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Abstract—Validating the behaviour of commercial off-the-
shelf components and of interactions between them is a complex,
and often a manual task. Treated like any other software product,
a software component for a robot system is often tested only
by the component developer. Test sets and results are often not
available to the system builder, who may need to verify functional
and non-functional claims made by the component. Availability of
test records is key in establishing compliance and thus selection of
the most suitable components for system composition. To provide
empirically verifiable test records consistent with a component’s
claims would greatly improve the overall safety and dependability
of robotic software systems in open-ended environments. Addi-
tionally, a test and validation suite for a system built from the
model package of that system empirically codifies its behavioural
claims. In this paper, we present the “SmartTS methodology”: A
component-based and model-driven approach to generate model-
bound test-suites for software components and systems. SmartTS
methodology and tooling are not restricted to the robotics domain.
The core contribution of SmartTS is support for test and
validation suites derived from the model packages of components
and systems. The test-suites in SmartTS are tightly bound to an
application domain’s data and service models as defined in the
RobMoSys (EU H2020 project) compliant SmartMDSD toolchain.
SmartTS does not break component encapsulation for system
builders while providing them complete access to the way that
component is tested and simulated.
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I. INTRODUCTION

A software product may be difficult to understand and
modify, it might be prone to misuse and difficult to use, it
might not integrate well with another piece of software and
it might work on only a particular machine and only under
some very hard assumptions. Unless one looks under the hood
to measure software on these parameters, the quality of the
software can not be judged purely on the basis that it works and
was delivered on time [1]–[3]. Fig. 1 shows key characteristics
that can be used to evaluate the overall quality of a software
product 1. A good software product can be qualified as
testable if it performs well on the following quality parameters
as suggested by Boehm et al. [1].

1 Throughout this paper, Indicators like , , , , & are
internal connections between notions presented in the paper.

B1 Accountability: Code2 allows for mechanisms to
measure its usage, e.g. code instrumentation .

B2 Accessibility: Code allows selective usage of its parts
and provides side entrances for test access .

B3 Communicativeness: Code allows specification of
inputs and provides corresponding outputs in a usable
form .

B4 Self-descriptiveness: Code provides enough informa-
tion, e.g., a test model, for its use3 and verification4

.

B5 Structured: Code is organized into definite interde-
pendent parts, i.e. the software system is composed of
part-wise/component-based testable units .

In summary, a testable code has an established verification
criterion and supports performance evaluation. Testing in the
software industry is broadly categorised into unit, integration
and system testing [4]–[7]. A fourth level, namely, acceptance
testing may be added on some occasions (see Fig. 2).

L1 Unit testing as the name suggests tests individual code
components .

L2 When different code modules are joined, the test
of data flowing through the interface is integration
testing .

L3 A system prepared by several code units is tested
against functional and non-functional system-level re-
quirements in system testing .

L4 An additional enforcement check performed against
a contract, after the final delivery of the software
product is acceptance testing .

High speed, repeatable, low effort and inexpensive testing
improves the overall quality of the software product and its
development workflow. A well-structured test and validation
mechanism can be made cheaper when automated. Removing
the human element from the testing and enforcement equation

2Code in software engineering is short for source code unless stated
otherwise.

3Component blocks, ports (required and provided services), connectors.
4Objectives, assumptions, constraints, revisions and usage history.
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Fig. 1. Software Quality Characteristics Tree [1].

Fig. 2. Software Test Levels. Blocks-ports-connectors Representation for
Software Code Modules.

is of great value for high complexity, incrementally growing
software systems. Machine delivered tests allow for frequent
regression checks on legacy systems in a long-term life cycle of
a software product. The importance of automation in software
testing was realized very early in the development of software
development as an industrial process [8], [9]. A trade-off exists
between the degree of automation in testing and the regularity
by which those tests will be executed, which tilts heavily in
favour of automation as a system grows more elaborate and
mission-critical [10]. Thus, it will be safe to assume that any
modern software development methodology will be incomplete
without a comprehensive plan to automate testing in all test
levels ( - )@ and across all test quality parameters ( -

)@.

Testing robotic software differs from software testing in
general for several reasons.

R1 Robots interact with the physical world with sensors
and actuators which are inherently prone to noise and
faulty execution [11] .

R2 Environments, where robots work, are often open-

ended with very few assumptions [12]. There is a
physical danger involved while working with robotic
systems, especially during their testing .

R3 Safety concerns are high especially when robots work
near humans .

R4 Robot cost is high and their availability for extensive
testing is low .

R5 Robots, sensors mounted on those robots and the
software driving the two are often built by different
vendors with a wide scope of utilization in mind. Ro-
bust and verifiable hardware and software composition
thus become ever more important for robotic systems
[13] .

R6 Very few off-the-shelf software components fit real-
world applications, a large portion of code has to be
custom made for a particular robot .

R7 Robots are built using several hardware components
like gears, wheels and consumables which wear down,
get damaged or replaced over time. The challenge is
to reuse, with confidence, the existing software against
worn-out or some new, slightly different hardware
[11], [14] .

R8 Difficult to specify what constitutes a correct be-
haviour for a robotic system [15] i.e. it is not always
clear what needs to be tested. The challenge comes in
particular from the open-ended world for which full
coverage testing is not possible .

R9 People from various domains work on a robot, not all
of them are trained software engineers .

R10 Lack of communities and uniform standards for the
robotic industry. Standards for robotic hardware and
software should be made abstract and encapsulated to
hide the intellectual property of a business, while not
compromising its usability and configurability for the
end-user .

A recent extensive study on the challenges of testing
robotic systems concluded with three important themes de-
scribing major challenges in testing robots. Following are the
themes and suggested solutions reasoned in the study [16].

A1 Real-world complexities: A robot’s interactions with
the real world is a key difficulty in testing robotic
software .

A1S1 Rapid development of reliable simulators
with better Application Programming Interface
(APIs) and User Interfaces (UI), leading to
better automated simulation testing .

A1S2 Research on tools and techniques for auto-
mated testing of robotic software .

A2 Communities and standards: Community-driven
standards promote product quality and incentivise
member businesses .

A2S1 Developing a robotic software ecosystem with
special emphasis on software quality standards

.
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Fig. 3. SmartTS Approach in the Context of BITs and Test Wrappers.

A2S2 Guidelines and tools to promote healthy prac-
tices for the growth of the ecosystem .

A3 Component integration: Robotic software demands
an integrated (hardware + software) approach to sys-
tem testing .

A3S1 Better availability of hardware components for
testing within the community .

A3S2 Promote tools like hardware-in-the-loop simu-
lation borrowed from other industries .

A3S3 Develop better test oracles5 to ensure that the
testing apparatus knows with confidence the
results of running a test .

In the past decade, there have been some application-
specific proposals for systems for testing software for robots
[17]–[27]. These approaches present tools and algorithms to
address the above ( - )@ concerns but they are either too
specific for a particular robotic application [18]–[20] or are
generic extensions of general software testing techniques and
standards [21], [22] with little to no planning specifically for
robotic software testing ( - )@. In either case, none of
these is community-driven or providing tools or standards
for businesses to follow. A notable exception to this is the
Robot Testing Framework (RTF) [23] which is the right
step towards test automation by a plug-in based approach
to testing that is independent of platform, middleware and
programming language used for writing the test plug-ins.
There are works focusing on improving simulation testing
[24]–[26] and model-driven performance testing [27]. An idea
borrowed from the computer hardware industry [28], the built-
in test enabled components [29]–[31], is to have a functionally
separate maintenance mode to provide access to Built-In Tests
(BITs). Using test-wrappers is another common approach that
works along with the BIT approach to envelop the software
component in a single or multi-layer software wrapper that is
transparent to both the component being tested and its peers
in the environment. These wrappers, when used with BITs,
enable testing without breaking component encapsulation. The
RESOLVE [32] approach is one such approach, it proposes a
two-layer wrapper to achieve automated black-box testing of

5Test oracle (or simply Oracle) is software engineering terminology for any
mechanism by which a test scrip determines whether a test case has passed
or not.

software components.

The SmartTS approach to component testing is to
create a tester component whose model is derived from
the model of the component being tested. This tester
component implements the BITs for automated testing of the
component and its code is transparent (white-boxed) to the
ecosystem, thus the component encapsulation is maintained
(black-boxed) while no additional operational overload is
attached to the component for implementation and execution
of BITs in maintenance/test mode (See Fig. 3).

According to our experience of working with robots in the
service robot industry, community-driven models with a special
focus on Component-Based Software Development (CBSD)
works best for the development of the robotic software com-
ponent. Although there exist several Model-Based Engineering
(MDE) approaches for software development in general [31],
[33]–[37], approaches with a special focus on the robotic
industry are essential for the growth of the robotics industry
(Multi-annual roadmap [38], the European SPARC Robotics
[39] initiative). One such effort towards creating an ecosystem
for model-driven and component-based development of robotic
software is the EU H2020 RobMoSys: Composable Models
and Software for Robotics [40], [41] project. Meta-models that
promote separation of concerns [42], [43] along different roles
such as robotic experts and application domain experts are
highly desirable for the industry. MDE supports the separation
of concerns and of roles since it provides operational modules
dedicated to use by specific stakeholders. The RobMoSys
approach has a special emphasis on a clear separation of con-
cerns and roles and promotes community building for efficient
collaboration between stakeholders. Other model-based efforts
towards a robotic software ecosystem [44]–[47] are also taking
separation of concerns and roles as an essential part of their
working philosophy, which will be essential for their success
[48].

In CBSD for software-intensive service robotic systems,
validating the behaviour of a supplied component and its
interactions with other components is a complex, and often a
manual task. In EU Robotics Strategic Research, Innovation
and Deployment Agenda 2020 on AI, Data and Robotics
Partnership [49], trustworthiness was identified as one of
the core characteristics that robotics and AI systems need to
display. Trustworthiness is a property of the system
derived from the trustworthiness of its constituents and
their interactions. Treated like any other software product,
a software component for a robot system is tested by the
component developer (and/or component tester) at the ven-
dor’s (component supplier) end. Test-sets and records of test-
results are often not available to the system builder, who
may need them to verify functional and non-functional claims
made by the vendor about the component. Availability of test
records is key in establishing compliance and thus selection
of the most suitable component for system composition. To
provide empirically verifiable test records consistent with
a component’s claims would greatly improve the overall
safety and dependability of robotic software systems in open-
ended environments. It is of added benefit that when a system
is composed of several components, a part of the system’s
test and validation suite is automatically generated from the
test-suites of the constituent components. This further helps
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empirically codify a system’s functional and non-functional
behavioural claims. To the best of our knowledge, there is
an absence of a wholistic model-driven approach towards
CBSD for robotic systems, that integrates support for test
and validation suites6 within the model-package7 of a robotic
software component or system. Inclusion of test sets and
expected results within the model-package in model-driven
component-based software development enables the following
modelling and transformational8 functionalities.

E1 Meta-modelling framework to define and codify
component-test-model .

E2 Automated generation of user-editable component-
level test-suites from component and domain model
packages. Automated model to data transformations
(M2D) of user-ascribable test-data sets from domain
and user test documents.

E3 Automated testing at vendor’s side .

E4 Empirically verified adequate component selection
during system composition .

E5 Meta-modelling framework to define and codify
system-test-model .

E6 Automated generation of system-level test-suites
from component-level test suites and system-test-
model packages .

E7 Does not break component encapsulation .

E8 Does not break system encapsulation to enforcement
and verification agents .

In this paper, we present the “SmartTS methodology”:
A component-based and model-driven approach to gener-
ate model-bound test-suites for software components and
systems. The test-suites in SmartTS are tightly bound to an
application domain’s data and service models as defined in the
RobMoSys [40] (EU H2020 project) compliant SmartMDSD
[50], [51] Toolchain. SmartTS provides automated generation,
execution and transformation of test-suite models and test-suite
results across a service domain, component and system models,
enabling automated testing and verification of components and
systems. Component test-suite results are used for selecting
an appropriate component for composition. System test-suite
results are used for documenting or sensing system behaviour
during composition, acceptance testing, enforcement or for
run-time diagnosis. SmartTS does not break component encap-
sulation for system builders while providing them complete
access to the way that a component is tested and simulated
(Supporting composition and separation of roles).

The rest of the paper is organized as follows. Section
titled SmartTS Overview introduces the intended goals and
contributions of the SmartTS toolchain. It presents the princi-
ples and methodologies that have inspired SmartTS. Sections

6A test and validation suite is a set of testable statements about a software
component or a multi-component system, which when true indicates the
validity of a particular behavioural claim of the entity.

7A set of models that collectively define an entity.
8A model transformation in MDE is an automated mechanism of trans-

forming one entity into another, where the entity could mean a model or text
(including raw data or code written in a programming language).

Fig. 4. Anatomy of a SmartMDSD Component.

SmartTS and the SmartMDSD Toolchain and SmartTS in
the Context of RobMoSys present how SmartTS integrates
with the existing SmartMDSD toolchain and the RobMoSys
ecosystem. This paper puts the focus on new meta-models,
domain-specific languages (DSLs), roles, views, model-to-
model (MMT), model-to-text (M2T) and model-to-data (M2D)
transformations that SmartTS introduces. Section SmartTS in
Action presents a few use-cases for SmartTS to showcase
its impact. An illustrative sketch of SmartTS tooling based
on Eclipse features and plug-ins is provided without going
into how it is implemented. Finally, Section Conclusions and
Future Works draws some conclusions on the presented work
and outline future research direction and works.

II. SMARTTS OVERVIEW

The core philosophy and contribution of the SmartTS
methodology is to embed models describing the tests for a com-
ponent within the model package of the component. A tester
component is then generated from the model package that
without breaking component encapsulation implements built-
in tests and drives automated testing for the component. The
tester component generates empirically verifiable test records
which are distributed with the component to support its claims.
Since the trustworthiness of a system is derived from
its components, the system-level test-suite is partly derived
from tester components and models of components that
constitute the system. Model-driven and component-based
software development form the base on which the SmartTS
methodology is placed. In this section, we will walk through
the methodology and present the mechanism by which SmartTS
proposes a component-based and model-driven approach to
software testing in a robotic software ecosystem.

SmartTS is a member of the RobMoSys/SmartMDSD
ecosystem. In this paper, we are presenting the SmartTS
methodology in the context of its core ecosystem (Rob-
MoSys/SmartMDSD). The principles and mechanisms de-
scribed here though can be transported as-is to any
component-based and model-driven software ecosystem.
Fig. 4 shows the anatomy of a typical SmartMDSD component.
It is typical in CBSD to represent components and systems us-
ing the blocks ports connectors notation (see Fig. 2). In this pa-
per, we use a custom blocks ports connectors notation (Fig. 5)
to present the SmartTS methodology. Note that SmartMDSD
components can have any number of input, output, request or
answer ports and exactly one coordination & configuration
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Fig. 5. Custom Blocks Ports Connectors Notation used in SmartMDSD::SmartTS Methodology.

Fig. 6. SmartTS Transformations and Validation Mechanisms.

slave port unlike what one may infer from the simplified
representation in Fig. 4. If a component has a master port
of a coordination & configuration interface integrated then it
can coordinate and control other components. Furthermore, the
four-side arrangement of ports in Fig. 4 is only for representa-
tion and the SmartMDSD toolchain GUI doesn’t tightly bound

these ports to particular sides of a component. SmartMDSD
Services [52] is an item being transported (communication
object [53]) in a particular manner (communication pattern
[54]). Depending on the communication pattern, the Smart-
MDSD component could possess an input, output, request or
answer port (Fig. 4). The ‘send’ communication pattern is
one-way while a ‘query’ communication pattern is for two-way
communication of communication objects. A publish/subscribe
mechanism is available for one-to-many communication using
‘push’ (distribution) and ‘event’ (asynchronous notification)
communication patterns. Coordination ports are for a two-way
exchange of ‘coordination’ patterns (‘parameters’, ‘states’,
‘dynamic wiring’ and ‘monitoring data’). These ‘coordination’
patterns are internally built on top of ‘data’ patterns (‘send’,
‘query’, ‘push’ and ‘event’). A system built using the Smart-
MDSD toolchain has a default coordination master (e.g. a
sequencer) with all constituent components as its coordination
clients, in a configuration similar to the system XYZSys
(examples)9.

For the benefit of the reader, it is enough to retain that a
SmartMDSD component typically acts as a service consumer
as well as a service provider at the same time. It is
coordinated by a global coordination master component
(sequencer) which in normal usage is hidden from the
user. A SmartTS tester component to a component would
thus become a consumer to every service provided by the
component and provider to all services requested by the
component. It will also act as a coordination master to the
component and the system built using the component and its
tester component would have a configuration similar to the
one shown in (GO-JU)9 between component X (HP9) and its
tester component Y (HR9). In shorthand notation, this system
would be written as IT9. The reader is advised to go through
the notation given in Fig. 5. A component can have more than
one instance in a system (CV9) and can have differently named
operating modes (FV9). Systems are represented with their
names in curly brackets (examples9). Mapping of SmartMDSD
component notation (Fig. 4) to SmartTS custom notation is
given in (AA-JF)9.

Fig. 6 shows key SmartTS transformations and validation
mechanisms. A component C (Fig. 6.i) is transformed to its

9See alphanumeric coordinates in Fig. 5
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tester component Cts (Fig. 6.ii, Fig. 6.ix). In SmartMDSD, the
component code is generated from its component model pack-
age. The same model package is transformed into the model
package for the component Cts. This tester component provides
an empty code template which is later filled to implement BITs
for component C. Once BITs are implemented and linked to as-
sociated test and validation data (discussed later in the Section
SmartTS and the SmartMDSD Toolchain), the component
Cts is deployed to test component C (Fig. 6.x). The component
Cts has three principal operating modes namely test, train
and simulate (Fig. 6.iii-v). In test mode, the component Cts is
deployed with component C to form the test system {Ctest} for
component C (Fig. 6.vii, x). The test results Ctr from the system
{Ctest} are used to validate the claims made by the component
(Fig. 6.vi, xi). The component Cts is deployed in train mode to
form the training system {Ctrain} for component C (Fig. 6.viii,
xii). This training system {Ctrain} trains the component Cts to
work in the simulated mode. Note that the Cts is simulated
against BITs which may not match the BITs implemented for
its test mode. The difference between these two sets of BITs
is only in terms of the motivation behind their existence.

SmartTS Tester Component

SmartTS tester component for a component is a con-
sumer to every service provided by the component,
provider to all services requested by the component and
it acts as a coordination master to the component.

SmartTS Test System

SmartTS test system is a system with a component
and its tester component deployed to execute the BITs
implemented by the tester component and generate cor-
responding test results.

SmartTS Trainer System

SmartTS trainer system is a system with a component
and its trainer component deployed to execute the BITs
implemented by the trainer component and generate a
fully trained simulator component.

SmartTS Simulator Component

SmartTS simulator component is a tester component
operating in the simulate mode. The simulator component
can reproduce the service and coordination behaviour of
the component for a specific set of BITs.

In Principal, once trained, the component Cts in simulate
mode can reproduce the service and coordination behaviour
of component C for a specific set of BITs. This simulated
mode component Cts is then used in various simulated variants
({SsC}, {SpC} and {Ssim}: Fig. 6.xiv, xv, xvii, xix-xxi) of
a given system {S} (Fig. 6.xiii, xviii). Results (Fig. 6.xvi,
xix-xxii) from these simulated variants of the system are
transformed to a single set of simulation test results {S}tr

for the system {S} (Fig. 6.xxii). Trustworthiness (Con-
formance to claims and agreed upon BITs) is a property

of the System ({S}) derived from the trustworthiness of
its constituents (Atr, Btr and Ctr) and their interactions
({SsA}tr, {SpA}tr, {SsB}tr, {SpB}tr, {SsC}tr, {SpC}tr,
{Ssim}tr). The simulation test results {S}tr for the system {S}
along with test results of its constituents (Atr, Btr and Ctr) are
used to validate the claims made by the system (Fig. 6.xxiii).

III. SMARTTS AND THE SMARTMDSD TOOLCHAIN

SmartMDSD toolchain [50], [51] is a RobMoSys [40]
compliant model-driven tooling for component-based robotic
software development based on the SMARTSOFT method-
ology [55]. SmartTS: Test-suite extensions for SmartMDSD
toolchain, presented for the first time through this paper is an
addition to the existing SmartMDSD toolchain and provides
constructs for modelling built-in contract testing in systems
built using the SmartMDSD toolchain. SmartTS provides mod-
els to associate a test and validation suite with any of the
existing SmartMDSD models. It also allows for the creation
and usage of data elements associated with the test and
validation suites. Eclipse features and plug-ins for SmartTS
are available for download [56]. Context and video tutorials
on the use of SmartTS will soon be available online at SRRC
wiki web page [57]. Fig. 7 shows the key elements of the
SmartTS methodology.

SmartMDSD and SmartTS elements span across two tiers
(1-20, 20-50)10 and involve four main actor-groups. Domain
experts (2C,15N)10, component developers (24D, 48L)10, sys-
tem builders (23D, 48R)10 and behaviour developers (22C10).
The two tiers in the SmartTS methodology correlate with tier-
2 and tier-3 of RobMoSys (Section SmartTS in the Context
of RobMoSys). Component developers, system builders and
behaviour developers are tier-3 ecosystem users (22E, 25N,
25R)10. A tier-3 ecosystem user exchanges content (20P,
5K, 20T, 20V)10 and writes models (28C, 36C, 48C, 33T)10

that conforms to (20B, 31J)10 domain-specific models (7C,
6G)10 defined by the domain experts in tier-2. The domain
experts write the SmartMDSD domain model package (7C10)
which contains several domain models (9A-19D)10 about ser-
vices (19B10), data (12B10), dependency (15B-18B)10, modes
(13B10), parameters (9B10), tasks (10B, 11B)10 and docu-
mentation (14B10). These models are later implemented or
imported by tier-3 users (22E10) in SmartMDSD component
(28C10), system (36C10) and behaviour (48C10) models. Smart-
MDSD component model package (28C10), written by compo-
nent developers (24D10) consists of component models (30A-
35D)10 that describe a component’s parameters (30B10), code
structure (35B10), ports (35B10), dependency objects (34B,
35B)10, skills (31B10) and documentation (33B10). System
builders (23D10) write the SmartMDSD system model package
(36C10) containing models (38A-46D)10 that describe structure
(39B, 46B)10, operations (38B, 40B, 42B)10, dependency (44B,
45B)10 and documentation (43B10) for the system. Behaviour
developers (22C10) write the SmartMDSD behaviour model
(48C10) that specifies how domain tasks (11B10) are realized
(50C10) in a particular behaviour. The SmartTS models (7F-
18J, 34F-48J)10 are derived (17F, 48F)10 from the existing
SmartMDSD domain, component, system and behaviour mod-
els [58].

10See alphanumeric coordinates in Fig. 7
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Fig. 7. The SmartTS Methodology.

Tier-2 SmartTS models (7F-18J)10 are packaged together
to form the domain test and validation suite (19G10). A
default (6G10) domain test and validation suite package is
transformed (17F10) from the existing SmartMDSD domain
model package. For every model in the SmartMDSD domain
model package, a corresponding SmartTS model is generated.
The transformation also produces a template (6G10) to write
any number of custom (6G10) domain test and validation

suite packages. These custom packages are written by domain
experts using the template (6G→4F→2C)10. Similarly, for tier-
3 SmartTS models (34F-48J)10 in user test and validation suite
(49G10), the default, template and custom (33G10) user test and
validation suite packages are transformed (48F10) and written
(33G→26F→22E)10. Additionally, a tier-3 user (22E10) can
write a custom user package (33T10) that conforms to any
template from a domain test and validation suite template
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(30I↔6G)10.

Once written and locked (20N↔6G, 28P↔33G,
28P↔33T)10, the domain/user test and validation suite
packages (6G, 33G, 33T)10 are provided to tier-3 users
(25N, 25R)10 and establishes the foundation for built-in
contract testing (14M-29R)10 in the ecosystem. Domain test
and validation suite packages (20P↔6G)10 govern contract
testing between tier-2 domain experts (15N10) and tier-3
ecosystem users (25N10) as conforming parties. Similarly,
user test and validation suite packages (28P↔(33G, 33T))10

that govern contract testing amongst (25N↔25P↔25R)10 any
number of different tier-3 ecosystem users (25N, 25R)10.

These tier-3 contracts (28P10) can be written for claims
made by a component developer, requirements made by a
system builder, mutually agreed upon behaviour or any other
contractual requirement that any of the models from a Smart-
MDSD model package should adhere to. The tier-3 contracts
(28P10) in built-in contract testing could also be shared be-
tween different component developers as standard tests that all
components of a particular kind should pass or between system
builders as standard tests for quality assurance or enforcement-
related requirements. Standard tests for domain requirements,
quality assurance and enforcement can be distributed as tier-
2 contracts (20P10) between domain experts (15N10) and
ecosystem users (25N10).

A SmartTS model (7F-18J, 34F-48J)10 is required to de-
fine sets of data to be used in tests. This data is mod-
elled as domain/user test and validation data (1G, 22G)10

in SmartMDSD domain repository (1A-19K)10 or SmartTS
user repository (21F-50K)10. SmartTS test and validation data
package contains documentation for uniquely identifiable test
objectives (3G, 24G)10 and documents (3I, 24I)10. Domain/user
data sets (3J, 24J)10 are transformed from respective docu-
ments (3I→3K→3J, 24I→24K→24J)10. These model to data
transformations (M2D: 3K, 24K)10 compile the data range
mentioned in the documents to create the data for uniquely
identifiable data sets mentioned in the documents. SmartTS
models (7F-18J, 34F-48J)10 refers (12L→5K, 41L→(25K,
5K))10 to these data sets, which are later imported ((5K,
25K)→(33S,34S,38S))10 during test execution.

Every SmartTS model (7F-18J, 34F-34J)10 for an entity
under test ((3Y-13Z)↔(9A-19D, 30A-35D, 38A-46D, 50C))10

is a generalization (12L→12N, 41L→12N)10 for a common
SmartTS model class (12N10). The SmartTS model class for
an entity under test is structured (3L-13Y)10 to encorporate
context (9N, 6N, 3P)10, runs (3N, 5P, 9P, 11P, 10T)10 and
conditions (3T, 6T, 3X, 6V, 8V, 10V)10 for tests. For every
entity under test (15Y10) from the SmartMDSD model package
(17X10) is transformed to Java instances of SmartTS model
class (17V, 17T)10 and documented and distributed (24T10)
as XML and JSON documents (17T→18T→(20T, 20V))10 to
work as contracts (20P, 28P)10 for built-in contract testing
(14M-29R)10.

The SmartMDSD compilers (24X10) generate background
C++ code (33X10) and a template (38X10) based on which
the component developer can create the SmartTS component
(38S10). The SmartTS component works with the background
C++ code (38S→35X→33X)10 and implements the contracts
(38S→27V→20W→(20T, 20V))10. It is also possible to im-

plement components created without the use of SmartMDSD
toolchain (33S, 34S)10, and yet adhere to the SmartTS con-
tracts ((33S, 34S)→27V→20W→(20T, 20V))10. Any com-
ponent implementing SmartTS contracts imports domain/user
data sets when they are referred to in the SmartTS model ((33S,
34S, 38S)→(5K, 25K))10. A SmartTS verifier implementation
(30N10) corresponding to (33P10) the SmartTS component
implementation verifies the results generated by SmartTS
components against the contracts (30N→30V→20V→(20T,
20V))10 and generates SmartTS component verification re-
ports (model, text) and validation graphs (graphics) (39N,
33P→37N→39N→42N)10.

These verification reports and validation graphs are listed
in the SmartTS component verification library (39N→42N,
48L→46L→44M→42N)10 after they are used by component
developers for debugging (unit-testing: 50N)10 the compo-
nent (48L→48N→46P)10. System builders (48R10) selects
(48R→46R→44S→42N)10 and validates (48R→48Q→46P)10

components, and builts a system (44W, 48R→50X→44W)10

after performing integration (41S10) and system (50X10) test-
ing. System builder also generates system verification re-
port (model, text) and validation graphs (graphics) for the
newly composed system (48R→48V→42W)10. System con-
tracts (44V10) are a collection of contracts that exist be-
tween tier-2 and tier-3 parties associated with the sys-
tem. System contracts are validated against system verifica-
tion report and validation graphs during acceptance testing
(42W→40Y→44Y)10.

The SmartTS platform-independent model (A-K)10,
based on the SmartTS meta-model (1L-20Z)10 is thus
condensed into shareable documents (20T, 20V)10 to be
received and later implemented (20L-40Z)10 and tested
(41L-50Z)10 for specific platforms. Fig. 8 shows key users,
models, transformations in the SmartTS workflow as explained
in Sections II and III.

IV. SMARTTS IN THE CONTEXT OF ROBMOSYS

RobMoSys: Composable models and software for robotics
[40], [41] is an EU H2020 funded project (2017-2020, Grant
number 732410) to create better modelling standards and tool-
ing for robotic systems. RobMoSys has a three-tier ecosystem
for model-driven, component-based software development for
robotic systems (RobMoSys: Wiki [41]). Fig. 9 shows the
three tiers of the RobMoSys ecosystem and the roles that
participate in these tiers. Members of a lower-tier conform to
models defined by members of a higher-tier in the ecosystem.
SmartMDSD toolchain [50], [51] is a RobMoSys conformant
toolchain that enables ecosystem users to share components
and compose systems that are according to the principles
dictated by RobMoSys. SmartTS is an addition to SmartMDSD
tooling and provides a model-based methodology for software
testing in the RobMoSys ecosystem.

V. SMARTTS IN ACTION

Fig. 10 shows some of the key features of SmartTS acting
along with the SmartMDSD toolchain. Tier-2 domain experts
and Tier-3 users transform SmartMDSD models to contracts
(Fig. 10.a) and documents (Fig. 10.b). SmartTS documents are
transformed into data sets (Fig. 10.c) which are referred to in
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Fig. 8. Key users, Models, Transformations in the SmartMDSD::SmartTS Workflow.

SmartTS contracts. Component models are transformed to their
SmartTS tester component (Fig. 10.(d,e,f)) which is used to test
(Fig. 10.g) or simulate (Fig. 10.h) the component. SmartTS
tooling as it stands today is functionally complete for the
workflow described in Fig. 8. Automation and visualization of
some workflow elements (e.g. validation graphs) is planned to
further improve user experience. Eclipse features and plug-ins
for SmartTS are available for download [56]. Context and
video tutorials on the use of SmartTS will soon be available
online at the SRRC wiki web page [57].

VI. CONCLUSIONS AND FUTURE WORKS

Validating the behaviour of commercial off-the-shelf com-
ponents and system interactions is enhanced by the avail-
ability of empirically verifiable test records consistent with
a component’s claims. The trustworthiness of a system is
derived from the trustworthiness of its constituents. Test and
validation suite for a system can be built using model-driven
test and validation suites of its components. In this paper, we
presented the “SmartTS methodology: A component-based
and model-driven approach to generate model-bound test-
suites for software components and systems”. The test-suites in
SmartTS are tightly bound to an application domain’s data and
service models as defined in RobMoSys (EU H2020 project)
compliant SmartMDSD toolchain. SmartTS does not break
component encapsulation for system builders while providing

Fig. 9. SmartTS in RobMoSys Ecosystem.

them complete access to the way that component is tested and
simulated. At present, the SmartTS functionality is partially
consolidated in the SmartMDSD toolchain ( - ). Plans to
automate remaining SmartTS transformations are marked for
incorporation in future releases of the SmartMDSD toolchain
as SmartDBE (Smart digital business ecosystem) features and
plug-ins [56].
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