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Abstract—Today, the data quantities generated and 
exchanged between information systems continues to increase. 
Storing and exploiting such quantities require can’t be done 
without bigdata systems with mechanisms capable of meeting 
technological challenges commonly grouped under the four Vs 
(Volume, Velocity, Variety and Veracity). These technologies 
include mainly the Distributed File System (DFS). Like Hadoop, 
which is based on HDFS, the main Big Data systems use a data 
distributed storage where a subsystem is responsible for 
subdividing data (data striping) and replicating it on a network 
of nodes called Grid. In the typical case of Hadoop, a Grid 
generally consists of many nodes, grouped in multiple Racks. The 
logic of distributing the stored data through the Grid respects a 
simple strategy that guarantees the durability of the data and a 
certain speed of writing. This strategy does not take into 
consideration neither the technical characteristics of nodes, nor 
the number of requests on the data, which means a considerable 
loss in processing capacity of the grid. In this work we proposed 
a new placement strategy based on exploitation analysis of new 
information integrated into the HDFS metadata model. A 
significant 20% improvement in overall processing time was 
reached through the simulations we conducted on Hadoop. 
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I. INTRODUCTION 
The amount of data generated and processed by current 

information systems continues to increase, and the generation 
of digital information has never been more abundant. While the 
volume of data created was estimated at 2 ZB in 2010, it is 
estimated that it has reached 47 ZB in 2020 and will increase to 
175 ZB in 2025 and 2142 ZB in 2035 [1]. 

Also, taking advantage of data mines has become a 
complex and demanding operation. As a result, Big Data 
systems are positioned as effective [2], scalable, and efficient 
solutions to exploit this quantity of Data. 

The purpose of big Data systems is therefore to store and 
analyze very large masses of data, while ensuring an adequate 
level of data security and accessibility. 

In this context, most Big Data systems, such as the Apache 
Hadoop [3], delegate data storage management to distributed 
file systems (DFS). 

The Hadoop Big Data system is based on HDFS (the 
standard DFS of HADOOP). In combination with other layers 
of data processing, Hadoop can achieve complex calculations 
on extended clusters. The main objective of HADOOP is to 

distribute complex operations on multiple machines while 
bringing those operations closer to the concerned data and thus 
improve the global performances. 

The capacity and performance of similar platforms, such as 
Facebook and Google also depend on this distributed 
architecture based on DFS [4]. 

HDFS thus manage several storage nodes dedicated only to 
storage or to storage and computing at the same time, grouped 
generally in racks and interconnected by local or wide 
networks. 

HDFS machines do not have specific characteristics; they 
are usually low-cost machines, easily replaceable. The 
protection against breakdowns is provided by a data placement 
strategy based on striping and replication of data blocks called 
chunks. This strategy is based on simple principles [5]: 

Create multiple copies(replicas) of the same data. 

Place replicas on several machines distributed on several 
racks (as much as possible). 

The placement of replicas, however, does not take in 
consideration the nature of the demand on each data or its 
evolution over time [6].  The performance of machines is not 
considered too, even if HDFS allows integrating machines of 
different characteristics on the same cluster. 

These shortcomings in HDFS' data placement strategy have 
prompted us to propose an improvement in this strategy as a 
novel algorithm, which takes into consideration the history of 
reading operations and proposes a redistribution of data over 
the cluster. 

Our research starts with a deep understanding of the 
working mechanisms of HADOOP as a whole and of HDFS, to 
design an algorithm that is applicable and implementable. 

Our test simulations were conducted on small cluster to 
control data transfers and thus demonstrate the efficiency of the 
algorithm even on a small scale. 

The rest of the paper is as follows. Section 2 provides an 
overview of HADOOP Architecture. Section 3 presents the 
new proposed placements strategy of chunks. Section 4 
presents testing and simulation approach. Section 5 the results 
and discussion and section 6 provide a conclusion of the work. 

II. HADOOP ARCHITECTURE OVERVIEW 
Our research method was based on an in-depth analysis of 

how Hadoop's HDFS works, in order to better understand the 

676 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 7, 2021 

problematic raised by the chunk placement strategy. The aim 
of this analysis is to bring a considerable improvement to this 
strategy, by using new algorithms which exploit new metadata 
integrated into the architectural model of HDFS. 

Our analysis begins with an understanding of HDFS and its 
logic of data stripping and replication, followed by a critical 
analysis of the strategy currently used by HDFS to distribute 
replicas across the cluster. We then proposed new metrics to be 
calculated and integrated with chunk metadata managed by 
HDFS, as well as an algorithm that is based on these metrics 
and offers a new and more efficient way to place chunks. 

Hadoop is Apache's known big data system, based on an 
open-source implementation of Google's famous MapReduce. 
It is a complex ecosystem that aims to optimize storage and 
calculations made on data in large quantities. 

The main purpose of Hadoop is to distribute very large data 
processing on clusters composed mainly of entry-level 
machines. The goal is to bring processing closer to data instead 
of moving data to processing, to minimize network bandwidth 
occupation. Hadoop's strength comes from the fact that it can 
manage platforms ranging from a few servers to clusters of 
thousands of machines, while accepting a high tolerance for 
hardware failures given the wide variety of machines 
supported. 

By offering a software-managed service continuity model 
regardless of hardware quality, Hadoop can detect hardware 
failures at the application level and take the necessary steps to 
return to normal in case of failure in a transparent manner for 
system users. Hadoop is a flexible, scalable, and highly tolerant 
solution to hardware failures which guarantees a very good 
cost/effective rate. 

A. Hadoop Architecture 
There are three major implementations of Hadoop, the 1.x 

launched for the first time in 2012, the 2.x first appeared in 
2013 and the 3.x first launched in December 2017. 

Hadoop's overall architecture has not changed much since 
its first release; it's based on a Model of Master/Slaves/Users. 

Two layers are still present: 

• The storage layer of data represented by HDFS 
(Hadoop Distributed File System) which manages the 
distribution of data through the cluster and always 
ensures the integrity and persistence of this Data. This 
layer also manages storage servers (DataNode). 

• The data processing layer that manages the 
parallelization of calculations across the cluster, based 
on the MapReduce model. 

Therefore, two types of Master exist on Hadoop: the 
NameNode in charge of the HDFS component and the 
JobTracker (replaced in version 2.x by YARN (Yet Another 
Resource Negotiator)) which takes care of the implementation 
of MapReduce. 

The NameNode is duplicated for high availability purpose 
(even tripled on version 3.0). 

The rest of the cluster consists of nodes running the 
DataNode process for storage distribution (communicates 
exclusively with HDFS NameNode) and TaskTraker for data 
processing (communicates exclusively with YARN JobTracker 
or resource manager) 

YARN uses the ResourceManager which manages several 
NodeManager responsible for distributing tasks and reporting 
the status of nodes to the ResourceManager. 

The client communicates with both masters and Slaves to 
write or read data or give instructions on how this data should 
be processed. 

Fig. 1 gives a basic representation of Hadoop's 
organization. 

 
Fig. 1. Hadoop Architecture. 

While reading process, the client wishing to read data 
contacts the NameNode to get the locations of the data blocks, 
and then reads the contents of the block from the nearest 
DataNode. When writing, the client asks NameNode to name a 
suite of three (by default three but can be configured) 
DataNodes to host replicas of the blocks. The user then writes 
the data in the DataNodes as a pipeline, user to node1, then 
node 1 to node 2 and node 2 to node 3. 

The current design has only one active NameNode for each 
cluster. The cluster can have thousands of DataNodes and tens 
of thousands of HDFS clients per cluster, because each 
DataNode can perform multiple application tasks 
simultaneously. 

The data processing goes through the JobTracker, the client 
constitutes his MapReduce job and submits it to the JobTracker 
which subdivides it into multiple Map/Reduce tasks and 
assigns each one to a TaskTracker of a DataNode containing 
concerned data. The user can retrieve the results through direct 
readings on HDFS. 

B. Hadoop Distributed File System 
HDFS is the distributed file storage system used by default 

by Hadoop. It has the particularity of being able to run on 
machines of low cost and consequently to be very tolerant to 
hardware failures. 

For its implementation, several hypotheses have been 
made: 
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• The predisposition of equipment used to failures 
requires a high capacity to detect these failures and 
restore service. 

• HDFS is better prepared for batch treatments and not 
for user-by-user interactions. POSIX semantics have 
been particularly relaxed in order to facilitate streaming 
and increase data flow. 

• HDFS is geared to handle very large data. Files stored 
on HDSF can reach terabytes and therefore the size of 
the cluster and its architecture must support these sizes. 

• Files on HDFS are usually written only once by a single 
owner but they are read several times. Actions that may 
change the files are Append or Truncate. 

• HDFS allows applications to move data near 
processing. The other sense (bring data into processing) 
can be very bandwidth consuming especially when the 
data is very large. 

• HDFS has been developed with JAVA which allows it 
to turn on many different platforms. 

These assumptions frame the architecture of HDFS and 
allow the optimization of several aspects [7], especially data 
security and processing speed. 

HDFS expose a Filesystem, called Namespace, similar to 
most traditional Filesystems; it can contain folder hierarchies, 
user can create, rename, move or delete files from the system. 
It can also include access rights or quotas per user. 

1) Architecture of HDFS: The architecture of HDFS is 
based on a single active Master (called NameNode) and 
several Slaves (called DataNode). 

The NameNode manages the state of DataNodes in the 
cluster and handle distribution of storage throughout the 
cluster. 

The NameNode also regulates user’s access to data, every 
write or read operation starts by requesting information from 
the NameNode [8]. 

However, the NameNode is not involved in the transfer of 
data between the user and dataNodes, since data blocks 
information (Metadata) are separated from the data itself and 
stored on the NameNode, it simply transfers a list of 
DataNodes concerned by the user's query as well as the 
metadata of chunks. 

The user then communicates with the DataNode without 
overloading the NameNode. This greatly simplifies the 
architecture of HDFS and prevents the NameNode from 
becoming a bottleneck. 

The persistence of the NameNode is guaranteed by two 
main files: 

• A transaction log called EditLog that records all 
changes made to HDFS metadata (e.g., replica number 
change). 

• A data file called FsImage, which contains all the 
information about the system as the locations of the 
blocks and the properties of the system. 

FsImage reflects the exact state of HDFS; however it is not 
updated directly after data modification operations.  Operations 
are recorded in real time on EditLog and flashed in bulk on the 
FsImage at the starting of HDFS or at specific times called 
checkpoints. 

These two files constitute the heart of HDFS, and their 
corruption can cause the total shutdown of the service. So, the 
NameNode constitute a real SPOF (Single point of Failure) of 
the system. 

To reduce the risk associated with this SPOF, the 
NameNode can maintain several copies of these two files and 
keep them meticulously synchronized, or else set up several 
NameNodes (possibility to put 2 on version 2 of Hadoop or 
more on version 3), where one is active, and the others are 
passive but ready to provide a fast "Failover" if needed. In this 
case the DataNodes are all conFig.d to recognize all 
NameNodes and transmit them the same data transmitted to the 
Active NameNode. 

This can be combined with the use of a distributed EditLog 
called Journal which consists of the definition of several 
machines on the cluster (JournalNodes or JNs) that will house 
copies of the EditLog. The Active NameNode is responsible 
for transmitting the Editlog changes to the majority of the JNs. 
Other passive NameNodes see these changes and applicate 
them onto their own Namespace. In a disaster recovery 
situation, a passive NameNode makes sure to execute any 
changes made to the EditLog before turning into the active 
NameNode. 

2) Replication in HDFS: Because HDFS often runs on 
convenience equipment, hardware failures can occur at any 
time, which can result in partial or total data loss [9]. To 
mitigate this risk, HDFS uses a replication technique that aims 
to ensure the sustainability of the data in case of hardware or 
network technical problems. 

Fig. 2 explains the overall pattern of the HDFS replication 
model. 

 
Fig. 2. Replication Process in HDFS. 
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In HDFS, the files are split into several Blocks of equal 
sizes (except the last one) called chunks. This manipulation, 
called Data Stripping, allows HDFS to parallelize data access 
by storing these blocks on different DataNodes and thus 
improve response times. HDFS then replicates each Block in 
several copies (usually three copies but it is configurable) and 
places each copy on a DataNode determined according to a 
predefined strategy. 

The number of replicas, also called replication factor, is 
managed by the NameNode and can be changed at any time 
and for each file separately. 

To keep the NameNode up to date, it receives regularly 
information from each DataNode. Two types of information 
are received: 

• The HeartBeat that allows the NameNode to ensure that 
the DataNode is still up and running. 

• The BlockReport through which DataNode provides 
NameNode with a list of all valid data blocks it 
contains. 

When creating a file, the NameNode provides the user with 
a list of DataNodes that can host that data (the list contains N 
DataNode where N is the replication factor). The user starts 
transmitting the data in pieces to the first DataNode which 
writes it locally and begins to transmit it to the second 
DataNode in the list and so on until the Nth DataNode. 

3) The placement of replicas on HDFS: To designate the 
DataNode that will house the Blocks during a write operation, 
HDFS applies a policy that considers both the risk of failure 
and the speed of access. 

HDFS is often set up as a cluster consisting of several racks 
where several DataNodes are housed. Communication between 
machines of different racks necessarily passes through switches 
which make the exchange between machines of the same rack 
generally faster than the exchange between machines of 
different racks [10]. 

It will therefore make sense to select DataNode from the 
same rack to place all the replicas of a block, given the saving 
of time and bandwidth that this can provide. However, in this 
way it will increase the fragility of the system in case of a 
failure affecting an entire rack. 

That is why HDFS has a strategy that takes these two 
aspects in consideration: 

As illustrated in Fig. 3, in the common case where the 
replication factor is 3, two of the replicas are placed on two 
DataNodes of the same rack while the third is placed on a 
DataNode of a different rack, depending on the availability of 
storage space. 

If the replication factor is greater than three then these 
conditions are supplemented by the condition of not putting 
more than two replicas on the same Rack or the same Data 
Node as far as possible. 

 
Fig. 3. Chunk’s Placement Strategy in HDFS. 

The problem statements: 

This strategy allows better data availability in case of a 
network, rack or switch failure, and also optimizes writing 
times since one-third of the data is exchanged in a single rack. 

However, this strategy may reduce the overall parallel 
playback bandwidth since the data is available only on two 
racks and not three (where 3 is the replication factor). 

This strategy also shows another more important 
disadvantage [11]; it determines the DataNode where replicas 
are placed at creation of the chunk and never takes in 
consideration the evolution of traffic or demand on the replicas, 
nor the capacity of the nodes chosen for the hosting of the data. 

Indeed, at the time of the creation of the chunks, the first 
replica is created on a DataNode close to the "writer", but our 
simulations have shown that the demand on the replicas can 
evolve to another location. In addition, since Hadoop cluster is 
built using convenience hardware that can fail or simply 
become obsolete [12], the structure and composition of the 
cluster may evolve rapidly and radically. 

This suggests moving most requested Data (according to a 
cluster operations analysis) to machines most willing to 
process them as quickly as possible [13]. 

These points make the placement strategy used by default 
by HDFS, a possible source of loss of processing performance 
due to the poor distribution of data on the cluster. 

Our work consists of proposing a method for analyzing the 
demand on replicas and develops an algorithm for replacing 
replicas based on the recurrence of demand and machines 
performances [14], [15]. 

4) Related work: Many works have tried to improve the 
strategy of placing chunks in DFS. Some works have proposed 
to change the storage method by reducing the number of small 
files by grouping them into larger files [5], or to optimize the 
replication factor and the size of chunks to improve internal 
exchanges inside the cluster [6], [7]. Another approach is to 
try to assign the data to the best node according to the known 
physical capacities of each node. The limitation of these 
methods is that it is based on data inputs that never updates, 
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even in evolving environments like HADOOP where the 
hardware is constantly changing because of its possibly low-
cost nature. 

Our approach allows building a dynamic database based on 
collected response times and not the hardware characteristics of 
the Grid, then use this data to move the chunks to better 
locations and improve the overall response time of the grid. 

III. IMPROVED PLACEMENT OF CHUNKS 

A. Evaluation of Demand on Chunks 
To assess the need to change the location of a chunk in the 

grid we propose to add two metadata to the chunks metadata 
managed by HDFS. Those metadata will be calculated by the 
DataNode and transmitted in the block report to the 
MasterNode. They will be updated every time a chunk is 
consulted. 

These two metadata are: 

• C: The chunk consultation rate, which is the number of 
times the chunks has been downloaded during a 
configurable period (such as one month) 

• Tc: The mean read time of the chunk during the same 
period as defined in (1). 

Tc = ∑ ti
C
i=1
C

               (1) 

C : The number of consultations. 

𝑡𝑖 : Read time at Nth consultation. 

Mean read time is calculated by the HDFS daemon running 
on the DataNode after each read operation. 

The NameNode will have a consolidated and sorted table of all 
the chunks as the example Table 1: 

TABLE I. SAMPLE OF CHUNKS CONSULTATION STATISTICS 

Id chunks C Tc (ms) 
A 200 10 
B 100 6 
C 50 12 
D 40 7 

A perfectly ordered table should contain the chunks at the 
beginning with a maximum C corresponding to a minimum Tc. 

However, analysis of the data recovered from a simulation 
cluster shows cases where highly requested chunks have 
relatively high response times. 

Our goal is to be able to move the most requested chunks to 
the Nodes that give the best reading times (Pn). 

Through metadata we can calculate the mean performance 
of each node through the formula (2): 

Pn = ∑ TciCi
k
i=1
∑ Cik
i=1

              (2) 

Pn: Mean performance of the node n 

k : Number of chunks in the node n 

𝐶𝑖: Number of consultations of Chunk i placed in the node 
n. 

𝑇𝑐𝑖 : Mean read time of the Chunk i placed in the node n. 

Moving a chunk to a location with better reading times 
does not necessarily mean that response times on this chunk 
will improve, as the mean response times also depend on the 
nature of the request (location of reading requests, processing 
on the data...), but Tc's evaluation algorithm will continue to 
collect response times for the moved chunks on its new 
location and will allow to reassess the need or not to move it to 
a better location. 

After one to several iterations of chunks moves, the 
improvement on the mean consultation time will eventually be 
observable or at least stagnate in its minimum value, meaning 
that the chunks are on the best location in terms of response 
time. 

The number of chunks moves must be limited so as not to 
saturate the network more than necessary. 

Movements of Data should be made at a time when data 
access is low or absent, so that the bandwidth will not be over 
occupied by this operation. 

B. Algorithms 
Optimizer 

The Optimizer function (Fig. 4) scans the table of statistics 
of chunks consultation starting from the greatest number of 
consultations, which corresponds to the most requested chunks. 
This chunk should be placed in the best Node in terms of 
response time. In the best case the chunks with highest C will 
have to be moved to the Node whose have lowest Pn. The 
algorithm will try to retrieve an available Node with the best 
Pn. 

Function Optimizer(Table chunks_Table) 
{ 
--Table ordered by decreasing number of consultations –  
 
Chunks_OrdredDescByC = OrderDescByC(chunks_Table); 

Foreach (chunk in Chunks_OrdredDescByC) 
{ 

DestinationNode= 
GetBestNodeForchunks(Chunk chunk);  
 
MoveChunkToNode(chunk, 
DestinationNode)  

 
} 

} 
 

GetBestNodeForchunks 

The GetBestNodeForchunks (Fig. 5) function allows 
retrieving the Node which offers the best average consultation 
time (Pn) which suggests it is a better location for a given 
chunk. 
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Fig. 4. Replacement Algorithm. 

To do this, we calculate Pn for each node in the table and 
we go through the table of means of consultation time of the 
chunks, ordered up wards according to Pn, we check for each 
node its eligibility to receive the chunk passed in parameter. 

Eligibility is based on four criteria: 

1) The node is different from the one where the chunk is 
already placed. 

2) The availability of space on the node. 
3) The Node does not already contain a chunk replica. 
4) The Node is not in the same rack as two other replicas. 

Those criteria comply with Hadoop's basic policy, i.e., no 
more than two replicas in the same rack. 

Function Node GetBestNodeForchunks(Chunk chunk)  
{ 
 
--Table ordered by decreasing number of consultations –  
 
Chunks_OrdredAscByPn = OrderDescByC(chunks_Table); 
Foreach (betterPnChunk in Chunks_OrdredAscByPn) 

{ 
   If (betterPnChunk.Pn< chunk.Tc 
    { 
        Node node = getChunkNode(betterPnChunk);   

                      If (Eligible(node,chunk)  
  {Return node;} 
} 

   } 
Return Null; 

} 
 

 
Fig. 5. Best Node Algorithm Selection. 

IV. TESTING PROTOCOL 
To make the performance measurements, we conducted 

simulations on a test grid consisting of 12 nodes. 

The testing environment of the response time improvement 
algorithm consists of three racks (Fig. 6), each composed of 
four nodes of identical storage capacity and equal to three 
times the size of one chunk size (3x64MO). 

Choosing this size allows us to limit the storage capacity of 
a node to a maximum of three chunks, in this way we will 
quickly saturate the nodes and the algorithm's ability to take 
this into consideration will be tested. 

The performance characteristics of the nodes are 
heterogeneous; each of the three racks consists of the nodes of 
Table II. 
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TABLE II. GRID’S NODES CONFIGURATION 

Node 
ID 

RAM 
(GO) 

Processor 
(Cores * speed) Storage capacity 

1 2 1 * 2GHz 192 MO 

2 4 1 * 2GHz 192 MO 

3 6 2 * 2GHz 192 MO 

4 8 4 * 2GHz 192 MO 

 
Fig. 6. Test Grid Architecture. 

The bandwidth inside the same rack is 1 GB/s. 

The direct bandwidth between the racks is set up according 
to the matrix in Table III (in MO/s). 

TABLE III. GRID’S BANDWIDTH CONFIGURATION 

 Rack 1 Rack 2 Rack 3 

Rack 1 1000 100 10 

Rack 2 100 1000 10 

Rack 3 10 10 1000 

The version of Hadoop used in the simulation is 2.5.0. 

The simulations were conducted using 12 files with a unit 
size of 64MB. 

The Size block configured on Hadoop is 64MO and the 
replication factor is 3. 

Our TestJob consists of performing a variable number of 
jobs (map tasks) from the 12 nodes of the Grid on each of the 
12 files distributed evenly on the Grid. 

Each job is calling only one file, son the consultation rate C 
is equal to the number of executed jobs. 

Testing protocol: 

We followed a test protocol as shown in Fig.7: 

 
Fig. 7. Testing Protocol. 

The phases were repeated over several iterations and after 
each iteration, we calculated the overall performance P of the 
cluster. 

V. RESULTS AND EVALUATION 
The main objective of running the test simulation is to 

calculate P before and after using the proposed algorithm. 
Thus, we can observe the evolution of P and assess the 
relevance of our approach. 

The results collected on the first iteration of jobs are 
represented in the Table IV: 

TABLE IV. INITIAL CHUNKS STATISTICS TABLE 

Chunk Id Id Node C Tc (ms) 

0 0 12 20000,33 

1 1 11 21626,64 

2 2 10 23117,40 

3 3 9 20143,00 

4 4 8 16487,00 

5 5 7 9967,00 

6 6 8 26891,00 

7 7 9 19819,44 

8 8 10 31952,60 

9 9 11 38492,09 

10 10 12 35360,33 

11 11 9 35135,00 
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C is the number of executed Jobs witch is equal to the 
consultation rate because each job is calling only one file. 

The file is corresponding to only one chunk because of the 
chosen size of file and chunk configuration. 

Tc is the mean job time of each file (MJT) 

The overall performance of the Simulation Grid is then: 

P1 = 25594.86 ms 

The Tc calculated at this step is reflecting the default 
situation using the initial Hadoop placement strategy. 

Running the relocation algorithm gives the locations 
suggestions in Table V: 

TABLE V. CHUNK’S RELOCATION SUGGESTIONS TABLE 

Id chunks Id Node Suggested Destination Node Id 

0 0 5 

10 10 5 

1 1 4 

9 9 4 

2 2 7 

8 8 7 

3 3 None 

7 7 None 

11 11 0 

4 4 None 

6 6 3 

5 5 None 

The Algorithm proposes to relocate eight files to a new 
location. 

Four files were not relocated because no improvement in 
the executions times is supposed to happen with any of 
available locations. 

TABLE VI. CHUNKS STATISTICS TABLE AFTER FIRST RELOCATION 

Id Chunks Id Node C Tc (ms) 

0 5 12 20000,33 

1 4 11 21207,73 

2 7 10 23117,40 

3 3 9 20143,00 

4 4 8 16487,00 

5 5 7 9967,00 

6 3 8 29259,00 

7 7 9 19819,44 

8 7 10 22736,60 

9 4 11 17127,73 

10 5 12 20000,33 

11 0 9 19876,33 

After moving the chunks to the suggested nodes and 
running the same set of jobs, the collection of response times 
gives the Table VI where Tc was recalculated: 

The overall new performance of the grid is: 

P2 =20125.21 ms 

This value represents an improvement of 21.3% compared 
to P1. 

Fig. 8 shows the evolution of the mean response time up to 
the third iteration. 

 
Fig. 8. Overall Performance Evolution. 

After the first iteration P stabilizes. Changing the locations 
of the chunks according to the algorithm's proposals hardly 
affects the overall performance of the Grid. 

We can conclude that the chunks are in an optimal node 
from the first iteration of replacement of chunks. 

The overall performance improvement of the Cluster is nearly 
20%. This improvement has been achieved after a single chunk 
replacement operation. 

VI. CONCLUSION 
The HADOOP system is a powerful and flexible big data 

system. Through its architecture it makes it possible to carry 
out complex operations on mass data distributed on grids 
which can range to thousands of machines whose 
characteristics can be very different. 

Data striping and replication are among its strong features, 
thanks to them it manages to maintain the integrity of the 
system. But its basic chunk location strategy does not take 
advantage of all the capacity that the characteristics of the grid 
can offer. 

In this research we conducted a deep analysis of how 
HDFS works to propose an improvement in the replica location 
strategy, and we demonstrated through our simulation that a 
substantial gain of more than 20% on the overall performance 
of the cluster is possible, while respecting the basic rules of 
HDFS initial chunk placement strategy. 

In our future works we plan to integrate a module 
determining the best locations for data from the first writing, 
based on an artificial intelligence model capable of predicting 
the response time of a node for a given chunks. This will 
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reduce data movements in the clusters and avoid unwanted 
bandwidth usage. 
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