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Abstract—Today's busy lifestyle often leads to frequent stress, 

the accumulation of which may lead to severe consequences for 

humans. Smartwatches are widely distributed and accessible, 

and as such deserve intelligent solutions that deal with the 

processing of such collected data and ensuring the improvement 

of the quality of life of end-users. The goal of this research is to 

create a stress detection technology that can correctly, constantly, 

and unobtrusively monitor psychological stress in real time. Due 

to the importance of stress detection and prevention, many 

traditional and advanced techniques have been proposed likewise 

we provide a unique stress-detection technique that is context-

based. Due to the importance of stress detection and prevention, 

many traditional and advanced techniques have been proposed. 

In this research, a novel approach to designing and using a deep 

neural network for stress detection is presented. To provide a 

desirable training environment for network development, an 

open-source data set based on motion and physiological 

information collected from wrist and chest-worn devices was 

acquired and exploited. Raw data were analyzed, filtered, and 

preprocessed to create the best possible training data. For the 

proposed solution to have wide use value, further focus was 

placed on the data recorded using only smartwatches. 

Smartwatches are widely distributed and accessible, and as such 

deserve intelligent solutions that deals with the processing of such 

collected data and ensuring the improvement of the quality of life 

of end-users. Finally, two network types with proven capabilities 

of processing time series data are examined in detail: a fully 

convolutional network (FCN) and a ResNet deep learning model. 

The FCN model showed better empirical performances, and 

further efforts were made to select an optimal network structure. 

In the end, the proposed solution demonstrated performance 

similar to state-of-the-art solutions and significantly better than 

some traditional machine learning techniques, providing a good 

foundation for reliable stress detection and further development 

efforts. 

Keywords—Fully convolutional neural network; stress 

detection; smartwatch; data pre-processing; semi-supervised 

learning 

I. INTRODUCTION 

The definition of stress emphasizes that it is a natural 
phenomenon that occurs when an organism tries to adapt to a 
life problem, life challenge, event, or situation. In that sense, 
stress is any negative reaction of the organism that occurs due 
to an attempt to adapt the organism to some sudden or 
unpleasant influence. It is commonly manifested by mental or 
physical suffering. As one type of emotion, stress is, 
unfortunately, an almost everyday phenomenon in people's 
lives, and as such, it has always been a complex challenge for 

its prevention, analysis, and monitoring. There are three main 
features that make measuring stress a difficult and worthwhile 
topic to investigate. The stress is quite subjective as it has a 
stimulus that initiates the stress response in one individual may 
not initiate it in another. In addition, the ground truth for stress 
detection is difficult to define because of the high subjectivity 
and ongoing nature of the stress process, defining the onset, 
length, and severity of a stress event is challenging. 
Furthermore, stress cannot be directly measured as its reaction 
is made up of physiological, behavioral, and emotional 
components [1, 2]. Therefore, wearable devices can directly 
measure a portion of the physiological reaction (e.g., increased 
heart rate, increased sweating rate, etc.). However, there are no 
direct ways to measure the other two components of the stress 
response (behavioral and emotional reaction). With the 
advancement of technology and many approaches to the 
treatment of stress data, artificial, and intelligent approaches 
for solving this issue have emerged. Some interesting research 
on different methodologies for treating emotions and even 
stress data can be seen in [1-5]. Using various previously listed 
papers and conducted research, hidden knowledge and 
unknown data patterns can be found. Even predictions of 
stressful events can be generated in an accurate manner. 

The motivation for this new research is based on the 
wearable stress and affects detection (WESAD) data set from 
the University of California Irvine (UCI) machine learning 
repository, which was publicly introduced and presented for 
the first time in [6]. WESAD data, a collection of curated 
databases, are maintained by the UCI and freely available to 
the worldwide machine learning community. In [6] is included 
research that examines motion and physiological information 
acquired from the chest and wrist-worn devices while worn by 
15 participants (12 male and three female participants), with an 
average age 27.5 years. Examined WESAD data includes three 
different affective states: neutral, stress, and amusement. 
Furthermore, in [6] is presented the classification linear 
discriminant analysis (LDA) model for processing data that 
achieved an F1-score accuracy of 91%. Another complete 
approach by the same author from [6] of identifying and 
labeling affective states is presented in [7]. Applicability of the 
WESAD data set is shown in a few other research papers, 
where the authors tried to achieve improved accuracy 
performances by exploiting different intelligent algorithms. For 
example, in [8], only wrist sensor measurements from the 
WESAD data set are exploited, highlighting that wrist data 
measuring techniques are non-intrusive and widely available 
for acquiring. The research [8] uses three different machine 
learning models (i.e., logistic regression, decision tree, and 
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random forest) without any previous feature engineering 
processes. The best performances were achieved with the 
random forest model, achieving an accuracy between 88% and 
99%, depending on the exploited feature. The article [9] 
examines if stress can be reliably detected only by using sensor 
data from a smartwatch. For experimental purposes, the 
authors used only wrist WESAD data and demonstrated 
satisfactory stress detection accuracy by using three different 
models: LDA, quadratic discriminant analysis (QDA), and 
random forest. Once again, as in [6], LDA showed the best 
performances. The research of [9] is also valuable from the 
perspective that it provides insights into what combination of 
different sensors can provide the most useful data for stress 
detections, highlighting the next three measuring devices: heart 
rate (HR) sensors, blood volume pulse (BVP), and skin 
temperature (ST) sensors. The most recent state-of-the-art 
research for automated stress detection in real life [8], [9] 
suggest an approach that employs a chest sensor. In their 
method, they first fine-tune their machine-learning model in 
the lab before applying it in real-world situations with certain 
simplifications, such as excluding times of moderate to high 
activity. They propose smartwatches as a source of 
physiological data in the future, as well as improved handling 
of physical activity and adding context information in the 
process of stress detection. All of these concerns are addressed 
in this research effort by using a source of physiological data is 
a wrist gadget. This used to recognize the user's activity by 
utilizing a machine-learning technique to analyze the 
acceleration data from the wrist device. This model is using a 
real-world contextual information in the machine-learning 
process to increase the method's effectiveness. Furthermore, we 
study the problem of stress detection under laboratory settings 
first, using an off-the-shelf wrist gadget outfitted with bio-
sensors, and then apply the derived laboratory knowledge to 
real life, using data obtained entirely in the wild. In addition to 
laboratory expertise, real-world context information is 
collected to ensure that the approach may be effectively 
applied to real-world data. The context information is 
necessary to distinguish between real-life psychological stress 
and the various circumstances that cause comparable 
physiological arousal (e.g., exercise, eating, hot weather, etc.). 

Unlike in [6, 8, 9], in [10] are applied deep learning (DL) 
techniques are applied in [10] to provide desired results in 
processing the WESAD data set. The DL model is designed to 
possess the ability to receive data from network inputs with 
different sampling rates. For that purpose, four different 
classification sub-models are proposed, each processing a 
single input with a specified sample rate and making individual 
predictions on its output. Final classification values are 
calculated by applying the fusion mechanism and applying the 
random forest model to generate all sub-models' predictions. 
Fundamental information about the fusion mechanisms can be 
acquired in [11]. Another recent study based on DL techniques 
in processing the WESAD data is presented in [12], where self-
supervised learning (SSL) methodology was used to augment 
the initial data. This paper is different from the others listed 
here because it used an additional three data sets in pair with 
the WESAD data set and exploited only the electrocardiogram 
(ECG) feature. The methodology in [12] includes two main 
learning steps: unsupervised and supervised. In the 

unsupervised part of the model, its goal was to detect and 
recognize previously applied data transformations without 
introducing any pre-defined labels and creating the features. In 
the second part, a transfer learning approach from [13] was 
used for the supervised classification of affective states by 
using previously created features. Another study that is based 
on applying SSL techniques to the WESAD data set is 
presented in [14]. The paper uses a "pretext task" to train the 
model without using labeled data, where it must be determined 
whether the raw data and the wavelet transformations are 
temporally aligned. The proposed model in [14] is evaluated in 
two ways: using a linear classifier on top of the SSL 
component and assessing the number of used samples for the 
supervised learning process. The first evaluation approach 
includes a direct comparison of the features created by SSL 
with the features designed with expert knowledge, as in [6]. 
The second one is based on every participant's feedback, where 
they were individually asked to interactively provide input 
information when they field stress. The algorithm utilized this 
feedback information to classify stress for every subject of 
examination. This approach is possible only if an intelligent 
model does not require an extensive database with labeled data 
and can learn from very few provided labels. Another paper 
that proposes an efficient semi-supervised network architecture 
for classification purposes is presented in [15]. The highlighted 
advantages of the model are its good applicability to big data in 
medical diagnosis. One interesting fact of the model from [15] 
is that it can be applied in processing structured, semi-
structured, and unstructured data at the same time. 

The goal of the novel research in this paper is to propose an 
intelligent framework for stress detection by using only wrist 
dana acquired from a smartwatch. By reviewing previously 
introduced papers [6, 8, 9, 10, 12], it can be concluded that the 
current stress detection methodologies suffer from two 
significant deficiencies: 1) common usage of highly intrusive 
ECG and electroencephalogram (EEG) sensors that are not 
available to a broad public and 2) difficulties in getting high 
quality and reliable data due to the complexity of reading 
affective state values from appropriate sensors. As in [9], this 
research will also seek to avoid intrusive sensors for collecting 
data and will focus only on wrist sensors available on 
commercial smartwatches. Additionally, good practices in 
work with SSL models in treating the WESAD data from [12, 
14] will be used as a starting point for developing a novel SSL 
methodology. A review of exploited methods for collecting, 
processing, and evaluating data collected by wearables 
(smartwatches and bands) is presented in [16]. It provides 
useful insights into techniques for intelligent algorithms’ 
practical applicability while operating with wearable sensing 
equipment. It is also shown that HR sensors, galvanic skin 
responses, and body temperature sensors should be of leading 
interest in collecting data when devices are restricted to 
smartwatches. 

In [17], another modeling effort of the WESAD data set is 
presented that includes both feature engineering and DL 
techniques for processing the data. It was proven that the 
combination of multiple deep neural networks could provide 
high performances with an average of 97.2% recall and 97.7% 
precision within all examined classes. The proposed solution's 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 7, 2021 

401 | P a g e  

www.ijacsa.thesai.org 

downside is the high complexity and significant computation 
costs caused by utilizing one separate network for processing 
data of one single sensor. Information from all the networks is 
finally concatenated, and final classifications are produced. 
One other DL application for stress and affect detection is 
presented in [18]. The approach utilizes recurrent neural 
networks and provides high-accuracy results, with 97.5% of 
accurately detected values. 

Another approach to human stress level examination is 
presented in [19]. The influence of the urban environment 
causes stress, and the article is of interest for new research, 
bearing in mind that the data are collected only by using the 
wrist devices. Thirty people participated in the study, and the 
raw unlabeled data was recorded during the 30 h of the 
experiment. The data format is suitable for our future self-
supervised training procedure, and this experiment will further 
be explained in following sections. 

II. RESEARCH METHODOLOGY 

The previous section presented the summation of different 
intelligent approaches in treating the multimodal WESAD data 
set. The main goal in all these approaches was data 
classification and predictions of the stress conditions of 
involved participants. Introduced state-of-the-art research was 
used as an initial foundation for designing a novel intelligent 
solution in the domain of stress detection and was presented in 
the following parts of this research paper. 

To start with an in-depth analysis of the proposed solution, 
the examined data was presented first. Included WESAD 
features represented physiological and motion data recorded 
from both chest and wrist-worn devices. The following 
biological parameters were examined: BVP, electrocardiogram, 
electrodermal activity, electromyogram, respiration, body 
temperature, and three-axis acceleration. The data included 
expert features crafted by using widely established 
physiological knowledge and medical procedures that are 
mostly utilized to interpret respiration results and the heartbeat 
rate. Furthermore, the dataset contained information about 
three different affective states of participants (neutral, stress, 
and amusement), which represented the most critical 
parameters for this research. However, it should be highlighted 
that the stress conditions were restricted to public speaking 
exercises, and no other types of stress causes were analyzed. 
This is the primary deficiency of utilized data, considering that 
a model trained on this data might not perform at a desirable 
level on the general population. Besides the WESAD features, 
the previously introduced article [19] represents an essential 
base for additional data. It includes three different and 
associated open-source data sets that provide more than 50 h of 
raw Empatica E4 wrist measurements were used in this 
research for the semi-supervised learning phase. Furthermore, 
the specific Empatica E4 wrist device from [19] is of central 
importance for new research because it was used in our 
laboratory environment and in the original WESAD 
experiment. This implies that it was possible to combine or 
compare the measurement results from the described research 
with the measurement results in this study, ultimately leading 
to an accurate and reliable evaluation of the novel model. 
Besides building intelligent applications on the WESAD data 

set, many independent attempts were made to analyze emotions 
and extract meaningful insights from collected data of 
emotional parameters [20‒22]. In [20, 21], different techniques 
were used to recognize various emotions, understand these 
emotions, and understand the overall reasons for their 
occurrence. Additionally, in [22], the Deep Multi-Net CNN 
Model was used for violence recognition in video surveillance. 
In this paper, another emotional state that caused violent 
behavior was examined, but not by using internal human 
conditions and measurement of biological parameters, but by 
using recorded participants' video shots. 

Finally, based on the previously introduced articles, it was 
concluded that there were few studies based on utilizing DL 
techniques on wrist data wearables. This research tried to fill 
the observed scientific gap and propose a new approach based 
on the combination of a DL algorithm with a semi-supervised 
learning mechanism. The methodology focused on the 
following four phases: data exploration and preparation, design 
and tuning of suitable DL models, application of prepared 
models on the optimized data set, and evaluation of 
performances and analysis of obtained results. In the next 
section, the first phase and applied exploratory data analysis 
are presented on the research data. 

III. EXPLORATORY DATA ANALYSIS 

Seventeen subjects (persons) participated in the original 
WESAD research, where they were labeled S1 to S17. This 
analysis is based on the WESAD data collection, which is 
freely available to the public. It comprises data collected from 
17 individuals using the Empatica wrist-worn gadget. This 
gadget has accelerometers (ACC) as well as sensors for 
measuring skin temperature (ST), electrodermal activity 
(EDA), blood volume pulse (BVP), heart rate (HR), and heart 
rate variability (HRV). WESAD incorporates data from the 
chest-worn RespiBAN device, as well as questionnaires linked 
to participants' moods during the data collection session, in 
addition to E4 data. However, due to unreliable sensor results 
acquired in two cases, S1 and S12, these two specific subjects 
were removed from the research data in this paper. The rest of 
the data were used for building the required experimental data 
sets. Exploratory data analysis in this research was performed 
by using subjects S2 to S10 from the WESAD database as the 
features of the training set. The remaining subjects were 
assigned to the test and validation sets. With the purpose of 
preparing the data optimally for future DL processing, the 
initial data were treated in the following way. At first, the 
responses of all wrist sensors were aligned at the same timeline 
f = 700Hz. Moreover, all recorded sensor data from all 
included subjects were merged, and the overall data set was 
created accordingly. The data exploration phase was performed 
exclusively on the training data consisting of 40 million data 
rows. Keeping in mind that this research's main focus was 
stress detection, training data was initially analyzed from the 
perspective of the types of information within the set and the 
influence they could individually have on the stress feature. For 
the beginning, Fig. 1 graphically represents all subject 
activities that are registered during the measurement phase and 
saved to the training data set. 
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Fig. 1. The Share of Individual Activities within the Training Set. 

It is easy to conclude by examining Fig. 1 that the utilized 
data set is imbalanced from the stress feature's perspective: 
Only 11% of training data is associated with stress occurrence. 
However, the quantity of the stress data expressed through time 
is 4 h, which should be sufficient material for a future model's 
training. Moreover, 3% of data are explicitly labeled by the 
data set authors as invalid and are to be removed from further 
work. Another question that should be answered concerning 
the research goal is which sensor and which recorded features 
have the most correlation to the stress status. For that purpose, 
correlation analysis was performed, and graphical results are 
presented in Fig. 2. It can be concluded from the figure that the 
acceleration and electrodermal activities (EDA) have the most 
correlation with the stress feature, recorded both on wrist and 
chest devices. This agrees with the intuitive and judgmental 
conclusions that stress generally causes an increase in 
breathing rate, chest acceleration, and sweating. 

In the next phase of the data analysis and pre-processing, 
the outlier removal technique was performed. Each sensor was 
pre-defined with acceptable ranges of values, and measured 
values outside of these ranges were deleted and replaced by the 
closest valid values. Table I presents all needed information 
about exploited features and defined ranges. 

 

Fig. 2. Correlation Analysis of Training Data Set Concerning the Stress 

Feature. 

TABLE I. EXAMINED SENSORS AND RELATED FREQUENCIES 

Sensor 
Sampling 

frequency (HZ) 

Cutoff 

frequency 
Defined range 

Chest acceleration 700 70 

X: [0;2]  

Y: [-0.5;0.5].  

Z: [-2:2] 

Chest ECG 700 70 [-1;1] 

Chest EMG 700 70 [-0.5;0.5] 

Chest EDA 700 2 [0;18] 

Chest temperature 700 0.5 [30:36] 

Chest respiration 700 2 [-10:10] 

Wrist acceleration 32 16 

X: [-100;150] 

Y: [-75;75]  

Z: [-75:100] 

Wrist BVP 64 32 [-200;200] 

Wrist EDA 4 2 [0;5] 

Wrist temperature 4 2 [28;36] 

Further, when working with environmental and real sensor 
measurements, the occurrence of noise is a common situation. 
Generally, any sensor signal is divided into two parts: a signal 
component that includes valuable information and a random 
noise component. In order to remove the noise component, a 
low-pass filter was utilized to remove the noise frequencies and 
undesirable data. The filtering procedure was performed as 
follows: a specific cutoff frequency was selected for each 
sensor, which represented the sensor's highest meaningful 
frequency values. The cutoff frequencies were selected by 
visual inspection of the signals, and their numerical values 
were provided in Table I. Next, a second-order Butterworth 
low-pass filter with the four corresponding cutoff information 
were utilized to process the signal. The example of successful 
filtering of one of the examined features is presented in Fig. 3. 

 

Fig. 3. An Example of Original and De-noised Signals of the Chest 

Temperature Feature. 

IV. APPLICATION OF THE FULLY CONVOLUTIONAL 

NETWORK TO STRESS DETECTION TASKS 

To design a model useful to a broad audience and 
applicable to almost any interested party, the training processes 
of neural network models focused only on using smartwatch 
WESAD data (wrist data). Following [9], all other sensor data 
from the initial data set that are not widely available in 
commercial smartwatches (like EDA sensors) were removed 
from the training data. For programming purposes, popular 
Python environments TensorFlow and Keras were used. 
Finally, a Google cloud machine with Nvidia K80 GPU was 
exploited to provide optimal computational power. 
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For research purposes, an FCN and a ResNet DL model 
from [23] were used for binary classification of baseline and 
stress states of the subjects. These models proved reliable and 
capable of a quality prediction of time series, especially the 
FCN model, a simple but effective model for time series 
classifications as shown in Fig. 4. Both networks were based 
on convolution layers, where the main difference between the 
two was in the number of layers: FCN was designed with 3, 
while ResNet possessed nine convolution layers. In general, a 
convolutional layer is a linear layer, like any other dense layer. 
However, the convolution layer structure was adapted for work 
with temporal information, which provided faster processing 
and improved accuracy of time series in comparison to a dense 
layer. In addition to these two types of networks, good results 
in DL analysis for emotion detection were presented [24]. 

After three convolutional layers of FCN, a global average 
pooling and the final SoftMax layer continued. At the end of 
each convolution, a batch normalization layer influencing 
training and convergence performances was applied. The main 
batch parameters, feature maps and striding, were tuned with 
special attention. Feature maps affected the total number of 
neurons within a network, while striding influenced how the 
network processed and sampled the time series data. The best 
empirical performances were achieved to combine four, two, 
and two strides for each of the three convolution layers of 
FCN. This combination was applied to the structure of the 
network. Feature maps layers 1 to 3 were selected by following 
the procedure from [23], and the following configuration was 
utilized: 64, 128, 256. The approach from [23] was also applied 
for selecting an Adam optimizer learning rate equal to 0.001, 
which was the default configuration for FCN. Two hundred 
and fifty learning epochs were specified, and the model that 
showed the best performances on the validation set was 
selected. Finally, ReLU activation functions [25] were chosen 
for building artificial neurons and DL models. Another 
approach to optimizing network parameters for a neural 
network-based emotion recognition framework was presented 
in [26]. 

 

Fig. 4. Simplified Diagram of FCN Model. 

For evaluation purposes, Leave-one-out cross-validation 
(LOO) from [27] was performed. The LOO experiment was 
performed on 15 folds, where for each tested subject, the data 
was trained on 12 other subjects, and two additional subjects 
were used for building the validation set. For example, if the 
test data was defined as S2, validation data variables were 
randomly selected to be S3 and S5, and all other variables were 
used for the training data set. By utilizing this kind of approach 
of treating acquired data, 15 different data sets were created 
through the experimental phase, and they allowed 15 different 
testing environments for the proposed intelligent algorithm, 
providing robust and reliable results in the end. 

Different configurations of FCN and ResNet models were 
tested on the prepared training data, and it was observed that 
FCN was significantly faster (8 min) than ResNet (1h 30 min), 
and additionally, it performed better on processing the data 
(accuracy on examined sample: 81%‒77%). The specific 
model configuration was selected by comparing achieved 
performances after a fixed number of epochs versus choosing 
the best model on the validation set. It was experimentally 
shown that the second approach provided more reliable 
performances, so the main testing parameter of the selection 
process was achieved on the validation set. 

V. RESULTS ANALYSIS 

In Fig. 5, the model performances for each examined 
subject are presented. An in-depth review of the achieved 
performances of the proposed model is presented in Table II. 
Metrics within the table can be explained as follows: 
accuracy—the number of correct classifications over total 
samples; balanced accuracy—the average of the proportion 
corrects for each class individually; F1—a harmonic average of 
precision and recall for the ―stress‖ class; WEIGHTED-F1—
similar to F1, this is an averaging of the ―stress‖ and the ―non-
stress‖ class; area under curve (AUC)—a classification metric 
not impacted by class imbalance; precision—true ―stress‖ 
detection overall stress detections; recall—true ―stress‖ 
detections of overall stress samples. 

Summarized results from Table II and the overall 
classification results of this research are presented in Table III. 
The average accuracy of the proposed model is approximately 
0.85, while for the same training conditions, a conventional 
naive classifier achieved an accuracy of 0.78. Achieved results 
compares with the results from [8], where smartwatch data was 
also used. It is shown that the model from [8] provided slightly 
better accuracy from the model in this research (0.874 in 
comparison to 0.85). On the other hand, they performed 255 
different runs during the training process of their model 
compared to only 15 performed runs in this research. It can be 
concluded that the proposed model in this research 
demonstrated satisfactory prediction performances with a small 
number of training cases. Furthermore, it should be reliably 
assumed that the model will likely further improve 
performance by providing additional training data and test 
cases and making additional tuning attempts. 
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Fig. 5. Model Performances per each Examined Subject. 

TABLE II. ACCURACY PER SUBJECT 

Subject 
Accur

acy 

Balanc

ed 

Accur

acy 

F1 

Wei

ghte

d F1 

AUC 
Preci

sion 

Reca

ll 

S2 0.87 0.85 0.73 0.88 0.92 0.67 0.8 

S3 0.81 0.67 0.5 0.8 0.86 0.61 0.43 

S4 0.92 0.82 0.78 0.91 0.99 0.96 0.65 

S5 0.8 0.87 0.68 0.82 0.98 0.52 0.99 

S6 0.85 0.75 0.63 0.85 0.89 0.69 0.57 

S7 0.91 0.91 0.81 0.91 0.96 0.72 0.91 

S8 0.81 0.66 0.47 0.79 0.8 0.64 0.37 

S9 0.86 0.7 0.56 0.84 0.82 0.82 0.43 

S10 0.81 0.66 0.49 0.79 0.85 0.69 0.38 

S11 0.85 0.78 0.67 0.85 0.9 0.67 0.67 

S13 0.81 0.69 0.53 0.8 0.87 0.58 0.48 

S14 0.82 0.63 0.4 0.79 0.87 0.82 0.27 

S15 0.82 0.71 0.57 0.82 0.8 0.64 0.51 

S16 0.9 0.92 0.81 0.9 0.97 0.7 0.96 

S17 0.84 0.73 0.62 0.83 0.87 0.76 0.52 

Averaged 0.85 0.76 0.62 0.84 0.89 0.7 0.6 

TABLE III. IN-DEPTH ANALYSIS OF ACHIEVED RESULTS 

Metric FCN 

Accuracy 0.85 

Recall ―baseline‖ 0.92 

Precision ―baseline‖ 0.89 

F1 score ―baseline‖ 0.90 

Recall ―stress‖ 0.59 

Precision ―stress‖ 0.68 

F1 score ―stress‖ 0.63 

VI. CONCLUSION 

In this research, a deep convolutional neural network 
model for stress detection was proposed. The model was 
implemented by exploiting only commercial smartwatch data 
because of the desire to provide a broad audience with a 
universal intelligent solution. Stress is a major issue in 

today's society, with both social and economic consequences. 
The results show that these works have a high accuracy for 
identifying stress. However, because stress levels in everyday 
life can differ considerably from stress levels generated in 
laboratory conditions, daily life studies have gained 
popularity in the scientific community. Another important 
reason why everyday life stress detection studies are more 
appealing to researchers is because consumers do not desire 
intrusive measuring techniques employed in laboratory 
settings. Inconspicuous wearable gadgets can be used to 
assess stress levels in everyday life without disturbing the 
users. We covered open research issues for everyday life 
stress detection in this part, and there is still space for 
development in this area. Furthermore, the accuracies of 
stress detection methods in everyday life are significantly 
lower than those in laboratory conditions. The ultimate goal 
of stress detection is to create a high-accuracy scheme in 
everyday life by conquering unsolved difficulties and 
employing emotion management strategies to reduce the 
users' stress. 
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