. Energy consumption refers to the amount of
energy used to process in the system.

8 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

TABLE X. CONFIGURATION FOR SIMULATION

Configuration Areas Cameras

Config1 3 1

Config2 5 2

Config3 8 4

Config4 10 6

The results are explained in Fig. 8 to Fig. 11 in three
scenarios cloud and edges, only edges, and only cloud. The
Fig. 8 presents the comparison of network bandwidth. The
edge and cloud architecture saved the network bandwidth by
81% in comparison with only cloud-based architecture. The
Fig. 9 presents the comparison of resource utilization in these
three scenarios. The edge and cloud architecture saved more
resources which is around 88.3% in comparison with only
cloud-based architecture. Fig. 10 describes the comparison of
latency in these three scenarios. The edge and cloud
architecture has less latency in comparison with only cloud-
based approach; the latency has saved by 97.4%. Similarly,
only fog-based approach is slightly better than the
combination of cloud and fog devices. Fig. 11 presents the
comparison of energy consumption in these three scenarios.
The energy consumption in the system is around same for all
scenarios.

Fig. 8. Comparison of Bandwidth.

Fig. 9. Comparison of Resource Utilization.

Fig. 10. Comparison of Latency.

Fig. 11. Comparison of Energy Consumption.

VII. CONCLUSION AND FUTURE WORK
The combination of edge computing and the cloud

computing is the main paradigm for video analytic system to
build smart city application. In this paper, we developed the
new approach for video analytic application to process the
data in edge devices and the cloud for smart city in which
modules are working as pipeline. We proposed the
dimensionality reduction of data in the consecutive steps of
video analytic application to increase the network
performance. The proposed edge computing technique for
video analytic will result in less traffic on the internet because
only a small portion of the data will pass into the cloud. One
contribution is separating the job into pipeline of sub-tasks
and another contribution is implementing the sub-tasks by
using deep learning methods. This research also proposed
scalable object detection and tracking of moving objects based
on CNN. The large numbers of moving vehicles can be tested
by our prototype model. Dividing a video analytic job into
pipeline of sub-tasks will help to process large number of
videos with low latency and low network bandwidth and less
cost of resource utilization. The experimental results show that
proposed tracking by detection method is more than 96%
accurate.

We simulated a proposed model using iFogSim, the result
shows that latency, bandwidth, and resource utilization are
97.4%, 81% and 88.3% efficient than only the traditional
cloud- based approach.

0
100000
200000
300000
400000
500000
600000
700000

Config1 Config2 Config3 Config4

B
an

dw
id

th
 (B

yt
es

)

Bandwidth

edge+cloud Only edge Only cloud

0

500000

1000000

1500000

2000000

2500000

Config1 Config2 Config3 Config4

C
os

t o
f R

es
ou

rc
e

ut
ili

za
tio

n

Resource utilization

edge+cloud Only edge Only cloud

0

1000

2000

3000

4000

5000

6000

Config1 Config2 Config3 Config4

L
at

en
cy

 (M
ili

se
co

nd
s)

Latency/Loop delay

edge+cloud Only edge Only cloud

0

20000

40000

60000

80000

Config1 Config2 Config3 Config4
E

ne
rg

y-
co

ns
um

pt
io

n
(w

at
ts

) Energy-consumption

edge+cloud Only edge Only cloud

9 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

We simulated our model on large number of fog devices
using iFogSim simulator, but we tested a smaller number of
videos in CNN-based model. This is a limitation of this work.

The future work will improve the deep learning-based
object detection and tracking method. We will improve the
performance and compare with different Convolutional Neural
Network architecture with large number of video files.

REFERENCES
[1] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog Computing: Towards

Minimizing Delay in the Internet of Things,” in Proceedings of IEEE 1st
International Conference on Edge Computing, pp.68–73, 2017.

[2] A. Anjum, T. Abdullah, M. F. Tariq, Y. Baltaci, and N. Antonopoulos,
"Video Stream Analysis in Clouds: An Object Detection and
Classification Framework for High Performance Video
Analytics," IEEE Transactions on Cloud Computing, vol. 7, no. 4, pp.
1152-1167, 2019.

[3] D. Pudasaini and A. Abhari, “Scalable Object Detection, Tracking and
Pattern Recognition Model Using Edge Computing,” in Proceedings
of Spring Simulation Conference (SpringSim), pp. 1-11, 2020.

[4] G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-Time Video Analytics: The Killer
App for Edge Computing,” IEEE, vol. 50, no. 10, pp. 58-67, 2017.

[5] D. Pudasaini and A. Abhari, “Scalable Pattern Recognition and Real
Time Tracking of Moving Object,” Spring Simulation Conference
(SpringSim), pp. 1-11, 2019.

[6] N. Wojke, A. Bewley, and D. Paulus, “Simple online and real-time
tracking with a deep association metric,” in Proceedings of IEEE
International Conference on Image Processing, pp. 3645-3649, 2017.

[7] G. Javadzadeh and A.M. Rahmani, “Fog Computing Applications in
Smart Cities: A Systematic Survey,” Wireless Networking, vol. 26, pp.
1433–1457, 2019.

[8] N. Mohamed, J. Al-Jaroodi, I. Jawhar, S. Lazarova-Molnar, and S.
Mahmoud, "SmartCityWare: A Service-Oriented Middleware for Cloud
and Fog Enabled Smart City Services," IEEE , vol.. 5 pp. 17576-17588,
2017.

[9] M. S. Alam, B. V. Natesha, T. S. Ashwin, and R. M. Guddeti, “UAV
based cost-effictive real-time abnormal event detection using edge
computing,” Multimedia tools and Applications, vol. 78, pp. 35119-
35134, 2019.

[10] D. N. Jha, K. Alwasel, A. Alshoshan, X. Huang, R. K. Naha, S.
K.Battula, et al., "IoTSim-Edge: A Simulation Framework for Modeling
the Behaviour of IoT and Edge Computing Environments,"
arXiv:1910.03026, pp. 1-19, 2019.

[11] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge
and cloud computing with distributed deep learning for smart city
internet of things,” IEEE Internet of Things Journal, vol. 7, no. 9, pp.
8099-8110, 2020.

[12] C. Qi, W. Ouyang, H. Li, X. Wang, B. Liu, and N. Yu, “Online Multi-
Object Tracking using CNN-Based Single Object Tracker with Spatial-
Temporal Attention Mechanism,” International Conference of Computer
Vision, pp. 4836-4845, 2017.

[13] Y. Fengwei, W. Li, Q. Li, Y. Liu, X. Shi, and J. Yan, “POI: Multiple
Object Tracking with High Performance Detection and Appearance
Feature,” European conference of computer vision, pp. 36-42, 2016.

[14] G. Chandan, A. Jain, H. Jain, and Mohana, “Real Time Object Detection
and Tracking Using Deep Learning and OpenCV,” in Proceedings of
IEEE International Conference on Inventive Research in Computing
Applications (ICIRCA), pp.1305-1308, 2018.

[15] F. Zhu, Y. Lu, N. Ying, and G. Giakos, “Fast vehicle detection based on
evolving convolutional neural network,” IEEE International Conference
on Imaging Systems and Techniques (IST), pp. 1-4, 2017.

[16] T. Stone, N. Stone, P. Jain, Y. Jiang, K. Kim, and S. Nelakuditi,
“Towards Scalable Video Analytics at the Edge,” Annual IEEE
International Conference on Sensing, Communication, and Networking,
pp. 1-9, 2019.

[17] D. Zhao, H. Fu, L. Xiao, T. Wu, B. Dai, “Multi-Object Tracking with
Correlation Filter for Autonomous Vehicle,” Sensors (Basel,
Switzerland), vol. 18, no. 7, pp. 1-17, 2018.

[18] L. Yang, L. Wang, and S. Wu, “Real-time Object Recognition
Algorithm Based on Deep Convolutional Neural Network,” in
Proceedings of the 3rd IEEE conference on cloud computing and big
data analysis, pp. 331- 335, 2018.

[19] T. He, H. Mao, and Z. Yi, “Moving Object Recognition using Multi-
View Three-dimensional Convolutional Neural Networks,” Neural
Computing and Applications, vol. 28 no. 12, pp. 3827-3835, 2017.

[20] L. M. Vaquero and L. Rodero-Merino, “Finding your Way in the Fog:
Towards a Comprehensive Definition of Fog Computing,” Computer
Communication Review, vol. 44, no. 5, pp. 27-32, 2014.

[21] J. Redmon and A. Farhad, “YOLOv3: An Incremental Improvement,”
Retrieved from: https://pjreddie.com/media/files/papers/YOLOv3.pdf,
2018.

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” 2016, Retrieved
from: https://arxiv.org/pdf/1506.02640.pdf.

[23] S. Zagoruyko and N. Komodakis, “Wide residual networks,” BMVC, pp.
1–12, 2016.

[24] Retrieved from: https://www.kaggle.com/pengcw1/market-1501.
[25] F. Yu, W. Li, Q. Li, Y. Liu, X. Shi, and J. Yan, "POI: Multiple Object

Tracking with High Performance Detection and Appearance
Feature," arXiv:1610.06136, 2016.

[26] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
Toolkit for Modeling and Simulation of Resource Management
Techniques in the Internet of Things, Edge and Fog Computing
Environments,” Software Practice & Experience, vol. 47, no. 9, pp.
1275- 1296, 2016.

10 | P a g e
www.ijacsa.thesai.org

https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://arxiv.org/pdf/1506.02640.pdf
https://www.kaggle.com/pengcw1/market-1501
https://arxiv.org/abs/1610.06136

	I. Introduction
	II. Problem Statements and Contributions
	III. Related Work
	IV. Methodology
	A. Fog Computing Architecture for Smart Cities
	B. Object Detection and Tracking Model for Video Analytic using CNN
	1) Proposed object detection, tracking and pattern recognition model pipeline: The pipeline for this model consists of three stages: labelling stage, learning stage and prediction stage. In the labelling stage, the raw image data are annotated. Similarly, �
	a) Labelling Stage: The labelling stage is the data annotation phase. Human annotators take in the raw data and annotate the data for the specific tasks. Since we have two models: object detection model and appearance model, we have two labelling stages wh�
	b) Learning Stage: In the learning stage, a data pipeline gets created which takes in labelled images and the annotation files and creates datasets for the corresponding tasks. These datasets are then augmented randomly to increase robustness of the models�
	c) Prediction Stage: The prediction stage is the final stage. Here, we feed in the video frames and generate the final tracking results. First, we pass the video frames to a detector model, which we have learned from the learning stage. Then, we take in th�

	2) Object detection model: YOLO is the object detection technique. The architecture of the YOLO is under the regression problem. In [21] [22], an image in the form of pixel values is the input of YOLO and the vector of bounding boxes with class predictions�
	3) Object tracking using modified deep SORT: Deep SORT is a real time object tracking method [6]. It is an updated version of SORT. It integrates an appearance model which provides the deep appearance features for the detected objects in each frame. The me�
	4) Pattern recognition: The tracking model generates the trajectories of the moving objects. The large numbers of trajectories collected from tracking model are passed to machine learning algorithms for pattern recognition. The scalable pattern recognition�

	V. Object Detection and Tracking Results
	1) Dataset: The model was trained using marketplace dataset for bounding box [24]. The Market-1501 dataset was collected with six cameras. The dataset contains 12937 images for training datasets and 19732 images for testing dataset. For the varification, i�

	VI. Test Scenarios, Simulation and Comparison of Results
	A. Test Scenarios
	B. Simulation Tool and Physical Topology
	C. Defining Simulation Data
	D. Parameter Settings and Network Configuration
	E. Performance Evaluation

	VII. Conclusion and Future Work
	References

