
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

WorkStealing Algorithm for Load Balancing in Grid 
Computing 

Hadeer S.Hossam1, Hala Abdel-Galil2, Mohamed Belal3 

Computer Science Department, Faculty of Computers and Artificial Intelligence, Helwan University, Egypt 
 
 

Abstract—Grid computing is a computer network in which 
many resources and services are shared for performing a specific 
task. The term grid appeared in the mid-1990s and due to the 
computational capabilities, efficiency and scalability provided by 
the shared resources, it is used nowadays in many areas, 
including business, e-libraries, e-learning, military applications, 
medicine, physics, and genetics. In this paper, we propose 
WorkStealing-Grid Cost Dependency Matrix (WS-GCDM) 
which schedule DAG tasks according to their data transfer cost, 
dependency between tasks and load of the available resources. 
WS-GCDM algorithm is an enhanced version from GCDM 
algorithm. WS-GCDM algorithm balances load between all the 
available resources in grid system unlike GCDM which uses 
specific number of resources regardless how many resources are 
available. WS-GCDM introduces better makespan than GCDM 
algorithm and enhances system performance from 13% up to 
17% when we experiment algorithms using DAG with dependent 
tasks. 

Keywords—Grid computing; static scheduling; dynamic 
scheduling; load balancing; directed acyclic graph (DAG) 

I. INTRODUCTION 
Importance of grid computing comes from the need to 

access resources which are geographically distributed and 
cannot be moved or duplicated to the same location. Grid 
computing offer approaches to overcome these obstacles. By 
using a grid, distributed resources can be treated as if they are 
into single place [1,2]. Assigning tasks to processors 
/machines is an important issue as it improves the 
performance of the whole job so that our concern will be on 
scheduling resources in grid computing. Resources can be 
computers, storage space, instruments, software applications, 
and data, are all connected through the Internet and a 
middleware layer that provides basic services for security, 
monitoring, resource management, and so forth as shown in 
Fig. 1. This work concerned with the processing time 
efficiency. Resources available on grid are shared under 
policies that specify who is permitted to access resources, 
what are the resources that will be available for everyone, and 
under what conditions they will use these resources [3]. 

Nature of grid computing resources is dynamic; therefore 
achieving high performance is a challenge as new resource 
can be submitted to the grid or withdraw from the grid. There 
are number of factors, which can affect the grid application 
performance; load balancing is one of the most critical 
features of Grid infrastructure. 

Scheduling tasks in grid computing is critical as it 
influences the execution of the whole application. The 

problem of mapping tasks in grid computing is to find proper 
assignment of tasks to the available processors in order to 
optimize system utilization and load balancing and to 
minimize execution time [4]. 

This paper is organized as follows. In Section 2, related 
works for the independent and dependent task scheduling 
algorithms are discussed. In Section 3, we clarified our 
problem statement. And, we describe our proposed algorithm 
and how the WS-GCDM balance task scheduling between the 
available resources. And, we discuss the experimental results 
under varying gridlets and number of resources between the 
GCDM and WS-GCDM algorithms. In Section 4, we provide 
our final conclusion and the detailed algorithm. 

II. RELATED WORK 
Over the past few years, a lot of grid computing algorithms 

have been introduced. Such algorithms focused on arranging 
and allocating tasks to resources in a way that minimizes the 
execution time in order to enhance performance and data 
transfer cost between these resources. This section surveys 
previous work in scheduling tasks in grid computing. 

After user submit an application, the scheduler divides this 
application into tasks. These tasks may be dependent on each 
other and need to be scheduled based on the precedence 
between tasks, or sometimes each task is stand-alone and can 
be scheduled without affecting other tasks. This categorized 
scheduling in grid computing according to task dependency. 

As an example of independent task scheduling algorithms: 
Opportunistic Load Balancing (OLB) algorithm [5, 6], 
Minimum Execution Time (MET) algorithm [7], Minimum 
Completion Time (MCT) algorithm [8], Min-min algorithm 
[9], Max-min algorithm [10, 11, 12], Suffrage algorithm [13, 
14]. 

 
Fig. 1. Framework of Grid Computing. 

98 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

Dependent task scheduling algorithms use the Directed 
Acyclic Graph (DAG) to represent dependency between tasks. 
Algorithms schedule dependent tasks such as Fully 
Decentralized P2P Grid scheduling (FDPGS) algorithm 
proposed by Piyush Chauhan and Nitin [15]. Sorted nodes in 
leveled DAG division (SNLDD) algorithm proposed in [16]. 
Grid costs and dependence matrix (GCDM) algorithm was 
proposed in [17]. CCF (Cluster ready Children First) 
algorithm proposed by Florin Pop and Valentin Cristea [18]. 
Communication inclusion generational scheduling (CIGS) 
algorithm proposed by Communication Inclusion Generational 
Scheduling (CIGS) algorithm [19], Dynamic Critical Path for 
Grid (DCP-G) and rescheduling DCP-G (Re-DCP-G) [20], 
and Grid Workflow Scheduling (GWS) algorithm [21]. 

This work is concerned with the task scheduling problem. 
We present application subtasks as a Directed Acyclic Graph 
(DAG) then these subtasks are mapped to the available 
processors. Moreover, we are trying to balance load across the 
available resources by using workstealing algorithm. 
WorkStealing algorithm (WS-GCDM) redistributes the initial 
scheduling work over idle processors, and as long as all 
processors have tasks to execute, no scheduling overhead 
occurs. This is the advantage of using receiver-initiated 
scheduling rather than sender-initiated scheduling as every 
resource maintains it as work queue and idle processors try to 
steel work from other resources. 

III. PROPOSED ALGORITHM 
Architecture of proposed WS-GCDM algorithm has two 

main components: Resource Discovery and Workflow Task 
Scheduling. 

Resource Discovery component is responsible for 
discovering grid resources. It continuously collects 
information about which resources are available to the system. 
After finishing this task, it sends the collected information to 
the Grid Information Service (GIS) about the registered 
resources. The information includes number of processing 
elements (PEs), million instructions per seconds (MIPS), 
architecture and their operation systems. 

Workflow Task scheduling component is responsible for 
scheduling workflow tasks. It receives Directed Acyclic Graph 
(DAG) from the user and based on the collected information 
about the registered resources from GIS it instantiates static 
scheduling phase. Ready tasks are then dispatched to the 
mapped resources based on their priority on the workflow. 
When resource becomes idle, it tries to steal tasks from the 
busy resources and the initial static scheduling change. 

A. Overview of WS-GCDM Algorithm 
A WS-GCDM tries to minimize the execution time of the 

whole workflow application (makespan). The proposed WS-
GCDM algorithm consists of three phases: Resource 
Discovery, Static Scheduling, and Rescheduling by 
WorkStealing phase. 

Resource discovery phase is responsible for collecting 
information about the available resources. Then static 
scheduling phase tries to map DAG tasks to the appropriate 
resources based on the collected information stored in the GIS 

with the aim to reduce data cost transfer, which is the cost of 
transferring data from task to another task, and execution time 
of the whole application. The schedule is then submitted to 
Execution Manager (EM), which is responsible for getting 
ready tasks and executing these tasks to the scheduled 
resources. Final phase is the rescheduling by WorkStealing. 
This phase is responsible for monitoring the status of the 
available resources. When resource becomes idle it tries to 
find resource with tasks on its queue. Once it succeeded to 
finds this resource it tries to steal tasks from that resource 
which become a victim. We call idle resource which stole 
work from other resources stealer. Stealer resources try to 
steal tasks which can be finished as earlier as possible in order 
to search for other tasks to execute it. 

B. Static Task Scheduling 
Static task scheduling considers dependencies and data 

cost transfer between tasks in the workflow. Consider we have 
N tasks in the DAG workflow. Dependency (D) and data cost 
transfer (C) matrices (N*N) then created. 

In this stage number of resources that will be used initially 
will be as the number input nodes in the DAG. Steps of static 
task scheduling are: 

• Determine input nodes. 

• Mapping input nodes. 

• Mapping remaining nodes in the DAG. 

1) Determine input nodes: In this step input nodes are 
determined considering D matrix. Input nodes are the nodes 
which did not depend on any other nodes. Also, sometimes, 
they are called entry nodes. 

2) Mapping input nodes: After determining input nodes, 
number of resources that will be used initially is determined. 
In this step each input node is mapped to separate resource. If 
number of registered resources is less than number of input 
nodes, then we start mapping the outnumber tasks with the 
previously mapped tasks. Each processor now has its own set 
containing nodes that will be executed by this it. 

3) Mapping remaining nodes in the DAG: In the step all 
the remaining tasks in the workflow DAG is mapped to the 
used resources in the previous step. DAG is divided into levels 
and nodes will be scheduled level by level in order to perceive 
priorities between nodes. Let us consider we have m levels in 
the DAG, this mean that node in level i (0<=i<m) have higher 
priority than nodes in level i+1. Considering C matrix and sets 
of each processor nodes in the next level can be determined, 
and then these nodes can be scheduled considering their parent 
nodes. There are two cases for each node while scheduling it: 

• Node has only one parent. This node is not shared and 
scheduled to processor which has its parent on its set. 

• Node has more than one parent. This node is shared 
between other parent nodes and will be scheduled 
according to the following rule: 

a) If parent nodes are mapped to the same resource, then 
this node will be added to this processor set. 

99 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

b) If parent nodes are mapped to different resources, 
then task will be added to the processor that are more 
transferring cost to its nodes. 

4) Rescheduling by work stealing phase: Workflow 
scheduling should be balanced to the available resources. 
GCDM fail to balance load across the resources, as this 
algorithm did not consider all the available resources and use 
only specified number of resources which is equal to the input 
nodes. Therefore, we can find resources idle while other 
resources may be overloaded. This may influence the 
execution of the whole application makespan; which is the 
time when all jobs are completed. 

WS-GCDM balance load across the available resources by 
using WorkStealing algorithm. Tasks are submitted to the 
mapped resources initially by using sender-initiated policy, 
which means scheduler is responsible for sending tasks to the 
resources. After this stage each resource will have its own 
queue containing ready tasks that will be executed by this 
resource. When execution of tasks begins on the mapped 
resources WorkStealing algorithm will be triggered. Idle 
resources, which are called stealer nodes, will try to find 
resources with tasks that can be stolen; these resources are 
called victim nodes. After succeeding to find this resource 
stealer node will steal Least Waiting Tasks (LWT) from 
victim and add this task to its own queue. LWT are tasks that 
have minimum waiting counter which represent number of 
tasks needed to be finished to start executing this task. We 
choose the LWT in order to make resource finish this task 
earlier than possible and try to steal another task from other 
victim nodes. Steal nodes become receiver initiated and by 
this utilization of idle resources are enhanced as it helps to 
make these resources as busy as possible. 

5) WS-GCDM pseudo code: As in this heading, they 
should be Times New Roman 11-point boldface, initially 
capitalized, flush left. 

This section describes the pseudo code of the WS-GCDM 
algorithm for scheduling workflow tasks which is shown in 
Algorithm 1. 

Algorithm 1. Work Stealing Grid Cost Dependancy Matrix (WS-
GCDM) algorithm 

1.Input: Directed acyclic graph. 
2.Construct dependency matrix 
3.Construct data transmission cost matrix 
4. Loop from i=0 to number of gridlets in dependency 

matrix 
If gridlet does not depend on any other node  

Add this gridlet to inputGridlets. 
5. Number of resources= the number of gridlets in 

inputGridlets 
6.Loop from i=0 to number of inputGridlets  

Schedule each gridlet to processor. 
7.While there are gridlets in DAG not scheduled  

1.If gridlet is not shared between resources then: 
i. Assign task to the processor that the tasks 

dependent on before it in set. 

2.Else if gridlet is shared between resources then: 
If parent nodes are mapped to the same 
resource  
then  

Add task to the parents processor set. 
If parent nodes are mapped to different 
resources  
then  

Add task to the processor that are more t
 ransferring cost to its nodes. 

8.Construct gridletResourceCharacteristics for each  
 gridlet which contains  
 Direct Parent list 
 Waiting counter 
 Direct children list 
9.Construct gridletProcessor list for each processor. 
10.Begin 

I. Loop from i=0 to number of gridlets on every 
gridletProcessor list 
 If gridlet waiting counter=0 
  Submit gridlet to its scheduled  
 resource 
  Add this gridlet to runningGridlets 

II. Loop from i=0 to runningGridlets 
 Loop from i=0 to number of gridletProcessor  
 While gridletProcessor.size==0 

  Create random number from 0 to  

 number of processors 

 Loop from i=0 to 
gridletProcessor[randomNumber].size() 

 Get gridlet with minimum waiting counter 

III. Add this gridlet to gridletProcessor list of this 
resource 

IV. Get direct children of those runningGridlets 
V. Add direct children to waitingGridlets 

VI. Loop from gridlet=0 to number of 
waitingGridlets 
Send message to waitingGridlets to decrement 
their waiting counter. 
Get direct children of those waitingGridlets 
Add direct children to waitingGridlets 
Go to step vi 

VII. Go to step i 

Initially the first phase of statically scheduling tasks to 
available resources. 

Steps 1-3 take DAG and construct its data and cost matrix. 
Then Steps 4-6 determines input or entry nodes and assigns 
each input node to the specified number of resources. Step 7 
schedules the remaining tasks in DAG to processors according 
to the previously described algorithm in section Static task 
scheduling. Step 8 adds parameters to gridlet beside its 

100 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

characteristics. Direct Parent list contains Parents which are 
directly connected to this gridlet. Waiting counter contains 
number of tasks needed to be executed to start executing this 
gridlet and is calculated by incrementing waiting counter of its 
direct parents waiting by one. Direct children list contains 
children of this gridlet which are directly connected with it. 
Step 9 construct waiting queue for each processor which 
contains tasks that will be executed by this processor. 

Step 10 send gridlets with waiting counter =0 which means 
this gridlet become ready to be executed to running queue. 
After sending task to the running queue of the mapped 
processor, message from this task need to be sent to each child 
in the direct children list. This message is to inform the child 
that parent who sends message start executing and to be ready 
for executing. This means that this child needs to decrease its 
waiting counter by one. Also, this child needs to send message 
to each child in its direct children list to decrease its waiting 
counter and continue sending message from child to child 
until we reach the exit node. While there are tasks in the 
running queue idle resources search for victim nodes and try 
to steal work from it. 

6) Implementation: In our work, we use GridSim toolkit 
simulator. The GridSim toolkit provides modeling and 
simulation of entities in distributed computing systems, users, 
resources, and resource brokers (schedulers) for design and 
evaluation of scheduling algorithms. It was originally 
conceived by Buyya [22]. 

There are five different entities used in the system: 

• User. 

• Gridlets. 

• Resources. 

• Grid Information Service (GIS). 

• Grid Broker. 

The makespan, resource busy time percentage, and system 
improvement are the used measure to compare the 
performance of GCDM and WS-GCDM algorithms. 

Makespan is the total time elapsed between the start time 
of executing the first task in the DAG workflow to the 
completion time of last task. 

Resource busy time percentage which is the percentage of 
time the resource is busy in executing tasks in its ready queue. 

System improvement rate that specifies the performance 
improvement rate of WS-GCDM algorithm with respect to 
GCDM algorithm can be measured as the difference between 
GCDM makespan and WS-GCDM makespan over the 
makespan of WS-GCDM algorithm. 

Table I shows the characteristics of all resources that will 
be used in our simulation environment. We have used a subset 
of resources of the World-Wide Grid (WWG) testbed, as used 
in [23]. 

TABLE I. THE WWG TESTBED RESOURCES 

Resource 
ID 

Resource 
Name 

MIPS 
Rating 

No of 
PEs 

Operating System 
Architecture  

5 Resource_0 515 4 
OSF1 
Compaq 
AlphaServer 

9 Resource_1 377 4 Solaris 
Sun Ultra 

13 Resource_2 377 4 Solaris 
Sun Ultra 

17 Resource_3 377 2 Solaris 
Sun Ultra 

21 Resource_4 380 2 Linux 
Intel Pentium/VC820 

25 Resource_5 410 6 IRIX 
SGI Origin 3200 

29 Resource_6 410 16 IRIX 
SGI Origin 3200 

33 Resource_7 410 16 IRIX 
SGI Origin 3200 

37 Resource_8 380 2 Linux 
Intel Pentium/VC820 

41 Resource_9 410 4 IRIX 
SGI Origin 3200 

The following subsections show six different experiments 
for evaluating the performance of WS-GCDM algorithm. 
DAG in each experiment is generated randomly. The gridlets 
in the generated DAG varying in their length and input file 
size. In addition, the first five experiments are done using only 
the first five resources from Table I and different number of 
gridlet (twenty gridlets, forty gridlets, sixty gridlets, eighty 
gridlets and one hundred gridlets). 

Experiment six shows the performance of GCDM and WS-
GCDM algorithms under different number of resources. 

IV. EXPERIMENTS 

A. Experiment One 
We implement GCDM and WS-GCDM algorithms on 

random DAG with 20 tasks and two input tasks. 

Fig. 2 and Fig. 3 indicate the busy time percentage of the 
available five resources for GCDM and WS-GCDM 
algorithms, respectively. 

 
Fig. 2. Resource Busy Time Percentage for GCDM Algorithm on Random 

DAG with 20 Tasks. 

101 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

 
Fig. 3. Resource Busy Time Percentage for WS-GCDM Algorithm on 

Random DAG with 20 Tasks. 

Makespan of GCDM=10563.763 sec, while makespan of 
WS-GCDM=9128.416 sec. 

From the makespan results we can conclude that WS-
GCDM improve performance rate with nearly 15%. 

B. Experiment Two 
We experiment GCDM and WS-GCDM algorithms on 

random DAG with 40 tasks and three input tasks. 

Fig. 4 and Fig. 5 indicate the busy time percentage of the 
available five resources for GCDM and WS-GCDM 
algorithms, respectively. 

Makespan of GCDM= 46630.65 sec, while makespan of 
WS-GCDM= 39797.880 sec. 

From the makespan results we can conclude that WS-
GCDM improve performance rate with nearly 17%. 

 
Fig. 4. Resource Busy Time Percentage for GCDM Algorithm on Random 

DAG with 40 Tasks. 

 
Fig. 5. Resource Busy Time Percentage for WS-GCDM Algorithm on 

Random DAG with 40 Tasks. 

C. Experiment Three 
We experiment GCDM and WS-GCDM algorithms on 

random DAG with 60 tasks and three input tasks. 

Fig. 6 and Fig. 7 indicate the busy time percentage of the 
available five resources for GCDM and WS-GCDM 
algorithms, respectively. 

Makespan of GCDM= 64844.101 sec, while makespan of 
WS-GCDM= 57213.422 sec. 

From the makespan results we can conclude that WS-
GCDM improve performance rate with nearly 13%. 

D. Experiment Four 
We experiment GCDM and WS-GCDM algorithms on 

random DAG with 80 tasks and four input tasks. 

Fig. 8 and Fig. 9 indicate the busy time percentage of the 
available five resources for GCDM and WS-GCDM 
algorithms, respectively. 

Makespan of GCDM= 75219.907 sec, while makespan of 
WS-GCDM= 65978.606 sec. 

From the makespan results we can conclude that WS-
GCDM improve performance rate with nearly 14%. 

E. Experiment Five 
We experiment GCDM and WS-GCDM algorithms on 

random DAG with 100 tasks and two input tasks. 

 
Fig. 6. Resource Busy Time Percentage for GCDM Algorithm on Random 

DAG with 60 Tasks. 

 
Fig. 7. Resource Busy Time Percentage for WS-GCDM Algorithm on 

Random DAG with 60 Tasks. 

102 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

 
Fig. 8. Resource Busy Time Percentage for GCDM Algorithm on Random 

DAG with 80 Tasks. 

 
Fig. 9. Resource Busy Time Percentage for WS-GCDM Algorithm on 

Random DAG with 80 Tasks. 

Fig. 10 and Fig. 11 indicate the busy time percentage of 
the available five resources for GCDM and WS-GCDM 
algorithms, respectively. 

Makespan of GCDM= 87280.950 sec, while makespan of 
WS-GCDM= 76115.103 sec. 

From the makespan results we can conclude that WS-
GCDM improve performance rate with nearly 14%. 

F. Experiment Six 
In this experiment we compare load balance between 

resources and makespan of GCDM and WS-GCDM 
algorithms when number of resources varies. We make this 
evaluation using DAG with 100 tasks. 

From Fig. 12, we can conclude that makespan of GCDM 
under different number of resources does not change a lot as it 
uses only limited number of resources considering number of 
input tasks in the DAG whereas makespan of WS-GCDM 
under different number of resources always are less than 
makespan of GCDM as all resources are busy and has gridlets 
to execute. 

G. Experiment Seven 
In this experiment we compare our proposed algorithm 

WS-GCDM with Adaptive Workflow Scheduling (AWS) 
algorithm [21]. We compare makespan of WS-GCDM and 
makespan of AWS under different number of tasks. 

From Fig. 13, we can conclude that makespan of WS-
GCDM is less than makespan of AWS. 

 
Fig. 10. Resource Busy Time Percentage for GCDM Algorithm on Random 

DAG with 100 Tasks. 

 
Fig. 11. Resource Busy Time Percentage for WS-GCDM Algorithm on 

Random DAG with 100 Tasks. 

 
Fig. 12. Makespan of GCDM and WS-GCDM under different Number of 

Resources. 

 
Fig. 13. Makespan of AWS and WS-GCDM under different Number of 

Resources. 

103 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

V. CONTRIBUTIONS 
Load Balancing is one of most important features of Grid 

Middleware for efficient execution of intensive applications. 
The efficiency of load balancing of the algorithm decides the 
efficiency of grid middleware. 

Our proposed algorithm WS-GCDM focus on balancing 
load among resources Work-Stealing Grid Cost Dependency 
Matrix (WS-GCDM) algorithm which is enhanced version 
from Grid Cost Dependency Matrix (GCDM) algorithm. 

WS-GCDM and GCDM are implemented and compared 
using the same data. It is found that WS-GCDM improves 
performance of the GCDM and the makespan in case of using 
WS-GCDM is better than GCDM. 

Also, we compared, this makespan of the proposed 
algorithm WS-GCDM with Adaptive Workflow Scheduling 
(AWS) algorithm and from the experiments results WS-
GCDM introduces better load balancing and enhances the 
makespan than GCDM and AWS algorithms as all the 
available resources are utilized. It enhances system 
performance by nearly 15%, 17%, 13%, 14% and 14% when 
we experiment algorithms using DAG with 20,40,60,80 and 
100 dependent tasks, respectively. 

REFERENCES 
[1] Dr. K. S. Kanna, Dr. P. Devabalan, S.Hariharasitaraman and P. Deepa, 

Some Insights on Grid Computing-A Study Perspective, International 
Journal of Pure and Applied Mathematics Volume 118 No. 8 2018, 47-
50. 

[2] 7 things you should know about grid computing, Educause65 learning 
initiative, January 2006. 

[3] Fangpeng Dong and Selim G. Akl, Scheduling Algorithms for Grid 
Computing: State of the Art and Open Problems, School of Computing, 
Queen’s University Kingston, Ontario January 2006. 

[4] I.I. Kurochkin and E.A. Gerk, Modeling of task scheduling in desktop 
grid systems at the initial stage of development, Proceedings of the VIII 
International Conference "Distributed Computing and Grid-technologies 
in Science and Education, 2018. 

[5] George Amalarethinam. D.I, Vaaheedha Kfatheen .S, “Max-min 
Average Algorithm for Scheduling Tasks in Grid Computing Systems”, 
(IJCSIT) International Journal of Computer Science and Information 
Technologies, Vol. 3 (2) , 2012. 

[6] Naglaa M. Redaa, A. Tawfikb, Mohamed A. Marzokb, Soheir M. 
Khamis, “Sort-Mid tasks scheduling algorithm in grid computing1”, 
Journal of Advanced Research Volume 6, Issue 6, November 2015. 

[7] P. K. Suri, Sunita Rani, “GRID Distance and Execution Time based 
Scheduling Algorithm”, International Journal of Computer Engineering 
and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 - 
6375(Online), Volume 5, Issue 7, July (2014). 

[8] Adil Yousif, Sulaiman Mohd Nor, Abdul Hanan Abdualla, and 
Mohammed Bakri Bashir, “Job Scheduling Algorithms on Grid 
Computing: State-of- the Art”, International Journal of Grid Distribution 
Computing Vol. 8, No.6, (2015). 

[9] T. Kokilavani, Dr. D.I. George Amalarethinam, “Load Balanced Min-
Min Algorithm for Static Meta-Task Scheduling in Grid Computing”, 
International Journal of Computer Applications (0975 – 8887) Volume 
20– No.2, April 2011. 

[10] Navdeep Kaur, Khushdeep Kaur, “Improved Max-Min Scheduling 
Algorithm”, IOSR Journal of Computer Engineering (IOSR-JCE) e-
ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 17, Issue 3, Ver. 1 (May 
– Jun. 2015). 

[11] Zhongping Zhang, Yupeng Feng, Shan Zhang and Ying Sun, “Heuristic 
Grid Resource Scheduling Algorithm based on Group of Task and 
Secondary Distribution”, International Journal of Security and Its 
Applications Vol.9, No.8 (2015). 

[12] Salman Meraji and M. Reza Salehnamadi,” A Batch Mode Scheduling 
Algorithm for Grid Computing”, Journal of Basic and Applied Scientific 
Research, J. Basic. Appl. Sci. Res., 3(4)173-181, 2013. 

[13] Naglaa M. Reda, “An Improved Sufferage Meta-Task Scheduling 
Algorithm in Grid Computing Systems International Journal of 
Advanced Research (2015), Volume 3, Issue 10, 123 -129. 

[14] Nabeel Zanoon, Nashat Al Bdour and Evon Abu-Taieh, “Survey of 
Algorithm: Scheduling Systems and Distributed Resource Management 
in Grid”, International Journal of Computer Applications (0975 – 8887) 
Volume 98– No.1, July 2014. 

[15] Piyush Chauhan and Nitin, “Decentralized Scheduling Algorithm for 
DAG Based Tasks on P2P Grid”, Hindawi Publishing Corporation 
Journal of Engineering Volume 2014, Article ID 202843,14 pages, 
January 2014. 

[16] Nirmeen A. Bahnasawy, Magdy A. Koutb, Mervat Mosa and Fatma 
Omara, “A new algorithm for static task scheduling for heterogeneous 
distributed computing systems” African Journal of Mathematics and 
Computer Science Research Vol. 4(6), pp. 221- 234, June 2011. 

[17] Amir M Bidgoli and Zahra Masoudi Nezad, “A new scheduling 
algorithm design for grid computing tasks”, 5th SASTech 2011, 
Khavaran Higher- education Institute, Mashhad, Iran. 

[18] Florin Pop andValentin Cristea, “Intelligent Strategies for Dag 
Scheduling Optimization in GRID Environments”, 16th International 
Conference on Control Systems and Computer Science (CSCS16’07). 

[19] Ian Foster, Carl Kesselman and Steven Tuecke, “The Anatomy of the 
Grid Enabling Scalable Virtual Organizations”, To appear: Intl J. 
Supercomputer Applications, 2001. 

[20] Mustafizur Rahman , Rafiul Hassan , Rajiv Ranjan , and Rajkumar 
Buyya , “Adaptive workflow scheduling for dynamic grid and cloud 
computing environment”, Published online 4 March 2013 in Wiley 
Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3003. 

[21] Ritu Garg and Awadhesh Kumar Singh, “Adaptive workflow scheduling 
in grid computing based on dynamic resource availability”, Engineering 
Science and Technology, an International Journal (2015). 

[22] Jia, Rajkumar Buyaa, “Workflow Scheduling Algorithms for Grid 
Computing”, Technical Report, Grid Computing and Distributed 
Systems Laboratory, The University of Melbourne, Australia, May 31, 
2007. 

[23] Mustafizur Rahman , Rafiul Hassan , Rajiv Ranjan , and Rajkumar 
Buyya , “Adaptive workflow scheduling for dynamic grid and cloud 
computing environment”, Published online 4 March 2013 in Wiley 
Online Library (wileyonlinelibrary.com). DOI:10.1002/cpe.3003. 

104 | P a g e  
www.ijacsa.thesai.org 


	I. Introduction
	II. Related Work
	III. Proposed Algorithm
	A. Overview of WS-GCDM Algorithm
	B. Static Task Scheduling
	1) Determine input nodes: In this step input nodes are determined considering D matrix. Input nodes are the nodes which did not depend on any other nodes. Also, sometimes, they are called entry nodes.
	2) Mapping input nodes: After determining input nodes, number of resources that will be used initially is determined. In this step each input node is mapped to separate resource. If number of registered resources is less than number of input nodes, then we�
	3) Mapping remaining nodes in the DAG: In the step all the remaining tasks in the workflow DAG is mapped to the used resources in the previous step. DAG is divided into levels and nodes will be scheduled level by level in order to perceive priorities betwe�
	a) If parent nodes are mapped to the same resource, then this node will be added to this processor set.
	b) If parent nodes are mapped to different resources, then task will be added to the processor that are more transferring cost to its nodes.

	4) Rescheduling by work stealing phase: Workflow scheduling should be balanced to the available resources. GCDM fail to balance load across the resources, as this algorithm did not consider all the available resources and use only specified number of resou�
	5) WS-GCDM pseudo code: As in this heading, they should be Times New Roman 11-point boldface, initially capitalized, flush left.
	6) Implementation: In our work, we use GridSim toolkit simulator. The GridSim toolkit provides modeling and simulation of entities in distributed computing systems, users, resources, and resource brokers (schedulers) for design and evaluation of scheduling�


	IV. Experiments
	A. Experiment One
	B. Experiment Two
	C. Experiment Three
	D. Experiment Four
	E. Experiment Five
	F. Experiment Six
	G. Experiment Seven

	V. Contributions

