
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

New Data Placement Strategy in the HADOOP
Framework

Akram ELomari1, Larbi Hassouni2, Abderrahim MAIZATE3
RITM-ESTC / CED-ENSEM, University Hassan II

Casablanca, Morocco

Abstract—Today, the data quantities generated and
exchanged between information systems continues to increase.
Storing and exploiting such quantities require can’t be done
without bigdata systems with mechanisms capable of meeting
technological challenges commonly grouped under the four Vs
(Volume, Velocity, Variety and Veracity). These technologies
include mainly the Distributed File System (DFS). Like Hadoop,
which is based on HDFS, the main Big Data systems use a data
distributed storage where a subsystem is responsible for
subdividing data (data striping) and replicating it on a network
of nodes called Grid. In the typical case of Hadoop, a Grid
generally consists of many nodes, grouped in multiple Racks. The
logic of distributing the stored data through the Grid respects a
simple strategy that guarantees the durability of the data and a
certain speed of writing. This strategy does not take into
consideration neither the technical characteristics of nodes, nor
the number of requests on the data, which means a considerable
loss in processing capacity of the grid. In this work we proposed
a new placement strategy based on exploitation analysis of new
information integrated into the HDFS metadata model. A
significant 20% improvement in overall processing time was
reached through the simulations we conducted on Hadoop.

Keywords—Big data; data storage; Hadoop; DFS; HDFS; data
striping; chunks; placement strategy; performance optimization

I. INTRODUCTION
The amount of data generated and processed by current

information systems continues to increase, and the generation
of digital information has never been more abundant. While the
volume of data created was estimated at 2 ZB in 2010, it is
estimated that it has reached 47 ZB in 2020 and will increase to
175 ZB in 2025 and 2142 ZB in 2035 [1].

Also, taking advantage of data mines has become a
complex and demanding operation. As a result, Big Data
systems are positioned as effective [2], scalable, and efficient
solutions to exploit this quantity of Data.

The purpose of big Data systems is therefore to store and
analyze very large masses of data, while ensuring an adequate
level of data security and accessibility.

In this context, most Big Data systems, such as the Apache
Hadoop [3], delegate data storage management to distributed
file systems (DFS).

The Hadoop Big Data system is based on HDFS (the
standard DFS of HADOOP). In combination with other layers
of data processing, Hadoop can achieve complex calculations
on extended clusters. The main objective of HADOOP is to

distribute complex operations on multiple machines while
bringing those operations closer to the concerned data and thus
improve the global performances.

The capacity and performance of similar platforms, such as
Facebook and Google also depend on this distributed
architecture based on DFS [4].

HDFS thus manage several storage nodes dedicated only to
storage or to storage and computing at the same time, grouped
generally in racks and interconnected by local or wide
networks.

HDFS machines do not have specific characteristics; they
are usually low-cost machines, easily replaceable. The
protection against breakdowns is provided by a data placement
strategy based on striping and replication of data blocks called
chunks. This strategy is based on simple principles [5]:

Create multiple copies(replicas) of the same data.

Place replicas on several machines distributed on several
racks (as much as possible).

The placement of replicas, however, does not take in
consideration the nature of the demand on each data or its
evolution over time [6]. The performance of machines is not
considered too, even if HDFS allows integrating machines of
different characteristics on the same cluster.

These shortcomings in HDFS' data placement strategy have
prompted us to propose an improvement in this strategy as a
novel algorithm, which takes into consideration the history of
reading operations and proposes a redistribution of data over
the cluster.

Our research starts with a deep understanding of the
working mechanisms of HADOOP as a whole and of HDFS, to
design an algorithm that is applicable and implementable.

Our test simulations were conducted on small cluster to
control data transfers and thus demonstrate the efficiency of the
algorithm even on a small scale.

The rest of the paper is as follows. Section 2 provides an
overview of HADOOP Architecture. Section 3 presents the
new proposed placements strategy of chunks. Section 4
presents testing and simulation approach. Section 5 the results
and discussion and section 6 provide a conclusion of the work.

II. HADOOP ARCHITECTURE OVERVIEW
Our research method was based on an in-depth analysis of

how Hadoop's HDFS works, in order to better understand the

676 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

problematic raised by the chunk placement strategy. The aim
of this analysis is to bring a considerable improvement to this
strategy, by using new algorithms which exploit new metadata
integrated into the architectural model of HDFS.

Our analysis begins with an understanding of HDFS and its
logic of data stripping and replication, followed by a critical
analysis of the strategy currently used by HDFS to distribute
replicas across the cluster. We then proposed new metrics to be
calculated and integrated with chunk metadata managed by
HDFS, as well as an algorithm that is based on these metrics
and offers a new and more efficient way to place chunks.

Hadoop is Apache's known big data system, based on an
open-source implementation of Google's famous MapReduce.
It is a complex ecosystem that aims to optimize storage and
calculations made on data in large quantities.

The main purpose of Hadoop is to distribute very large data
processing on clusters composed mainly of entry-level
machines. The goal is to bring processing closer to data instead
of moving data to processing, to minimize network bandwidth
occupation. Hadoop's strength comes from the fact that it can
manage platforms ranging from a few servers to clusters of
thousands of machines, while accepting a high tolerance for
hardware failures given the wide variety of machines
supported.

By offering a software-managed service continuity model
regardless of hardware quality, Hadoop can detect hardware
failures at the application level and take the necessary steps to
return to normal in case of failure in a transparent manner for
system users. Hadoop is a flexible, scalable, and highly tolerant
solution to hardware failures which guarantees a very good
cost/effective rate.

A. Hadoop Architecture
There are three major implementations of Hadoop, the 1.x

launched for the first time in 2012, the 2.x first appeared in
2013 and the 3.x first launched in December 2017.

Hadoop's overall architecture has not changed much since
its first release; it's based on a Model of Master/Slaves/Users.

Two layers are still present:

• The storage layer of data represented by HDFS
(Hadoop Distributed File System) which manages the
distribution of data through the cluster and always
ensures the integrity and persistence of this Data. This
layer also manages storage servers (DataNode).

• The data processing layer that manages the
parallelization of calculations across the cluster, based
on the MapReduce model.

Therefore, two types of Master exist on Hadoop: the
NameNode in charge of the HDFS component and the
JobTracker (replaced in version 2.x by YARN (Yet Another
Resource Negotiator)) which takes care of the implementation
of MapReduce.

The NameNode is duplicated for high availability purpose
(even tripled on version 3.0).

The rest of the cluster consists of nodes running the
DataNode process for storage distribution (communicates
exclusively with HDFS NameNode) and TaskTraker for data
processing (communicates exclusively with YARN JobTracker
or resource manager)

YARN uses the ResourceManager which manages several
NodeManager responsible for distributing tasks and reporting
the status of nodes to the ResourceManager.

The client communicates with both masters and Slaves to
write or read data or give instructions on how this data should
be processed.

Fig. 1 gives a basic representation of Hadoop's
organization.

Fig. 1. Hadoop Architecture.

While reading process, the client wishing to read data
contacts the NameNode to get the locations of the data blocks,
and then reads the contents of the block from the nearest
DataNode. When writing, the client asks NameNode to name a
suite of three (by default three but can be configured)
DataNodes to host replicas of the blocks. The user then writes
the data in the DataNodes as a pipeline, user to node1, then
node 1 to node 2 and node 2 to node 3.

The current design has only one active NameNode for each
cluster. The cluster can have thousands of DataNodes and tens
of thousands of HDFS clients per cluster, because each
DataNode can perform multiple application tasks
simultaneously.

The data processing goes through the JobTracker, the client
constitutes his MapReduce job and submits it to the JobTracker
which subdivides it into multiple Map/Reduce tasks and
assigns each one to a TaskTracker of a DataNode containing
concerned data. The user can retrieve the results through direct
readings on HDFS.

B. Hadoop Distributed File System
HDFS is the distributed file storage system used by default

by Hadoop. It has the particularity of being able to run on
machines of low cost and consequently to be very tolerant to
hardware failures.

For its implementation, several hypotheses have been
made:

677 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

• The predisposition of equipment used to failures
requires a high capacity to detect these failures and
restore service.

• HDFS is better prepared for batch treatments and not
for user-by-user interactions. POSIX semantics have
been particularly relaxed in order to facilitate streaming
and increase data flow.

• HDFS is geared to handle very large data. Files stored
on HDSF can reach terabytes and therefore the size of
the cluster and its architecture must support these sizes.

• Files on HDFS are usually written only once by a single
owner but they are read several times. Actions that may
change the files are Append or Truncate.

• HDFS allows applications to move data near
processing. The other sense (bring data into processing)
can be very bandwidth consuming especially when the
data is very large.

• HDFS has been developed with JAVA which allows it
to turn on many different platforms.

These assumptions frame the architecture of HDFS and
allow the optimization of several aspects [7], especially data
security and processing speed.

HDFS expose a Filesystem, called Namespace, similar to
most traditional Filesystems; it can contain folder hierarchies,
user can create, rename, move or delete files from the system.
It can also include access rights or quotas per user.

1) Architecture of HDFS: The architecture of HDFS is
based on a single active Master (called NameNode) and
several Slaves (called DataNode).

The NameNode manages the state of DataNodes in the
cluster and handle distribution of storage throughout the
cluster.

The NameNode also regulates user’s access to data, every
write or read operation starts by requesting information from
the NameNode [8].

However, the NameNode is not involved in the transfer of
data between the user and dataNodes, since data blocks
information (Metadata) are separated from the data itself and
stored on the NameNode, it simply transfers a list of
DataNodes concerned by the user's query as well as the
metadata of chunks.

The user then communicates with the DataNode without
overloading the NameNode. This greatly simplifies the
architecture of HDFS and prevents the NameNode from
becoming a bottleneck.

The persistence of the NameNode is guaranteed by two
main files:

• A transaction log called EditLog that records all
changes made to HDFS metadata (e.g., replica number
change).

• A data file called FsImage, which contains all the
information about the system as the locations of the
blocks and the properties of the system.

FsImage reflects the exact state of HDFS; however it is not
updated directly after data modification operations. Operations
are recorded in real time on EditLog and flashed in bulk on the
FsImage at the starting of HDFS or at specific times called
checkpoints.

These two files constitute the heart of HDFS, and their
corruption can cause the total shutdown of the service. So, the
NameNode constitute a real SPOF (Single point of Failure) of
the system.

To reduce the risk associated with this SPOF, the
NameNode can maintain several copies of these two files and
keep them meticulously synchronized, or else set up several
NameNodes (possibility to put 2 on version 2 of Hadoop or
more on version 3), where one is active, and the others are
passive but ready to provide a fast "Failover" if needed. In this
case the DataNodes are all conFig.d to recognize all
NameNodes and transmit them the same data transmitted to the
Active NameNode.

This can be combined with the use of a distributed EditLog
called Journal which consists of the definition of several
machines on the cluster (JournalNodes or JNs) that will house
copies of the EditLog. The Active NameNode is responsible
for transmitting the Editlog changes to the majority of the JNs.
Other passive NameNodes see these changes and applicate
them onto their own Namespace. In a disaster recovery
situation, a passive NameNode makes sure to execute any
changes made to the EditLog before turning into the active
NameNode.

2) Replication in HDFS: Because HDFS often runs on
convenience equipment, hardware failures can occur at any
time, which can result in partial or total data loss [9]. To
mitigate this risk, HDFS uses a replication technique that aims
to ensure the sustainability of the data in case of hardware or
network technical problems.

Fig. 2 explains the overall pattern of the HDFS replication
model.

Fig. 2. Replication Process in HDFS.

678 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

In HDFS, the files are split into several Blocks of equal
sizes (except the last one) called chunks. This manipulation,
called Data Stripping, allows HDFS to parallelize data access
by storing these blocks on different DataNodes and thus
improve response times. HDFS then replicates each Block in
several copies (usually three copies but it is configurable) and
places each copy on a DataNode determined according to a
predefined strategy.

The number of replicas, also called replication factor, is
managed by the NameNode and can be changed at any time
and for each file separately.

To keep the NameNode up to date, it receives regularly
information from each DataNode. Two types of information
are received:

• The HeartBeat that allows the NameNode to ensure that
the DataNode is still up and running.

• The BlockReport through which DataNode provides
NameNode with a list of all valid data blocks it
contains.

When creating a file, the NameNode provides the user with
a list of DataNodes that can host that data (the list contains N
DataNode where N is the replication factor). The user starts
transmitting the data in pieces to the first DataNode which
writes it locally and begins to transmit it to the second
DataNode in the list and so on until the Nth DataNode.

3) The placement of replicas on HDFS: To designate the
DataNode that will house the Blocks during a write operation,
HDFS applies a policy that considers both the risk of failure
and the speed of access.

HDFS is often set up as a cluster consisting of several racks
where several DataNodes are housed. Communication between
machines of different racks necessarily passes through switches
which make the exchange between machines of the same rack
generally faster than the exchange between machines of
different racks [10].

It will therefore make sense to select DataNode from the
same rack to place all the replicas of a block, given the saving
of time and bandwidth that this can provide. However, in this
way it will increase the fragility of the system in case of a
failure affecting an entire rack.

That is why HDFS has a strategy that takes these two
aspects in consideration:

As illustrated in Fig. 3, in the common case where the
replication factor is 3, two of the replicas are placed on two
DataNodes of the same rack while the third is placed on a
DataNode of a different rack, depending on the availability of
storage space.

If the replication factor is greater than three then these
conditions are supplemented by the condition of not putting
more than two replicas on the same Rack or the same Data
Node as far as possible.

Fig. 3. Chunk’s Placement Strategy in HDFS.

The problem statements:

This strategy allows better data availability in case of a
network, rack or switch failure, and also optimizes writing
times since one-third of the data is exchanged in a single rack.

However, this strategy may reduce the overall parallel
playback bandwidth since the data is available only on two
racks and not three (where 3 is the replication factor).

This strategy also shows another more important
disadvantage [11]; it determines the DataNode where replicas
are placed at creation of the chunk and never takes in
consideration the evolution of traffic or demand on the replicas,
nor the capacity of the nodes chosen for the hosting of the data.

Indeed, at the time of the creation of the chunks, the first
replica is created on a DataNode close to the "writer", but our
simulations have shown that the demand on the replicas can
evolve to another location. In addition, since Hadoop cluster is
built using convenience hardware that can fail or simply
become obsolete [12], the structure and composition of the
cluster may evolve rapidly and radically.

This suggests moving most requested Data (according to a
cluster operations analysis) to machines most willing to
process them as quickly as possible [13].

These points make the placement strategy used by default
by HDFS, a possible source of loss of processing performance
due to the poor distribution of data on the cluster.

Our work consists of proposing a method for analyzing the
demand on replicas and develops an algorithm for replacing
replicas based on the recurrence of demand and machines
performances [14], [15].

4) Related work: Many works have tried to improve the
strategy of placing chunks in DFS. Some works have proposed
to change the storage method by reducing the number of small
files by grouping them into larger files [5], or to optimize the
replication factor and the size of chunks to improve internal
exchanges inside the cluster [6], [7]. Another approach is to
try to assign the data to the best node according to the known
physical capacities of each node. The limitation of these
methods is that it is based on data inputs that never updates,

679 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

even in evolving environments like HADOOP where the
hardware is constantly changing because of its possibly low-
cost nature.

Our approach allows building a dynamic database based on
collected response times and not the hardware characteristics of
the Grid, then use this data to move the chunks to better
locations and improve the overall response time of the grid.

III. IMPROVED PLACEMENT OF CHUNKS

A. Evaluation of Demand on Chunks
To assess the need to change the location of a chunk in the

grid we propose to add two metadata to the chunks metadata
managed by HDFS. Those metadata will be calculated by the
DataNode and transmitted in the block report to the
MasterNode. They will be updated every time a chunk is
consulted.

These two metadata are:

• C: The chunk consultation rate, which is the number of
times the chunks has been downloaded during a
configurable period (such as one month)

• Tc: The mean read time of the chunk during the same
period as defined in (1).

Tc = ∑ ti
C
i=1
C

 (1)

C : The number of consultations.

𝑡𝑖 : Read time at Nth consultation.

Mean read time is calculated by the HDFS daemon running
on the DataNode after each read operation.

The NameNode will have a consolidated and sorted table of all
the chunks as the example Table 1:

TABLE I. SAMPLE OF CHUNKS CONSULTATION STATISTICS

Id chunks C Tc (ms)
A 200 10
B 100 6
C 50 12
D 40 7

A perfectly ordered table should contain the chunks at the
beginning with a maximum C corresponding to a minimum Tc.

However, analysis of the data recovered from a simulation
cluster shows cases where highly requested chunks have
relatively high response times.

Our goal is to be able to move the most requested chunks to
the Nodes that give the best reading times (Pn).

Through metadata we can calculate the mean performance
of each node through the formula (2):

Pn = ∑ TciCi
k
i=1
∑ Cik
i=1

 (2)

Pn: Mean performance of the node n

k : Number of chunks in the node n

𝐶𝑖: Number of consultations of Chunk i placed in the node
n.

𝑇𝑐𝑖 : Mean read time of the Chunk i placed in the node n.

Moving a chunk to a location with better reading times
does not necessarily mean that response times on this chunk
will improve, as the mean response times also depend on the
nature of the request (location of reading requests, processing
on the data...), but Tc's evaluation algorithm will continue to
collect response times for the moved chunks on its new
location and will allow to reassess the need or not to move it to
a better location.

After one to several iterations of chunks moves, the
improvement on the mean consultation time will eventually be
observable or at least stagnate in its minimum value, meaning
that the chunks are on the best location in terms of response
time.

The number of chunks moves must be limited so as not to
saturate the network more than necessary.

Movements of Data should be made at a time when data
access is low or absent, so that the bandwidth will not be over
occupied by this operation.

B. Algorithms
Optimizer

The Optimizer function (Fig. 4) scans the table of statistics
of chunks consultation starting from the greatest number of
consultations, which corresponds to the most requested chunks.
This chunk should be placed in the best Node in terms of
response time. In the best case the chunks with highest C will
have to be moved to the Node whose have lowest Pn. The
algorithm will try to retrieve an available Node with the best
Pn.

Function Optimizer(Table chunks_Table)
{
--Table ordered by decreasing number of consultations –

Chunks_OrdredDescByC = OrderDescByC(chunks_Table);

Foreach (chunk in Chunks_OrdredDescByC)
{

DestinationNode=
GetBestNodeForchunks(Chunk chunk);

MoveChunkToNode(chunk,
DestinationNode)

}

}

GetBestNodeForchunks

The GetBestNodeForchunks (Fig. 5) function allows
retrieving the Node which offers the best average consultation
time (Pn) which suggests it is a better location for a given
chunk.

680 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

Fig. 4. Replacement Algorithm.

To do this, we calculate Pn for each node in the table and
we go through the table of means of consultation time of the
chunks, ordered up wards according to Pn, we check for each
node its eligibility to receive the chunk passed in parameter.

Eligibility is based on four criteria:

1) The node is different from the one where the chunk is
already placed.

2) The availability of space on the node.
3) The Node does not already contain a chunk replica.
4) The Node is not in the same rack as two other replicas.

Those criteria comply with Hadoop's basic policy, i.e., no
more than two replicas in the same rack.

Function Node GetBestNodeForchunks(Chunk chunk)
{

--Table ordered by decreasing number of consultations –

Chunks_OrdredAscByPn = OrderDescByC(chunks_Table);
Foreach (betterPnChunk in Chunks_OrdredAscByPn)

{
 If (betterPnChunk.Pn< chunk.Tc
 {
 Node node = getChunkNode(betterPnChunk);

 If (Eligible(node,chunk)
 {Return node;}
}

 }
Return Null;

}

Fig. 5. Best Node Algorithm Selection.

IV. TESTING PROTOCOL
To make the performance measurements, we conducted

simulations on a test grid consisting of 12 nodes.

The testing environment of the response time improvement
algorithm consists of three racks (Fig. 6), each composed of
four nodes of identical storage capacity and equal to three
times the size of one chunk size (3x64MO).

Choosing this size allows us to limit the storage capacity of
a node to a maximum of three chunks, in this way we will
quickly saturate the nodes and the algorithm's ability to take
this into consideration will be tested.

The performance characteristics of the nodes are
heterogeneous; each of the three racks consists of the nodes of
Table II.

681 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

TABLE II. GRID’S NODES CONFIGURATION

Node
ID

RAM
(GO)

Processor
(Cores * speed) Storage capacity

1 2 1 * 2GHz 192 MO

2 4 1 * 2GHz 192 MO

3 6 2 * 2GHz 192 MO

4 8 4 * 2GHz 192 MO

Fig. 6. Test Grid Architecture.

The bandwidth inside the same rack is 1 GB/s.

The direct bandwidth between the racks is set up according
to the matrix in Table III (in MO/s).

TABLE III. GRID’S BANDWIDTH CONFIGURATION

 Rack 1 Rack 2 Rack 3

Rack 1 1000 100 10

Rack 2 100 1000 10

Rack 3 10 10 1000

The version of Hadoop used in the simulation is 2.5.0.

The simulations were conducted using 12 files with a unit
size of 64MB.

The Size block configured on Hadoop is 64MO and the
replication factor is 3.

Our TestJob consists of performing a variable number of
jobs (map tasks) from the 12 nodes of the Grid on each of the
12 files distributed evenly on the Grid.

Each job is calling only one file, son the consultation rate C
is equal to the number of executed jobs.

Testing protocol:

We followed a test protocol as shown in Fig.7:

Fig. 7. Testing Protocol.

The phases were repeated over several iterations and after
each iteration, we calculated the overall performance P of the
cluster.

V. RESULTS AND EVALUATION
The main objective of running the test simulation is to

calculate P before and after using the proposed algorithm.
Thus, we can observe the evolution of P and assess the
relevance of our approach.

The results collected on the first iteration of jobs are
represented in the Table IV:

TABLE IV. INITIAL CHUNKS STATISTICS TABLE

Chunk Id Id Node C Tc (ms)

0 0 12 20000,33

1 1 11 21626,64

2 2 10 23117,40

3 3 9 20143,00

4 4 8 16487,00

5 5 7 9967,00

6 6 8 26891,00

7 7 9 19819,44

8 8 10 31952,60

9 9 11 38492,09

10 10 12 35360,33

11 11 9 35135,00

682 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

C is the number of executed Jobs witch is equal to the
consultation rate because each job is calling only one file.

The file is corresponding to only one chunk because of the
chosen size of file and chunk configuration.

Tc is the mean job time of each file (MJT)

The overall performance of the Simulation Grid is then:

P1 = 25594.86 ms

The Tc calculated at this step is reflecting the default
situation using the initial Hadoop placement strategy.

Running the relocation algorithm gives the locations
suggestions in Table V:

TABLE V. CHUNK’S RELOCATION SUGGESTIONS TABLE

Id chunks Id Node Suggested Destination Node Id

0 0 5

10 10 5

1 1 4

9 9 4

2 2 7

8 8 7

3 3 None

7 7 None

11 11 0

4 4 None

6 6 3

5 5 None

The Algorithm proposes to relocate eight files to a new
location.

Four files were not relocated because no improvement in
the executions times is supposed to happen with any of
available locations.

TABLE VI. CHUNKS STATISTICS TABLE AFTER FIRST RELOCATION

Id Chunks Id Node C Tc (ms)

0 5 12 20000,33

1 4 11 21207,73

2 7 10 23117,40

3 3 9 20143,00

4 4 8 16487,00

5 5 7 9967,00

6 3 8 29259,00

7 7 9 19819,44

8 7 10 22736,60

9 4 11 17127,73

10 5 12 20000,33

11 0 9 19876,33

After moving the chunks to the suggested nodes and
running the same set of jobs, the collection of response times
gives the Table VI where Tc was recalculated:

The overall new performance of the grid is:

P2 =20125.21 ms

This value represents an improvement of 21.3% compared
to P1.

Fig. 8 shows the evolution of the mean response time up to
the third iteration.

Fig. 8. Overall Performance Evolution.

After the first iteration P stabilizes. Changing the locations
of the chunks according to the algorithm's proposals hardly
affects the overall performance of the Grid.

We can conclude that the chunks are in an optimal node
from the first iteration of replacement of chunks.

The overall performance improvement of the Cluster is nearly
20%. This improvement has been achieved after a single chunk
replacement operation.

VI. CONCLUSION
The HADOOP system is a powerful and flexible big data

system. Through its architecture it makes it possible to carry
out complex operations on mass data distributed on grids
which can range to thousands of machines whose
characteristics can be very different.

Data striping and replication are among its strong features,
thanks to them it manages to maintain the integrity of the
system. But its basic chunk location strategy does not take
advantage of all the capacity that the characteristics of the grid
can offer.

In this research we conducted a deep analysis of how
HDFS works to propose an improvement in the replica location
strategy, and we demonstrated through our simulation that a
substantial gain of more than 20% on the overall performance
of the cluster is possible, while respecting the basic rules of
HDFS initial chunk placement strategy.

In our future works we plan to integrate a module
determining the best locations for data from the first writing,
based on an artificial intelligence model capable of predicting
the response time of a node for a given chunks. This will

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

0 1 2 3

P

683 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 7, 2021

reduce data movements in the clusters and avoid unwanted
bandwidth usage.

REFERENCES
[1] Statista. “Volume of data/information created, captured, copied, and

consumed worldwide from 2010 to 2025” Statista Digital Economy
Compass https://www.statista.com/ (accessed Feb. 2019)

[2] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. Netto, and R.
Buyya, “Big data computing and clouds: Trends and future directions,”
J. Parallel Distrib. Comput., vols. 79-80, pp. 315, May 2015.

[3] Y.Wu, F.Ye, K. Chen, and W. Zheng, “Modeling of distributed file
systems for practical performance analysis,'' IEEE Trans. Parallel
Distrib. Syst.,vol. 25, no. 1, pp. 156-166, Jan. 2014.

[4] C. Verma and R. Pandey, "Comparative Analysis of GFS and HDFS:
Technology and Architectural landscape," 2018 10th International
Conference on Computational Intelligence and Communication
Networks (CICN), 2018, pp. 54-58, doi: 10.1109/CICN.2018.8864934.

[5] W. Dai, I. Ibrahim and M. Bassiouni, "A New Replica Placement Policy
for Hadoop Distributed File System," 2016 IEEE 2nd International
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE
International Conference on High Performance and Smart Computing
(HPSC), and IEEE International Conference on Intelligent Data and
Security (IDS), 2016, pp. 262-267, doi: 10.1109/BigDataSecurity-
HPSC-IDS.2016.30.

[6] V. Venkataramanachary, E. Reveron and W. Shi, "Storage and Rack
Sensitive Replica Placement Algorithm for Distributed Platform with
Data as Files," 2020 International Conference on COMmunication
Systems & NETworkS (COMSNETS), 2020, pp. 535-538, doi:
10.1109/COMSNETS48256.2020.9027494.

[7] T. Ma, F. Tian and B. Dong, "Ordinal Optimization-Based Performance
Model Estimation Method for HDFS," in IEEE Access, vol. 8, pp. 889-
899, 2020, doi: 10.1109/ACCESS.2019.2962724.

[8] The Apache Software Foudation. ”Apache Hadoop 3.3.1” Apache
Hadoop. https://hadoop.apache.org/docs/current/ (accessed Mars 2021).

[9] J. Liu et al., "A Low-Cost Multi-Failure Resilient Replication Scheme
for High-Data Availability in Cloud Storage," in IEEE/ACM
Transactions on Networking, doi: 10.1109/TNET.2020.3027814.

[10] V. Venkataramanachary, E. Reveron and W. Shi, "Storage and Rack
Sensitive Replica Placement Algorithm for Distributed Platform with
Data as Files," 2020 International Conference on COMmunication
Systems & NETworkS (COMSNETS), 2020, pp. 535-538, doi:
10.1109/COMSNETS48256.2020.9027494.

[11] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares, and
X. Qin, “Improving MapReduce performance through data placement in
heterogeneous Hadoop clusters,” in Proceedings of the 2010 IEEE
International Symposium on Parallel & Distributed Processing, pp. 1-9,
Atlanta, USA, 2010.

[12] Alshammari, Hamoud & Lee, Jeongkyu & Bajwa, Hassan. (2016).
H2Hadoop: Improving Hadoop Performance using the Metadata of
Related Jobs. IEEE Transactions on Cloud Computing. PP. 1-1.
10.1109/TCC.2016.2535261.

[13] Alanazi, Rayan & Alhazmi, Fawaz & Chung, Haejin & Nah, Yunmook.
(2020). A Multi-Optimization Technique for Improvement of Hadoop
Performance with a Dynamic Job Execution Method Based on Artificial
Neural Network. SN Computer Science. 1. 10.1007/s42979-020-00182-
3.

[14] Z. Li, H. Shen, W. Ligon and J. Denton, "An Exploration of Designing a
Hybrid Scale-Up/Out Hadoop Architecture Based on Performance
Measurements," in IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 2, pp. 386-400, 1 Feb. 2017, doi:
10.1109/TPDS.2016.2573820.

[15] M. Hajeer and D. Dasgupta, "Handling Big Data Using a Data-Aware
HDFS and Evolutionary Clustering Technique," in IEEE Transactions
on Big Data, vol. 5, no. 2, pp. 134-147, 1 June 2019, doi:
10.1109/TBDATA.2017.2782785.

684 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Hadoop Architecture Overview
	A. Hadoop Architecture
	B. Hadoop Distributed File System
	1) Architecture of HDFS: The architecture of HDFS is based on a single active Master (called NameNode) and several Slaves (called DataNode).
	2) Replication in HDFS: Because HDFS often runs on convenience equipment, hardware failures can occur at any time, which can result in partial or total data loss [9]. To mitigate this risk, HDFS uses a replication technique that aims to ensure the sustaina�
	3) The placement of replicas on HDFS: To designate the DataNode that will house the Blocks during a write operation, HDFS applies a policy that considers both the risk of failure and the speed of access.
	4) Related work: Many works have tried to improve the strategy of placing chunks in DFS. Some works have proposed to change the storage method by reducing the number of small files by grouping them into larger files [5], or to optimize the replication fact�

	III. Improved Placement of Chunks
	A. Evaluation of Demand on Chunks
	B. Algorithms
	1) The node is different from the one where the chunk is already placed.
	2) The availability of space on the node.
	3) The Node does not already contain a chunk replica.
	4) The Node is not in the same rack as two other replicas.

	IV. Testing Protocol
	V. Results and Evaluation
	VI. Conclusion

