(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

SIP-MBA: A Secure IoT Platform with Brokerless
and Micro-service Architecture

Lam Nguyen Tran Thanh!, Nguyen Ngoc Phien*?, The Anh Nguyen®, Hong Khanh Vo,
Hoang Huong Luong®, Tuan Dao Anh®, Khoi Nguyen Huynh Tuan’, Ha Xuan Son®
VNPT Information Technology Company, Ho Chi Minh city, Vietnam'

Center for Applied Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam

2

Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam?
Department of Computer Science, Faculty of Electrical Engineering and Computer Science,
VSB-Technical University of Ostrava, Ostrava, Czech Republic?

FPT University, Can Tho City, Viet Nam?3+4:5:6:7
University of Insubria, Varese, Italy8

Abstract— The Internet of Things is one of the most interesting
technology trends today. Devices in the IoT network are often
geared towards mobility and compact in size, thus having a
rather weak hardware configuration. There are many light weight
protocols, tailor-made suitable for limited processing power and
low energy consumption, of which MQTT is the typical one.
The current MQTT protocol supports three types of quality-
of-service (QoS) and the user has to trade-off the security of
the packet transmission by transmission rate, bandwidth and
energy consumption. The MQTT protocol, however, does not
support packet storage mechanisms which means that when the
receiver is interrupted, the packet cannot be retrieved. In this
paper, we present a broker-less SIP-MBA Platform, designed for
micro-service and using gRPC protocol to transmit and receive
messages. This design optimizes the transmission rate, power
consumption and transmission bandwidth, while still meeting
reliability when communicating. Besides, we implement users and
things management mechanisms with the aim of improving secu-
rity issues. Finally, we present the test results by implementing
a collect data service via gRPC protocol and comparing it with
streaming data by using the MQTT protocol.

Keywords—Internet of Things (IoT); gRPC; Single Sign-On;
brokerless; micro-service; MQTT; message queue; security

I. INTRODUCTION

In recent years, Internet of Thing (IoT) applications have
grown and applied in most fields such as smart city, health-
care, supply chains, industry, agriculture, etc. According to
estimates, by 2025, the whole world will have approximately
75.44 billion IoT connected devices [1]. Timothy et al. [2]
claimed that the IoT system architecture consists of 5 layers
in order from low to high: Things, Connect, Collect, Learn
and Do.

Specifically, the Things layer is the class of actuators to
control physical devices or sensors to collect environmental
parameters. The Connect layer connects devices with applica-
tions and users. The Collect layer is responsible for aggregating
the data returned by the Things layer devices. Finally, Learn
layer is used to analyze data to give suggestions to Do layer in
response to received data. Eventually, the Things and Connect
layers are the two most important ones because these provide
the input data for the upper layers.

The Things layer consists of devices in the IoT which
have limitations in network connectivity, power, and processing
capabilities [3]. Therefore, the question is how can we optimize
the processing capacity and power consumption of the devices,
while still have to meet some requirements of communication
speed as well as the confidentiality of information on transmis-
sion lines. This problem is determined by the protocol itself
within the Collect class.

For interfaces in constrained networks, MQTT and CoAP
are proposed to use [4]. We found that MQTT protocol had
faster Packet transmission and creation time twice as fast as
CoAP protocol. Besides, for developers of low bandwidth and
hardware configuration devices, MQTT is the most preferred
protocol [5]. Comparison of energy consumption, Mart et al.
[6] found that the MQTT protocol consumes less energy than
CoAP. For the above reasons, in this paper, we evaluate the
aspects of power consumption, hardware capacity capacity as
well as security risks (security risks) present of The platforms
use the MQTT protocol.

The MQTT protocol uses a publish / subscriber [7] ar-
chitecture, with the MQTT broker at the center. The MQTT
subcriber (client), connects to the broker and sends messages
to topics. Brokers rely on topic for packet routing, meaning
that subscribers who subscribe to a topic receive all messages
sent to that topic. This means that when the MQTT broker
crashes, the whole system will be affected.

The MQTT protocol has four levels of QoS, ranging from
0 to 2' and these QoS levels are related to the level of
confidence in the transmission of the packet (QoS has the
lowest confidence level and QoS-2 has the confidence level.
highest reliability). According to the article [8], the ratio of
packet loss and packet transmission rate of QoS-0 level is
highest. However, according to the article [9], the energy
consumption of the QoS-0 level is only about 50% of the
QoS-2 level and the communication bandwidth of QoS-0 is
also lower than that of QoS-2. The MQTT protocol runs
on TCP [10] and each TCP connection can only make one
request and one response. This means that in order to send a
message at the QoS-2 level, each client in the system using

Thttps://mqtt.org/

www.ijacsa.thesai.org

586 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

MQTT must make four TCP connections [11]. This results in
systems using MQTT consuming a lot of bandwidth and the
device’s hardware processing capabilities. In addition, by using
a publish / subscribe architecture, in order for subscribers to be
ready to receive incoming messages on topics, the subscriber
must maintain a persistent connection to the MQTT broker.
The time to keep connection is determined by the parameter
keep alive. Article [12] has shown that the shorter the keep
alive cycle, the higher the energy consumption. On the other
hand, according to the article [13], MQTT was created for
transmission purpose. Therefore, it does not provide message
storage capability and does not guarantee the order of the
message when it reaches the receiver. These are also two
important issues that need to be considered as the weaknesses
of the system using MQTT.

In terms of security, the current MQTT protocol only pro-
vides identity, authentication and authorization for the security
mechanism [14] but is very simple. Therefore, there are a lot of
security risks. Lundgren et al. [15] indicates that we can obtain
data by subscribing to any topic of the MQTT broker that is
public on the internet - a serious security risk. If the attacker
subscribes to MQTT topics with the client ID, the victim will
experience a denial of service status and all information sent
to the victim is passed on to the attacker - a serious risk
factor [16]. Regarding the Authentication mechanism, MQTT
supports authentication by username and password pairs, but
the authentication mechanism is optional and not encrypted.
The MQTT client authenticates itself by sending the username
and password plaintext in the CONNECT package. Attacker
attacks are made easily by blocking packets [14]. Zaidi et al.
[17] survey of Shodan, the world’s first IoT search engine
for Internet-connected devices, found that there were 67,000
MQTT servers on the public Internet with most of them not
authentic. MQTT has support for Authorization mechanism
to access specific topic based on access list (ACL). This
access list must be predefined in the configuration file of the
MQTT broker and we must restart the MQTT broker service
if we want to apply the new access list configuration. This
is inconvenient and difficult to scale especially for systems
with billions of devices and these devices may only have
the authority to take action for a specified period of time on
specific topics. Access control and authorization are a major
challenge [18].

In this paper, we summarize the weaknesses of platforms
using MQTT protocol, such as bandwidth issue, hardware
processing power, power consumption, no message storage
mechanism, and security risks. Since then, the paper proposes
the SIP-MBA Platform model to use brokerless architecture
to limit the weaknesses of brokered architecture. Our SIP-
MBA Platform is designed in micro-service, devices and
services communicate directly with each other by peer-to-
peer communication model for fast communication speed. In
the system architecture, we also added message queues to
store messages when communicating between services, helping
to ensure that when a service fails, it is still possible to
receive messages during recovery. The communication process
of the components in our SIP-MBA Platform will take place
proactively, without requiring a constant connection to reduce
energy and bandwidth consumption. To do this, we use gRPC
as the communication protocol between devices and services.
This work presents a method of combining gRPC and Oauth to

Vol. 12, No. 7, 2021

complement the Authentication and Authorization mechanism
for SIP-MBA Platform. Besides, we introduces a management
model of users and things and channels information to prevent
denial-of-service attacks and impersonation of participating
systems.

The rest of paper is organized as follows. In Section 2 we
provide knowledge about the technology used in this work.
Section 3 discusses related work. In Section 4, we introduce
our proposed system Architecture and in Section 5 is software
architecture. Section 6, we implement Collect data service -
this is the most important service in our architecture. Section
7, we discuss our test results. In Section 8, we conclude the
paper and discuss the potential future work.

II. BACKGROUND
A. gRPC and http/2

gRPC? (general-purpose Remote Procedure Calls) is an
open-source high performance framework of Remote Proce-
dure Call Protocol (RPC) developed by Google. gRPC is
built on http/2 protocol. Improvements in http/2 over previous
versions allow for better and more efficient http performance
connections. One of the most important features of http/2 is
multiplexing, which sends and receives multiple packets in a
single connection. The activity comparison between http/1.1
and http/2 is shown in Fig. 1:

gRPC has four types of communication as follows [19]:

e Unary: Similar to traditional client-server communi-
cation. The client sends a request to the server, waits
for the server to process it, and then returns the results
to the client.

e Server streaming: In this mode, the client sends a
request to the server and then waits for the server to
return a stream of data. The client read messages from
that stream until no more messages are returned. The
order of messages for each stream is guaranteed to be
the same between client and server.

e Client streaming: Similar to Server streaming RPCs,
in this type, the client is the side that sends the data
stream to the server, the server read the stream and
perform the necessary processing, and then return the
data to the client.

e Bi-direction streaming: This is the type of method
where the data is sent in a stream from both client and
server directions, the data stream in both directions is
independent of each other, and the client and server
can process that streamed data independently. That
means when the client sends a message to the server,
the server can process it to perform a certain task
(while still receiving other messages) and send the
result back to the client (while the client is still sending
another message).

B. Oauth Protocol and Single Sign-On

Oauth basically is an authentication mechanism that en-
ables third-party applications to be authorized by the user

Zhttps://grpc.io/

www.ijacsa.thesai.org

587 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 7, 2021

Client http/1.1 Server
1
(Web Server)
(web browser) TCP Conection 1
Request R G
Request 2 > eques > Request 2
GET /style.css GET /style.css
N Response - plepelle
TCP Conection 2
Request 3 Request ~ Request ~ Request 3
GET /script.js GET /script.js
hy R Response o
TCP Conection 3
Request 4 Request - Request Request 4
GET /image,jpg GET /image,jpg
Response - Response
. Server
Client http/2 Web S
(Web browser) (Web Server)
Single TCP connection
Request 2 requests Request 2
GET /style. vy
SRR o] Stream 9 Stream 7 Stream 5 = CHIESVELS
- GET GET — GET —> -
; /image.jpg /seript.js Istyle.css :
=~ =~
~N)
Request 3 — I Request 3
iy = =]
GET /script.js <4——» o s <«———p GET /script.js
E- E-
R =
= Stream 5 Stream 7 Stream 5 Stream 7 Stream 9 =
= <+— /style.css /seript.js Istyle.css ey JACEN /image.jpg =
Request 4
4 E header header body body E Reausty

GET /image,jpg

respones

GET /image,jpg

Fig. 1. The Activity Comparison between http/1.1 and http/2 [19].

to access the user’s resources located on another application.
Oauth version 2.0 is an upgrade of Oauth version 1.0, an
authentication protocol that allows applications to share a
portion of resources with each other without the need to
authenticate via username and password as the traditional way.
That helps limit the hassle of having to enter a username,
password in too many places or register too many accounts
for many applications that the user cannot remember all.

In Oauth, there are four basic concepts 3:

e Resource owners: are the users who have the ability
to grant access, the owner of the resource that the
application wants to get.

e Resource servers: are the places which store resources,
capable of handling access requests to protected re-
sources

e Clients: are third-party applications that want to access
the shared resource of the owner (i.e. prior to access,
the application needs to receive the user’s Authoriza-
tion).

e Authorization servers: are the authentications that
check the information the user sent from there, grants
access to the application by generating access tokens.
Sometimes the same Authorization server is the re-
source Sserver.

3https://oauth.net/2/

Token is a random code generated by the Authorization
server when a request comes from the client. There are two
types of tokens, namely the access token and the refresh
token. The former is a piece of code used to authenticate
access, allowing third-party applications to access user data.
This token is sent by the client as a parameter in the request
when it is necessary to access the resource in the Resource
server. The access token has a valid time (e.g., 30 minutes,
1 hour), when it expired, the client had to send a request to
the Authorization server to get the new access token. Whereas,
the latter is also generated by Authorization server at the same
time with accessed token but with different function. Refresh
token is used to get the new access token when it expires, so
the validity period is longer than the access token.

Single Sign-On (SSO) is a mechanism that allows users
to access multiple applications with just one authentication.
SSO simplifies administration by managing user information
on a single system instead of multiple separate authentication
systems. It makes it easier to manage users when they join or
leave an organization [20]. SSO supports many authentication
methods such as Oauth, OpenID, SAML, and so on.

III. RELATED WORK

A. Brokerless Architecture

Alif Akbar Pranata et al. [21] build a water quality mon-
itoring system according to brokerless pub/sub architecture.

www.ijacsa.thesai.org

588 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

The paper uses two nodes including: relay node (publisher)
to collect data from sensor and gateway node (subscriber)
to receive data from relay node and send information to
server. The paper uses Zigbee to send and receive messages
in communication at close distances. However, the paper does
not give methods to expand the system as well as security
mechanisms.

Lam et al. [22] presented an architecture that combines
MQTT broker and kafka message queue to connect different
IoT service providers. This architecture allows individual ser-
vice providers to communicate with each other easily without
changing the existing architecture too much. In addition, Lam
et al. [23] also evaluates power consumption, transfer speed,
communication reliability, and security when using a combina-
tion of MQTT broker and kafka message queue. With Kafka’s
capabilities, we don’t need to trade off transmission speed
and reliability for power consumption (this is related to QoS-
0 and QoS-2 levels). Moreover, these authors demonstrated
an architecture that combines MQTT broker, Single Sign On,
and kafka message queue [24]. This combination allows no
need to trade-off speed and reliability when communicating
with power consumption (this is related to QoS-0 and QoS-2
levels) while still ensuring security. of the system.

B. Oauth and Internet of Things

Paul Fremantle et al. [18] demonstrated using Oauth to
enable to enable access control via the MQTT protocol.
The results of the paper show that IoT client can fully use
Oauth token to authenticate with MQTT broker. This indicates
that Oauth is not only suitable for web application but also
applicable for low hardware devices. The paper demonstrates
implementing the Web Authorization Tool to create the access
token, then embedded it (embedded) MQTT client. In addition,
the paper presents the combined implementation of Oauth and
MQTT for internal communication between MQTT broker
and MQTT client. However, the paper uses RESTful over
HTTP/1.1 to transfer the packet. This can be a waste of
bandwidth and energy of IoT devices as discussed in Intro-
duction. In our paper, we will use Oauth in conjunction with
Single Sign-On to build into a service responsible for device
authentication. Devices will communicate with this service
through gRPC to take its advantages.

IV. SYSTEM ARCHITECTURE

The SIP-MBA Platform is designed in a micro-service
architecture to ensure the system is horizontal scale that is
shown in Figure 2. The architecture consists of three layers
namely the Things layer, the Server layer and the User layer.
Each class has components that play a different role.

The Things layer includes physical devices capable of col-
lecting data from the environment (pH, temperature, humidity,
etc.). After the collection process, the data are transferred to
the Server layer according to the gRPC protocol. Things layer
also receives a control command from the User layer or from
the data processing service of the the Server layer to control
the behavior of Things based on the information it collects.

The Server layer consists of micro-services that handle the
following tasks:

Vol. 12, No. 7, 2021

e Collect data service: collect data from the (authenti-
cated) things in Thing Layer. In addition, the collect
data service also passes control commands from users
or data processing service to things.

e SSO service: is responsible for authenticating things
and users according to the Oauth protocol.

e Objects management service: allows to manage users
and things participating in the system.

e Control service: allows the user to command control
of things.

e Data processing service: analyze collected data to re-
spond to users, store system logs and issue commands
to control things according to pre-set triggers.

e Message Queue: is responsible for transporting mes-
sages interacting between services within the Server
layer.

Finally, the User layer uses the Internet of Things service.
Only users authenticated by the SSO service can interact with
the Server layer.

V. SOFTWARE ARCHITECTURE

To meet the goals set out by the SIP-MBA Platform, we
provide several definitions of the components participating in
the system and their interactions.

A. Users

Users are people who use IoT services. By constructing
a user hierarchy model tree with the child’s user_parent_id
value equal to the parent user’s username, our SIP-MBA
Platform allows the creation and management of multiple
levels of users without being bounded. The term depends
on the characteristics of the organization. This tree-modeled
user hierarchy makes the SIP-MBA Platform suitable for
companies, especially when authorizing a specific user or
changing the operation state for a series of child users at the
same time w.r.t crashes (only ACTIVE users can request access
token). User information is generated when a user registers to
use an IoT service or is created by the parent user and provided
to his or her child user.

Each user has a unique user_id value that conforms to the
standard UUID* and is managed by the Objects-management
service. When issuing commands to manipulate things, the user
must pass in the access token obtained from the Single Sign
On service. This token is authenticated by the Single-Sign-
On service. In this way, we have enhanced the authentication
mechanism, the authorization mechanism for the user as well
as minimized the risk of a denial-of-service attack when a
hacker impersonates a user repeatedly sending control com-
mands.

B. Things

Things represent information about physical devices or
applications owned by the user. To create things, the user that
owns the things will have to pass in his valid Oauth token.

“https://tools.ietf.org/html/rfc4122

www.ijacsa.thesai.org

589 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

gRPC streaming
| |

| Objects
| management
| service
|
|

Vol. 12, No. 7, 2021

Control
service

Data
processing
service

Collection

data service

SIP-MBA Platform (Cloud)

Fig. 2. SIP-MBA Platform as Micro-service Architecture.

Objects_management_service I

User

‘

Register{User)

Register-User-Status
L

Request-Token(username.password)

Request-Token{username,password)

(Access-token,Refresh-token)

(Access-token,Refresh-token)

AccessToken

Allow-Register-Thing

Register-Thing-Status

i
i
I
i
T
i
i
i
i
i
i
I
i
| Register(Thing,AccessToken)
i
i
I
i
I
i
i
i
i
i
i
I
.
]

Fig. 3. The User and Thing Initialization Processes.

User

Objects_management_service I

After creating things, users must embed their access token into
things. Embedding the access token is out of the scope of this
paper. Only things that own a valid access token communicate
with the Collect-data service. Similar to the user, this way to
create device management information, helps increase security
and reduce the risk of denial-of-service attacks.

C. Communication Workflow

1) Initialization workflow: As mentioned in Sections V-A
and V-B, a user must be registered to use the Internet of
thing service. After registration, the user makes a request
for access token with username and password information.
The system will return the user access token and refresh the
token according to the Oauth standard. The user then performs
registration of the thing by passing in his access token. The

Check(AccessToken) ey

l SSO_service l l Collection_service] l Message_Queue l

Access-Token

-

I

|

Check(Access-Token) |
|

- i
I

I

I

I

I

I

I
I
I
I
I
|
Allow-Streaming-Data |
I
I
I
I
I

d

ata

L

1 Data
—

]
l SSO_service | l Collection_service] l Message_Queue |

Fig. 4. Data Collection Process.

access token is authenticated by the SSO service. Finally, the
Objects-management service will enable the creation of things
information. The thread process initializes the user and thing
as shown in Fig. 3

2) Data collection process: Things first send their access
token to the SSO service. If the access token is authenticated
by the SSO service then the thing is allowed to stream data to
the Collection service. The collection service collects the data
and passes it to the message queue. Other services like Data
processing service access the data stream through the message
queue. Thing after completing streaming data will disconnect
from the Server layer and go to sleep to save energy. The
protocol used in the Collect data process is gRPC. Process
collect data is presented in Fig. 4

3) Control workflow: The user can issue commands to
control the thing remotely by sending the access token and
command to the Control service. The access token is authenti-
cated through the SSO service. If the access token is valid, the

www.ijacsa.thesai.org

590 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Control service forward the command to the Message Queue.
Ultimately the collection service sends this command to things.
The protocol used in the Control process is gRPC. The entire
procedure is shown in Fig. 5

VI. IMPLEMENTATION
A. Database

In this paper we deploy the most important service is
the collection data service, the remaining components will
be present in our upcoming paper. The deployment model is
shown in Fig. 6

The deployment model consists of two components. Firstly,
the Raspberry Pi module plays the role of Thing in the System
Architecture presented in Section 2. Raspberry Pi is a small
computer packed with powerful hardware capable of running
the operating system and installing many applications on it.
With a price of only a few tens of dollars, Raspberry is
currently the most prominent mini computer today. Initially,
the Raspberry Pi Foundation developed the Raspberry project
with the main goal of teaching computers to children and
creating a cheap tool (only a few tens of dollars) for students
to study and study. Currently, Raspberry Pi is commonly used
in IoT systems because of its powerful processing capabilities,
multitasking and exceptionally low cost. The second is Collect
data service deployed on an Amazon EC2 server. The roles of
the components are as follows:

e Raspberry Pi Module is responsible for collecting data
from sensors and sending to the server via gRPC
protocol.

e Collect data service is a service deployed on the
server, in charge of receiving data sent from the client
through the gRPC protocol.

The configuration of the two components is shown in Table
I

VII. EVALUATION
A. Environment Setting

After implementing the Collection data service, we set up
a script to test the performance of the SIP-MBA Platform.
This scenario tests the message delivery speed of a broker-
less architecture, uses the gRPC protocol with a brokered ar-
chitecture, and uses the MQTT protocol. The two of scenarios’
source code is shown in our Github repository for collection
data service’ and MQTT streaming °. The testing scenarios
are shown in Fig. 7.

We set up two test environments consisting of two Rasp-
berry Pi modules and two Amazon EC2 Servers with similar
configurations. The Raspberry Pi-1 and Server-1 pair imple-
ments the Collect data service and uses the gRPC protocol
to transmit the packet. The Raspberry Pi-2 and Server-2 pair
respectively deploy the MQTT client, the MQTT broker and
use the MQTT protocol to transmit packets.

Shttps://github.com/thanhlam2110/iot-platform-collect-data-service
Shttps://github.com/thanhlam2 1 10/mqt-streaming

Vol. 12, No. 7, 2021

B. Message Delivery Speed Test Case

We perform a rate test of one million packets that are an
integer between 1 and 1,000,000 on both test environments and
record when the message was sent and when it was received.
In our test, each sender message follows this structure “hello +
i”” with i comes from 1 to 1.000.000 For the environment using
MQTT protocol, we perform the test with two levels of QoS-0
and QoS-2. The tests were performed 3 times and averaged.
The results of the process obtained are shown in Table II

From the results noted in the Table II, we found that
SIP-MBA Platform uses a broker-less architecture and gRPC
protocol that has a much faster message delivery speed than
systems using brokered architecture and MQTT protocol.
Particularly in the case of MQTT QoS-2, Raspberry module
can only send 65423, 65534 and 65672 messages, the MQTT
broker hangs and does not continue to receive messages. This
makes sense because gRPC runs on an http/2 protocol that
allows sending and receiving messages with multiple packets
in a single connection. Finally, gRPC is also a peer-to-peer
communication instead of a broker like MQTT protocol.

C. Broken Connection Test Cases

In addition, we also have taken test scenario with broken
connection between publisher and subscriber. We compare
number of receive messages in case with and without using
SIP-MBA platform when occurred broken connection. The test
model is shown in the Fig. 8.

The test result show that, in case without using SIP-MBA
platform, subscriber only receive one message - the newest
message that publisher send when occurred broken connection.
This is the retain function of MQTT protocol. When we
enable retain flag, MQTT broker is ability to keep only newest
message that publish by publisher. This message is received
by subscriber after it reconnects to MQTT broker’. However,
when using SIP-MBA platform, subcriber can receive all
message that published by publisher. This is ability of kafka
message queue therefore the system is guaranteed lost data.

D. Future Work

To develop a larger scenario and increase the number of
devices/users authorized quickly, other security issues such as
security, privacy, availability for objects are still the challenges.
For the security aspect, further works will be deployed in
different scenarios like healthcare environment [25], [26], [27],
cash on delivery [28], [29]. For the privacy aspect, we will
exploit attribute-based access control (ABAC) [30], [31] to
manage the authorization process of the SIP-MBA Platform
via the dynamic policy approach [32], [33], [34]. Finally, we
will apply the blockchain benefit to improve the availability
issues [35], [36], [37].

VIII. CONCLUSION

In this paper, we present the model of the SIP-MBA Plat-
form in a broker-less and micro-service architecture. We use
gRPC as the medium of communication to take advantage of
its advantages. Besides, we also offer a solution to supplement

%http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-0s.html

www.ijacsa.thesai.org

591 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

User I Control_service lSSO_ser\rice Message_Queue Collection_service Thing

[AccessToken,command)

Execute(command)

I			
1			
1			
T >			
1			
	AccessToken o I ! !		
T Ell			
: : : Check({AccessToken) : : :			
1			
. . <] . . .			
1			
I 1 Allow-Publish-Command	I I I		
[1			
1			
1 command	o		
r T r ol			
: : : : Command ,__: :			
] I -			
i	i : :—).l		
]			
]			
]			

i i i i

i i i i

User | Control_service lSSO_sewice Message Queue Collection_service lThing

Fig. 5. Control Workflow.

TABLE I. CONFIGURATION OF THE RASPBERRY PI MODULE AND COLLECT DATA SERVICE

CPU RAM
Raspberry Pi (module 3B) Broadcom BCM2837, ARMvS (64bit) quad-core, 1.2 Ghz RAM 1GB
Collection Data Service (Server) 1vCPU RAM 1GB
Collect data Collect data TABLE II. RESULTS OF PERFORMANCE (SECONDS) COMPARISON
(client) service (server) BETWEEN TWO SCENARIOS (L.E., GRPC vs MQTT(QO0S-0; Q0S-2)).
Sending time | gRPC | MQTT (QoS-0) | MOQTT (QoS-2)
1st 55s 266s can’t complete test
2nd 53s 268s can’t complete test
3rd 57s 272s can’t complete test
Average 55s 267s can’t complete test
Raspberry Pi Server
[BREAK CONNFCTION WITOUT USING STF-MBA PLATFORM — — — — — ~ — 1
Packet-1 @ :
. . |
Fig. 6. The Collect Data Service Operators. Se;d N Receive |
packet @Packm—N packet |
PacketN B4 !

i
q I [
service (server) !) Re-conneetion ! Publisher Suberiber

|
|
|
|
|
| — — — — - ! — — g
|
Collect data R”*.T oy ok conncction | | —
I Brok 1 :
|
|

> Packet-1 B4 SIPMBA PLATFORM B8 Packet-1
Receive
Send | pycker-2 B B8 packet2 | packet

packet

gRPC I [BREAK CONNECTION WITH USING SIP-MBA PLATFORM

Server-1 5 - s

Publisher Suberiber

i
I
|
I
PacketN B x § BE packetN i
;
I
I

Fig. 8. Number of Receive Messages when System Recover after Broken
Connection Issue.

the security mechanism for the system using Single Sign-On
and Oauth. We also add a message queue system that stores
| and transports packets between services within the system.

This ensures that when a service is not available, the message
Fig. 7. The Scenarios of Communication Speed between gRPC and MQTT. is still not lost. In the future, we will develop the remaining
services and build a complete SIP-MBA Platform.

www.ijacsa.thesai.org 592 |Page

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]
[20]

[21]

(IJACSA) International Journal of Advanced Computer Science and Applications,

REFERENCES

T. Alam, “A reliable communication framework and its use in internet
of things (iot),” CSEIT1835111— Received, vol. 10, pp. 450-456, 2018.

T. Chou, Precision-Principles, Practices and Solutions for the Internet
of Things. McGraw-Hill Education, 2017.

V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A survey on application layer protocols for the internet of
things,” Transaction on IoT and Cloud computing, vol. 3, no. 1, pp.
11-17, 2015.

S. P. Jaikar and K. R. Iyer, “A survey of messaging protocols for iot sys-
tems,” International Journal of Advanced in Management, Technology
and Engineering Sciences, vol. 8, no. II, pp. 510-514, 2018.

B. H. Corak, F. Y. Okay, M. Giizel, $. Murt, and S. Ozdemir, “Compar-
ative analysis of iot communication protocols,” in 2018 International
symposium on networks, computers and communications (ISNCC).
IEEE, 2018, pp. 1-6.

M. Marti, C. Garcia-Rubio, and C. Campo, “Performance evaluation of
coap and mqtt_sn in an iot environment,” in Multidisciplinary Digital
Publishing Institute Proceedings, vol. 31, no. 1, 2019, p. 49.

D. Soni and A. Makwana, “A survey on mgqtt: a protocol of internet of
things (iot),” in International Conference On Telecommunication, Power
Analysis And Computing Techniques (ICTPACT-2017), vol. 20, 2017.

S. Lee, H. Kim, D.-k. Hong, and H. Ju, “Correlation analysis of mqtt
loss and delay according to qos level,” in The International Conference
on Information Networking 2013 (ICOIN). 1EEE, 2013, pp. 714-717.

J. Toldinas, B. Lozinskis, E. Baranauskas, and A. Dobrovolskis, “Mqtt
quality of service versus energy consumption,” in 2019 23rd Interna-
tional Conference Electronics. 1EEE, 2019, pp. 1-4.

B. Mishra, “Performance evaluation of mqtt broker servers,” in Inter-
national Conference on Computational Science and Its Applications.
Springer, 2018, pp. 599-609.

N. Q. Uy and V. H. Nam, “A comparison of amqp and mqtt protocols for
internet of things,” in 2019 6th NAFOSTED Conference on Information
and Computer Science (NICS). IEEE, 2019, pp. 292-297.

Y. Kwon and J. Lee, “Energy optimization model with variable keep-
alive cycle algorithm in wireless sensor network,” International Journal
of Control, Automation and Systems, vol. 17, no. 10, pp. 2531-2540,
2019.

H. C. Hwang, J. Park, and J. G. Shon, “Design and implementation
of a reliable message transmission system based on mgqtt protocol in
iot,” Wireless Personal Communications, vol. 91, no. 4, pp. 1765-17717,
2016.

D. Mendez Mena, 1. Papapanagiotou, and B. Yang, “Internet of things:
Survey on security,” Information Security Journal: A Global Perspec-
tive, vol. 27, no. 3, pp. 162—182, 2018.

L. Lundgren, “Light-weight protocol! serious equipment! critical impli-
cations!” Defcon 24, 2016.

J. J. Anthraper and J. Kotak, “Security, privacy and forensic concern of
mgqtt protocol,” in Proceedings of International Conference on Sustain-
able Computing in Science, Technology and Management (SUSCOM),
Amity University Rajasthan, Jaipur-India, 2019.

N. Zaidi, H. Kaushik, D. Bablani, R. Bansal, and P. Kumar, “A study
of exposure of iot devices in india: Using shodan search engine,” in
Information Systems Design and Intelligent Applications. Springer,
2018, pp. 1044-1053.

P. Fremantle, B. Aziz, J. Kopecky, and P. Scott, “Federated identity and
access management for the internet of things,” in 2014 International
Workshop on Secure Internet of Things. 1EEE, 2014, pp. 10-17.

B. Pollard, HTTP/2 in Action. Manning, 2019.

V. Radha and D. H. Reddy, “A survey on single sign-on techniques,”
Procedia Technology, vol. 4, pp. 134-139, 2012.

A. A. Pranata, J. M. Lee, and D. S. Kim, “Towards an iot-based water
quality monitoring system with brokerless pub/sub architecture,” in
2017 IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN). IEEE, 2017, pp. 1-6.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

Vol. 12, No. 7, 2021

L. N. T. Thanh et al., “Toward a unique iot network via single sign-on
protocol and message queue,” in International Conference on Computer
Information Systems and Industrial Management. Springer, 2021.
——, “Toward a security iot platform with high rate transmission and
low energy consumption,” in International Conference on Computa-
tional Science and its Applications. Springer, 2021.

——, “Uip2sop: A unique iot network applying single sign-on and
message queue protocol,” IJACSA, vol. 12, no. 6, 2021.

H. X. Son and E. Chen, “Towards a fine-grained access control mecha-
nism for privacy protection and policy conflict resolution,” International

Journal of Advanced Computer Science and Applications, vol. 10, no. 2,
2019.

N. Duong-Trung, H. X. Son, H. T. Le, and T. T. Phan, “Smart care:
Integrating blockchain technology into the design of patient-centered
healthcare systems,” in Proceedings of the 2020 4th International
Conference on Cryptography, Security and Privacy, ser. ICCSP 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
105-109.

——, “On components of a patient-centered healthcare system using
smart contract,” in Proceedings of the 2020 4th International Confer-
ence on Cryptography, Security and Privacy. New York, NY, USA:
Association for Computing Machinery, 2020, p. 31-35.

H. T. Le, N. T. T. Le, N. N. Phien, and N. Duong-Trung, “Introducing
multi shippers mechanism for decentralized cash on delivery system,”
money, vol. 10, no. 6, 2019.

N. T. T. Le, Q. N. Nguyen, N. N. Phien, N. Duong-Trung, T. T. Huynh,
T. P. Nguyen, and H. X. Son, “Assuring non-fraudulent transactions in
cash on delivery by introducing double smart contracts,” International

Journal of Advanced Computer Science and Applications, vol. 10, no. 5,
pp- 677-684, 2019.

N. M. Hoang and H. X. Son, “A dynamic solution for fine-grained
policy conflict resolution,” in Proceedings of the 3rd International
Conference on Cryptography, Security and Privacy, 2019, pp. 116-120.

H. X. Son and N. M. Hoang, “A novel attribute-based access control
system for fine-grained privacy protection,” in Proceedings of the 3rd
International Conference on Cryptography, Security and Privacy, 2019,
pp. 76-80.

S. H. Xuan, L. K. Tran, T. K. Dang, and Y. N. Pham, “Rew-xac: an
approach to rewriting request for elastic abac enforcement with dynamic
policies,” in 2016 International Conference on Advanced Computing
and Applications (ACOMP). 1EEE, 2016, pp. 25-31.

Q. N. T. Thi, T. K. Dang, H. L. Van, and H. X. Son, “Using json to
specify privacy preserving-enabled attribute-based access control poli-
cies,” in International Conference on Security, Privacy and Anonymity
in Computation, Communication and Storage. Springer, 2017, pp.
561-570.

H. X. Son, T. K. Dang, and F. Massacci, “Rew-smt: a new approach
for rewriting xacml request with dynamic big data security policies,”
in International Conference on Security, Privacy and Anonymity in
Computation, Communication and Storage. Springer, 2017, pp. 501-
515.

X. S. Ha, H. T. Le, N. Metoui, and N. Duong-Trung, “Dem-cod: Novel
access-control-based cash on delivery mechanism for decentralized
marketplace,” in 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom).
IEEE, 2020, pp. 71-78.

X. S. Ha, T. H. Le, T. T. Phan, H. H. D. Nguyen, H. K. Vo,
and N. Duong-Trung, “Scrutinizing trust and transparency in cash on
delivery systems,” in International Conference on Security, Privacy and
Anonymity in Computation, Communication and Storage. Springer,
2020, pp. 214-227.

H. X. Son, T. H. Le, N. T. T. Quynh, H. N. D. Huy, N. Duong-
Trung, and H. H. Luong, “Toward a blockchain-based technology
in dealing with emergencies in patient-centered healthcare systems,”
in International Conference on Mobile, Secure, and Programmable
Networking. Springer, 2020, pp. 44-56.

www.ijacsa.thesai.org

593 |Page

