
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

Secured SECS/GEM: A Security Mechanism for
M2M Communication in Industry 4.0 Ecosystem

Ashish Jaisan, Selvakumar Manickam*, Shams A. Laghari, Shafiq Ul Rehman, Shankar Karuppayah
National Advanced IPv6 Centre (NAv6)

Universiti Sains Malaysia (USM)
Pulau Pinang, Malaysia

Abstract—The manufacturing industry has been
revolutionized by Industry 4.0, vastly improving the
manufacturing process, increasing production quality and
capacity. Machine-to-Machine (M2M) communication protocols
were developed to strengthen and bind this ecosystem by
allowing machines to communicate with each other. The
SECS/GEM protocol is at the heart of the manufacturing
industry, thriving as a communication protocol and control
system for years. It is a manufacturing equipment protocol used
for equipment-host data communications. However, it is not
without drawbacks, despite being a widely adopted
communication protocol used by leading industries. SECS/GEM
does not offer any type of security features as it was designed to
work in a closed network. Such shortcomings in the protocol will
allow attackers to steal secrets such as manufacturing processes
by looking at recipes, perform reconnaissance prior to sabotage
attempts, and can have severe implications on the entire
industry. This paper proposes a mechanism to secure
SECS/GEM data messages with AES-GCM encryption and
evaluate the performance with the standard SECS/GEM
protocol. The results from our evaluations showed that the
proposed mechanism achieves data confidentiality and
authenticity with a negligible overhead of 0.8 milliseconds and
0.37 milliseconds when sending and receiving a message,
respectively, compared to the standard protocol.

Keywords—SECS/GEM; HSMS; cybersecurity; industry-4.0;
machine-to-machine communication; AES-GCM

I. INTRODUCTION
Industry 4.0 is bringing forth significant changes to the

manufacturing industry. Industry 4.0 aims to take the
manufacturing industry to the next level of technological
advancement for an interconnected manufacturing ecosystem
where machines communicate through the network to
exchange messages, instructions, and data. With sophisticated
machinery and automation, more integrated machine-to-
machine communication, real-time monitoring and data
collection, machine learning, and enhanced inter-connectivity,
Industry 4.0 is changing the existing manufacturing process for
the better and improving overall production [1]. As machines
are interconnected, they generate activity analysis, predictive
diagnostic data, performance statistics, and other monitoring
and control information. Thus, real-time decisions can be made
quickly with advantages such as time and cost-saving. In many
circumstances, human interaction will be removed from the
factory environment. With predefined and maintained settings
and parameters, the factory equipment can make crucial

decisions by itself, ensuring maximum cost-effectiveness for
the industry.

Industry 4.0 deals with large volumes of data. Therefore,
data security is a major concern when trying to achieve the true
potential of Industry 4.0. It is essential to implement end-to-
end encryption to fix vulnerabilities against various attacks [2].
With Industry 4.0's increased data density and the convergence
of information and operational technologies, new issues
emerge, particularly in the field of cybersecurity [3]. Cybers-
attacks are the most critical problem that all countries are
concerned about. It is a method of safeguarding digitally stored
corporate data and valuable information about a system or
subject from misuse, unauthorized access, and theft.
Cyberattacks have become more common as network
connections have grown, owing to a growing tendency to
exploit data for various reasons, including financial gain and
strategic reasons [4]. It is especially true in the case of
cyberattacks against the manufacturing industry.

Although the manufacturing industry has been gradually
updating and improving its IT security over the years, it can be
seen in the Verizon Data Breach Investigation Report 2019,
detailing 352 cyberattack incidents, out of which 87 were
against the manufacturing industry. Recent attacks and security
breaches against the manufacturing industry are alarming,
making it a highly targeted and vulnerable entity for attackers
[5]. A survey by the Engineering Employers' Federation (EEF)
shows that 60% of manufacturers were victims of cyberattacks
at some point in time, and one-third of the affected
manufacturers have suffered financial losses and market loss.
A 2021 study by Cybersecurity Ventures predicts that
corporations worldwide will suffer losses up to $10.5 trillion
yearly by 2025 resulting from cyber-attacks, estimated in 2015
to be $3 trillion [6]. The cyberattack on Taiwan Semiconductor
Manufacturing Company (TSMC) was in Taiwan's history, the
worst data security infringement to befall them. It completely
exposed data security vulnerabilities at TSMC's production
foundries. These cyber-attack incidents are happening as the
manufacturing industry embraces the shift to Industry 4.0, with
more and more machines becoming connected for
communications and automation [7].

The SECS/GEM protocol is at the heart of the
semiconductor industry in companies such as Intel, Samsung,
TSMC, IBM, Qualcomm, and many more [8]. It has been
profoundly used as a Machine-to-Machine (M2M)
communication protocol and control system for decades. The
SECS/GEM protocol is a specially designed semiconductor

*Corresponding Author

241 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

manufacturing equipment protocol used for equipment-host
data communications.

A study by A. Laghari et al. [8] reveals that although
SECS/GEM has been widely adopted and is critical to the
semiconductor manufacturing industry, it is not without
drawbacks. It does not offer any type of security features. It
uses binary encoded messages to communicate between
machines, making it open for anyone on the network to read
the data; thus, data confidentiality is lost. Attackers on the
network can modify data inside the messages as there are no
authenticity checks. SECS/GEM protocol standards were
designed in an era where machines were not required to be
connected to the network [9]. The machines were initially
expected to be working behind an air-gapped network and
therefore did not require security features like network and data
security. Thus, the focus was only needed on physical security.
With Industry 4.0, the machines are required to be connected to
the network for accessing data, analysis, and much more.
These requirements open up air-gapped networks, and hence,
the attack surface is enlarged in the process. Thus,
cybersecurity in the manufacturing ecosystem is of the most
importance. Data confidentiality, authenticity, and availability
in machinery connected to the industrial network are all
considered in the context of cybersecurity [10]. SECS/GEM is
susceptible to these issues since it does not provide any kind of
security features.

As SECS/GEM is a widespread M2M communication
protocol used all around the world, we cannot simply introduce
a new protocol. This paper proposes a security mechanism for
the SECS/GEM protocol to attain data confidentiality and
authenticity in SECS/GEM communications. We propose to
encrypt the data payload of SECS/GEM messages to protect
the data from attackers. In addition, we propose to use a hash-
based tag to verify message data authenticity to ensure data has
not been modified or corrupted by attackers.

To our knowledge, no prior research has been done on the
security aspects of the SECS/GEM protocol. Hence, this is a
novel field of study and has no known related works for
comparison.

The rest of the paper is structured as follows. In Section II,
the SECS/GEM protocol standards are described briefly.
Section III discusses the security issues found in SECS/GEM
protocol standards. In Section IV, we present the proposed
mechanism in detail. Section V presents the implementation
and testbed details. In Section VI, we present our evaluation
and results for the proposed mechanism. Section VII concludes
this work and discusses future work.

II. SECS / GEM PROTOCOL STANDARDS
SEMI (formerly Semiconductor Equipment and Materials

International) has released five major protocols over the years.
With the first release in the year 1978 and the latest revision
being released in 2020. Though the SECS/GEM
communication protocols were published two decades ago,
they are regularly maintained and published. This section is an
overview of the major SECS/GEM protocol releases. Table I
gives a brief description of SECS/GEM standards.

TABLE I. SECS / GEM PROTOCOL STANDARDS

Year SEMI
Standard Description

1978 E4
SECS-I

SEMI Equipment Communications Standard-I
protocol allows various equipment and a host to
communicate over an RS-232 connection.

1982 E5
SECS-II

SEMI Equipment Communications Standard-II
facilitates data exchange between equipment and host as
a specific stream and function message in a predefined
format.

1992 E30
GEM

Generic Equipment Model aids in specifying usage of
any particular SECS-II message as well as the
monitoring of equipment behavior when communicating
with the host

1994
E37.1
HSMS-
SS

High-Speed SECS Message Service – Single Session
is a TCP/IP-based communication protocol that manages
a single machine-to-machine communication link
between equipment and a host.

1994
E37.2
HSMS-
GS

High-Speed SECS Message Service – Global Session
is an extension to E37.1 with handling multiple sessions
and maintaining the state of the equipment as an
additional feature.

A. SEMI Equipment Communications Standard-I
The SEMI Equipment Communications Standard-I (SECS-

I), also referred to as SEMI E4 standard, is the oldest
SECS/GEM standard. The exchange of communication
messages between manufacturing equipment and a host
computer is described in this standard. The equipment and host
are not required to be familiar with one another to exchange
messages [11] [12]. The SECS-I standard uses the RS-232-c
standard for communication. Over RS-232, the SECS-I has a
sluggish data transfer rate and does not offer support local area
networks based on TCP/IP. The messages and data are
exchanged asynchronously. The connection is bidirectional but
limited to work in half-duplex mode. The rate of
communication is generally between 9,600 baud and 19,200
baud. The protocol uses 256-byte blocks for multiblock data
transfers. However, longer distances are not suitable for RS-
232 transmission, and it has a low noise immunity. SECS-I is
only used in old legacy production machinery and is not used
in any newer machinery.

B. SEMI Equipment Communications Standard-II
The SEMI Equipment Communications Standard-II

(SECS-II), also referred to as SEMI E5 standard, is a
communication protocol that defines a generic messaging layer
to send or receive any given data structure supported by the
standard. Additionally, it specifies a collection of standard
messages, each with its purpose, structure, and identity. It
decodes the message type, message structure, data types, and
message contents sent between the manufacturing equipment
and the host. The message types are specified for various
categories that cover a wide range of functions, generic as well
as for specific purposes. The messages are divided into streams
based on the particular category the message falls into (e.g.,
equipment status is dealt by Stream-1, whereas recipe

242 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

management specifications are handled by Stream-7, etc.), with
functions being individual messages within each stream [13].

The streams and functions are represented by numbers of
size 1 byte. Since only one byte is used, the numbers start from
0 and can go up to 255. The combination of stream and
function numbers can be represented as SnFm, wherein n
represents stream number and m represents function number
designated for data exchange. The request messages are
represented by odd-numbered function codes, whereas
response messages are represented with even-numbered
function numbers. For example, a request message of Stream 1
and Function 13 (S1F13) is an "Establish Communication
Request" message for a host/equipment. Upon receiving an
S1F13 message, the equipment/host would send a stream-1 and
function-14 (S1F14) message as a reply. A request message
and its corresponding response message are called a transaction
(i.e., S1F13/S1F14). A unique ID is assigned to each
transaction. The sender specifies the SystemBytes, a field in
the message header of size 4 bytes. The SystemBytes is used to
link a request message with the respective response message.

The SECS-II standard provides data types for encoding
data in a compact, bandwidth-efficient format. Integers, both
unsigned and signed, can be stored in 1-byte, 2-byte, 4-byte,
and 8-byte sized fields. Floating-point values can be stored in
fields of size 4 and 8 bytes. On/off, values are represented
using the 01-byte Boolean data type. Strings are described
using the ASCII data type, while file data such as images and
statistical plots are stored using the binary datatype. The List
data item type can contain nested lists as well as a sequence of
other primitive data items. The total number of items in a list is
obtained from the length bits of the List data item. The
maximum size for a data element within a SECS-II message is
16,777,215 bytes (approximately 16.5MB) long, according to
the E5 standard. A message could contain only one single data
element (for example, binary data or encoded text), or a large,
sophisticated data structure (for example, lists stored within
another list), or even no data at all.

C. Generic Equipment Model
The Generic Equipment Model (GEM), also referred to as

SEMI E30 standard, defines a set of minimum requirements for
describing factory equipment using a generic model, as well as
optional features, use cases, and scenarios. A subset of SECS-
II messages is used in the GEM model [14]. The GEM
interface includes basic requirements as well as additional
equipment capabilities. The GEM standard defines the generic
model for equipment so that whatever the scale or
sophistication of the production equipment, a generic interface
(GEM) can be implemented for it. Some basic equipment, for
example, does not require recipe management because it does
not have any recipes for processing. For complex equipment,
having many recipes to pick from, the requirement is that it
must push/pull recipes to and from the host machine. GEM is
also scalable in terms of data size. Simple devices with limited
capabilities, for example, may publish a dozen different
collection events. On the other hand, complex factory
equipment may generate large amounts of events and data and

publish many collection events in a short period. Yet, both can
use the same GEM interface.

D. High-Speed SECS Message Service
High-Speed SECS Message Service (HSMS), also referred

to as SEMI E37 standard, is a SEMI standard that defines the
transport protocol for SECS/GEM message communications
[15] [16]. HSMS is based on TCP/IP. It is, in fact, a derivation
of TCP/IP with minor modifications and employs nearly the
same techniques for creating connections as specified in RFC
793 [17]. One such change is that RFC 793 specifies to allow
the communicating parties to connect to each other
simultaneously. The HSMS protocol, on the other hand,
restricts the connection-establishment procedure and defines
two separate modes to establish connections, the passive and
active modes. Devices running active mode can only initiate a
request to establish a connection. The devices in passive mode
can only accept connection establishment requests from other
devices in active mode. HSMS carries SECS-II messages in
binary encoding format to monitor status, control processes,
report on events, and perform numerous other machinery
operations after a communication link between equipment and
host has been established. Between the communicating entities,
the established connection is maintained for as long as required.
Messages are exchanged between equipment and host until
either device disconnects for some reason, such as
hardware/software upgrades, machine additions or removals, or
maintenance. The messages are sent as a data stream with a
fixed header structure. The header fields are described in Table
II. The first 4 bytes determine the encoded SECS-II message's
total length, including the size of the header (10 bytes). The
smallest HSMS message is 10 bytes (i.e., just the header size),
while the largest conceivable size of the message is 4 GB. The
structure of a HSMS message is depicted in Fig. 1.

TABLE II. HSMS HEADER FIELDS

Header
Field Size Description

Session
ID

2
bytes

It is used to associate reference between control
messages and subsequent data messages

Stream 1
byte Represents the Stream number of the message

Function 1
byte Represents the Function number of the message

PType 1
byte

It is an enumerated type to define encoding used.
HSMS defines PType with value zero to mean SECS-II
message encoding. Non-zero PType values are reserved
for subsidiary standards' future use.

SType 1
byte

It is an enumerated type to identify if the message is a
control message (non-zero) or a data message (zero)

System
Bytes

4
bytes

It is used to associate primary messages with the
respective secondary message (reply)

243 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

Fig. 1. Standard HSMS Message Structure.

The SECS/GEM interface allows factory hosts to monitor
equipment actions and provides total equipment control.
Everything happening on the machinery can be monitored, and
enhanced logic can be put on the equipment to make better
decisions. Various applications can be implemented using
SECS/GEM to monitor and analyze statistical data,
troubleshoot, predict possible maintenance requirements,
control processes for feedback/feedforward, check usage, track
materials, validate recipes, etc. These systems also eliminate
the requirement for an operator-to-equipment interaction,
resulting in fewer operators needed in the production
environment. Factories can reduce material scrap and waste by
using effective recipe management. For example, storing
golden recipes in a centralized location via the SECS/GEM
interface makes sure that the right recipes and materials are
used.

III. SECURITY ISSUES
The SECS/GEM protocols in its original standard do not

specify any encryption for its message data and all messages
between equipment and host are unencrypted binary encoded
data. This shortcoming introduces opportunities for attackers to
exploit and disrupt the health of the production environment.
Attackers can launch attacks, disrupt communications, steal
intellectual property belonging to the company, and more.

Fig. 2. Attacker on the network Eavesdropping Communications.

In this paper, we focus on data confidentiality and
authenticity issues in SECS/GEM protocols. Due to data being
transferred in binary encoded format, attackers can eavesdrop
on equipment-host communication and lead to loss of data
confidentiality. Fig. 2 shows how an attacker may position
themselves on the network to eavesdrop on communication
messages passively. Attackers can learn machine parameters
and settings, product design information from communication
messages. Intellectual property such as product designs,
parameters, and settings for the manufacturing process can be
stolen by attackers for monetary gain. Such an attack can be a
life-or-death situation for companies as the industry is always
competitive, and loss of IP can cost a company their leadership
in the industry.

A study by A. Corallo et al. [10] shows that if a product's
design information is no longer confidential, it could
negatively affect the company's competitive advantage. The
loss of unique knowledge about the items and their
manufacturing methods may work in competitors' favor. Data
confidentiality of machine settings and parameters or
machinery status, if lost, could lead to a decline of the
company's reputation. This information provides insight into
the production ecosystem's health. Therefore, if sensitive
information such as machine malfunctions are revealed, the
company's reliability would be questioned and could lead to
investors leaving and losing customers. The loss of
confidentiality of product properties, like quality indicators,
would negatively affect the company's leadership and change
in favor of its competitors. In fact, in the event of a product
fault, competitors may exploit the situation by using ad hoc
styled marketing strategies to win a larger market share.

Attackers can also launch tailored attacks such as Man-In-
The-Middle (MITM) attacks to disrupt production and cause
financial losses as part of sabotage operations. Such attacks can
range from disrupting communications, injecting false data,
causing machine failures, etc. It is easy for attackers to launch
such attacks as current SECS/GEM protocol implementations
do not provide data confidentiality or perform authenticity
checks on the data.

To further discuss the seriousness of this issue, consider the
scenario where an attacker launches a passive eavesdropping
attack on the network and listens to communications. Over
time the attacker can gather enough data about the machine
settings and parameters to launch MITM attacks. For example,
attackers may learn parameters that can make machines run
differently, cause malfunctions or create defective products that
fail quality checks. Such knowledge will let attackers launch
attacks that will look normal to the system and intentional

244 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

disruptions of the manufacturing systems. Attacks of this kind
can cause failure rates to be high and make it look like the
machines malfunction or fail even when they are not. This type
of attack is proven to be possible.

The infamous STUXNET virus is a real-life example of the
previously described scenario which targeted the Iranian
nuclear program and caused equipment to malfunction [18],
[19]. The STUXNET virus had the pattern described in the
example scenario. It recorded data from the Supervisory
control and data acquisition (SCADA) systems controlling the
equipment during its incubation period. It then starts actively
attacking the facility by sending malicious parameters to make
the equipment fail. It replayed the previously recorded data
during the attacks to trick the operators from knowing the
actual status of the equipment [20]. It appeared to the operators
as just equipment malfunction. In this case, a slight change in
the rotation speed of certain parts of the equipment caused
them to malfunction and explode. STUXNET is considered to
be an attack on a nation. If a nation is at risk from such attacks,
it only makes it more apparent that a manufacturing company
is even more susceptible to such attacks.

An attack such as STUXNET on the manufacturing
industry may be a targeted attack against a company's
sustainability. An attacker will launch attacks to disrupt
operations until the company is forced to stop operations due to
substantial financial losses. If the attacker cannot see the data
being transmitted through the communication messages, it can
help protect against the attacker’s reconnaissance attempts and
stall following attacks. Unsolicited messages from attackers
with possibly malicious instructions can be blocked if the data
is checked for authenticity.

Hence, data confidentiality and authenticity have a
significant impact on the industry's ecosystem. The
SECS/GEM protocol is at the heart of the semiconductor
industry, and therefore these issues are of serious nature. With
the leap of the manufacturing industry into Industry 4.0,
machines will need to communicate with other machines
through the production network. With the ongoing Corona
Virus Disease 2019 (COVID-19) global pandemic, during the
time of this research, the need for remote access and
communication with production machines has become more
necessary due to work-from-home scenarios [21]. Managers
and operators overlooking factory equipment require remote
access to check equipment status all the time. However,
allowing machines to connect to the network and operations
personnel further increases the attack surface for
cybercriminals to gain access to the production environment.
Therefore SECS/GEM protocol's method of communication
with binary encoded data becomes a major security issue and
must be addressed to thwart attack attempts from
cybercriminals.

All major industries are attempting to bring their factories
up to the Industry 4.0 standards to reap the benefits. Machine-
to-Machine communication is essential to automate the
processes in every industry. For example, machines can
communicate with other machines when they need more
components, a change of recipe, or when an error occurs, the
previous machine on the production line needs to stop sending

more batches to process. Such coordination between factory
equipment can help a lot with automation and with the overall
efficiency of the manufacturing process as Industry 4.0
compatible factories would need lesser human interaction.

IV. PROPOSED MECHANISM
This section describes, in detail, the proposed mechanism

for preserving data confidentiality and authenticity in
SECS/GEM during transmission in production networks. Data
confidentiality is a critical part of the production network since
data may go through several hops. This can be ensured using a
secure encryption mechanism. This is necessary due to the
wide range of devices, services, and networks that
communicate/operate with a lot of data and thus present
sufficient opportunity for data confidentiality violations as well
as modifications due to the ease with which data may be
accessed in SECS/GEM communication [22]. A data transfer
mechanism for secure and efficient SECS/GEM
communication is proposed in response to this requirement.
The proposed mechanism is designed for the HSMS protocol
in the SECS/GEM protocol stack. HSMS was chosen as it is
the latest SECS/GEM protocol and is supplied with the latest
machines.

We propose to use the Advanced Encryption Standard
Galois/Counter Mode (AES-GCM) encryption scheme to
achieve data confidentiality in SECS/GEM communication.
Galois/Counter Mode (GCM) is one of several modes available
for symmetric-key cryptographic block ciphers. It is adopted
widely for its performance and throughput rates. With
inexpensive hardware resources, throughput rates as high as 10
Gbps can be achieved [23]. It is an authenticated encryption
algorithm that provides both data confidentiality and
authenticity. GCM is defined for block ciphers that operate on
a block size of 128 bits, and hence AES-GCM is used.

A. Proposed Mechanism Design
The proposed mechanism is designed to encrypt the data

payload of the HSMS packet and verify its authenticity at the
receiver end. The proposed mechanism's packet structure is
depicted in Fig. 3. The message has 4 bytes of message length
denoting the size of the HSMS message, including the header
and payload length. The header of the message consists of 10
bytes. The header fields are described in Table II.

The header and the length bytes follow the same structure
as in the standard HSMS message. The message payload,
however, has a different structure from a standard HSMS
message data payload. The data message payload of the
proposed mechanism has a structure, as depicted in Fig. 3. It
has fixed sizes for certain data at the beginning and end of the
payload structure. The first 16 bytes of the message payload is
the nonce. Next comes the ciphertext data message of variable
length up to maximum payload size in bytes minus sum of
nonce size and tag size. The last 16 bytes of the message
payload is the message tag.

The nonce is a pseudorandom value of length 16 bytes. It is
generated by the encryption mechanism as an input for internal
use. The nonce is similar to an initialization vector (IV) used in
various encryption schemes. The same nonce is required to
decipher the ciphertext back into plaintext.

245 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

The tag is a hash of length 16 bytes generated by the
encryption mechanism. It is used to verify the message's
authenticity. The tag is computed during the deciphering
process and checked with the sender's tag to verify message
authenticity.

B. Proposed Mechanism Flow
Fig. 4 illustrates the flow of the proposed mechanism.

Three inputs are required for the encryption mechanism to
work, the pre-shared key, a nonce, and the plaintext data. The
pre-shared key is a 256-bit symmetric encryption key (32
bytes). The nonce is a pseudorandom value of size 128 bits (16
bytes). It is used as an IV for the encryption scheme and the
hashing function used to generate the message verification tag.
The plaintext data is the HSMS message's original payload.
The encryption scheme is AES-GCM 256, as the key is 256
bits in length, and a longer key implies increased security
against exhaustive brute force attacks [24].

The algorithm used to encrypt the payload and generate the
tag is shown in Fig. 5. The plaintext data is passed into the
encryption mechanism along with the pre-shared key. A
pseudorandom nonce is generated on the fly and is used as an
initialization vector for the encryption mechanism's internal
counter. The same nonce is required at the receiver end to
decipher the ciphertext and is written to the data payload as it is
safe to share nonce along with the message. The nonce is
written to the first 16 bytes of the message payload. The
encryption scheme then encrypts the data as 128-bit blocks
using the provided key and part of the nonce as an IV for its
internal counter. The ciphertext data is then appended to the
message payload after the nonce. Upon completing the
encryption process, a tag is generated by the encryption
mechanism and written to the last 16 bytes of the message
payload. This tag is essentially a hash generated by the
encryption mechanism. The tag is used to verify the message
authenticity on the receiver's end.

Fig. 3. Proposed HSMS Message Structure with Encrypted Data.

Fig. 4. Proposed Mechanism.

246 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

The algorithm used to decrypt the payload and verify its
authenticity is shown in Fig. 6. On the receiver end, the data
payload of the HSMS message is read as in the packet structure
for the proposed mechanism. The first 16 bytes of the message
payload are read as the nonce. Since the last 16 bytes of the
encrypted payload is the tag generated by AES GCM, 16 bytes
are subtracted from the length of the remaining payload, and
the data is read for that length. Equation (1) can be used to
calculate the size of the ciphertext data within the payload:

Clen = Plen – Nlen + Tlen (1)

Clen is the ciphertext length computed by calculating the
difference between Plen, the payload length, and the sum of Nlen
and Tlen, where Nlen is the size of nonce and Tlen is the size of
the tag. The nonce, ciphertext, and the pre-shared key are
passed in as inputs to the decryption mechanism. The
decryption mechanism takes 128-bit blocks of cyphertext and
decrypts them. After decryption, a tag is generated by the
decryption mechanism. This tag would be the same as the tag
obtained from the encryption mechanism. If the tags match, the
message is accepted; otherwise, the payload's authenticity fails,
and the message is rejected.

Algorithm: Send HSMS message with encrypted data

1 Start

2 If the message length is 10, then
Go to step 7

3 nonce = generate random value.

4 ciphertext = encrypt the payload with preshared-key, nonce and
get ciphertext output

5 tag = Get message authentication tag from AES-GCM output

6 Replace message payload with nonce + ciphertext + tag

7 Send message

9 End

Fig. 5. Algorithm to Encrypt Payload and Generate Tag.

Algorithm: Receive HSMS message with encrypted data

1 Start

2 If the message length is 10, then
Go to step 9

3 nonce = read first 16 bytes of payload

4 ciphertext = read payload size – 32 bytes of data

5 plaintext = decrypt ciphertext with preshared-key, nonce and get
plaintext output

6 tag = Get message authentication tag from AES-GCM output

7 sender-tag = read last 16 bytes of payload

8 If sender-tag is the same as tag, then
Replace message payload with plaintext

Else
Drop the message and go to step 10

9 Accept and process the message

10 End

Fig. 6. Algorithm to Decrypt the Payload and Verify the Authenticity.

The proposed secure version of the HSMS protocol runs on
a different port from the standard HSMS protocol. For example,
if the standard version runs on port 5000, the proposed version

can run on port 5001. The secure version is thus
distinguishable from standard communication protocol. A
different port is required because the standard protocol would
not be expecting an encrypted payload and may run into errors
when trying to parse the payload. The proposed mechanism
acts as an overlay protocol. It handles data confidentiality and
authenticity on both ends and then forwards the message to the
next layer, where the message is processed.

V. IMPLEMENTATION AND TESTBED SETUP

A. Implementation
We used secsgem from [25], a python implementation of

SECS/GEM protocols, as the base for our implementation. The
implementation is free and available online on GitHub. For
implementing AES-GCM encryption over secsgem, we used
the Python Pycryptodome library from [26]. Pycryptodome is a
library of implementation for cryptographic algorithms.

B. Experimental Testbed Setup
Our testbed consists of two machines running SECS/GEM

simulator with Machine-I acting as the host and Machine-II as
the equipment. Both machines have the configuration as stated
in Table III.

TABLE III. EXPERIMENTAL TESTBED MACHINE CONFIGURATION

 Specification
Processor Intel Core i3-9100F @ 4.2Ghz
Memory (RAM) 2 GB
Operating System Ubuntu 18.04 LTS

Network 100Mbps ethernet

Machine-I (host) was set up to be the active device
initiating connections to machine-II. Machine-II (equipment)
was set up to be a passive device listening for connections from
Machine-I.

VI. PERFORMANCE EVALUATION AND RESULTS
For the evaluation of the proposed mechanism, the host

machine was configured to connect to the equipment machine
and send over 1000 SECS/GEM messages at regular intervals.
The SECS/GEM implementation was configured to compute
the time taken for processing while sending and receiving
messages and store it in a log file. The experiments were
conducted for both the standard HSMS protocol and the
proposed mechanism. The processing times were then obtained
from the log files for each experiment. The processing time
obtained from the log files was labeled as described in Table
IV.

TABLE IV. PROCESSING TIME: LABEL DESCRIPTION

Label Description

Host-S the processing time taken by the host to process the initial
message to be sent (to equipment).

Equip-R the processing time taken by the equipment to process the
message received (from the host).

Equip-S the processing time taken for the equipment to process the reply
to be sent (to the host).

Host-R the processing time taken by the host to process the reply
received (from equipment).

247 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

C. Processing Time
The evaluation of the performance of the standard HSMS

protocol and the proposed mechanism experiments and
obtained the following results.

The standard HSMS protocol experiment's results are
plotted in Fig. 7. It can be observed that the host takes the
longest time to send a message (Host-S), followed by the reply
being sent from the Equipment (Equip-S). This variation is due
to the differences in the size of the data payload. Host-S is the
initial message, and Equip-S is the reply, essentially two
different messages. The time taken for the host to process the
response from the equipment (Host-R) takes the least amount
of time, whereas processing time for the equipment to receive
data (Equip-R) is slightly higher. This shows that the pattern in
Host-S and Equip-S is the same in Equip-R and Host-R due to
varying payload sizes of the initial message and reply message.

The processing times taken for the proposed mechanism are
plotted in Fig. 8. The graph shows that the processing time for
the host to send data (Host-S) was the longest. Following Host-
S, the second-longest was the time processing time taken for
the equipment to send a reply (Equip-S). The time taken for the
equipment to process the message from the host (Equip-R) and
the time taken for the host to process the reply from the
equipment (Host-R) were similar. However, the processing
time Equip-S was below the processing time Host-R for the
most part. The pattern in the standard HSMS experiments is
also seen in this experiment, meaning very well that the
different sizes in the initial messages and the replies influence
the processing time.

Fig. 7. HSMS with Data Encryption.

Fig. 8. Standard HSMS Experiment.

We computed the minimum, maximum, mean, and
standard deviation in processing time for both the standard
protocol and the proposed mechanism from the data we
obtained in our experiments. Table V shows the mentioned
metrics for the processing times of the standard protocol. It is
seen that the mean processing time for Host-S and Equip-S is
between half millisecond and one millisecond and Equip-R,
and Host-R is below 1 microsecond.

TABLE V. PROCESSING TIME (MILLISECONDS): STANDARD HSMS

 Host-S Equip-R Equip-S Host-R

Min 0.8607 0.0243 0.5054 0.0217

Max 0.9217 0.0248 0.5400 0.0234

Mean 0.8941 0.0245 0.5260 0.0224

SD 0.0218 0.0002 0.0112 0.0006

Table VI shows the metrics calculated for the processing
time taken by the proposed mechanism. The results show that
the mean processing time for Host-S and Equip-S is between
1.6 milliseconds and 1.4 milliseconds, and approximately 0.4
milliseconds for Equip-R and Host-R.

TABLE VI. PROCESSING TIME (MILLISECONDS): PROPOSED MECHANISM

 Host-S Equip-R Equip-S Host-R

Min 1.464 0.390 1.404 0.394

Max 1.625 0.402 1.525 0.418

Mean 1.555 0.397 1.468 0.404

SD 0.051 0.004 0.043 0.008

Table VII shows the difference in processing times between
the standard HSMS protocol and the proposed mechanism. The
differences show that Host-S and Equip-S are between a half
millisecond to one millisecond. Equip-R and Host-R are below
a half millisecond. Analysis shows that encrypted SECS/GEM
messages have a slight overhead. The time required for
processing each message (sending and receiving) is increased
by an average of 0.8 milliseconds due to encryption and
decryption of data bytes in the HSMS message. The Encrypted
HSMS message also has 32-Bytes of overhead. The nonce and
tag are attached to the data bytes for the receiver to decrypt the
ciphertext data. Thus, the maximum payload size is slightly
reduced by 32 bytes as the proposed mechanism uses 32 bytes
for the nonce and tag.

TABLE VII. PROCESSING TIME (MILLISECONDS): DIFFERENCE

 Host-S Equip-R Equip-S Host-R

Min 0.603 0.365 0.899 0.372

Max 0.703 0.378 0.985 0.395

Mean 0.661 0.372 0.942 0.382

However, no encryption is performed for control messages
such as "Link-Test Messages" as these messages do not contain
any data bytes. The proposed mechanism checks for the length
of data bytes and only performs encryption and decryption if
the size of data bytes is greater than zero.

248 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

D. Control Overhead
Table VIII shows the control overhead for the proposed

mechanism for messages with various payload sizes. For
control messages without data, there is no added overhead. For
a message of size 1 KB, we see an overhead of a 3% increase
in payload size over the standard protocol. This is as a result of
the nonce and tag being added to the payload. However, with
bigger messages such as 1 MB and 10MB, we see the overhead
is reduced drastically to a point where it is negligible as the
size of the nonce and tag have fixed size for all messages.

TABLE VIII. CONTROL OVERHEAD

Message
Size
(bytes)

Control
data
 (bytes)

Total Control
Overhead

Control msg
(header-only) 10 - 10 0.00%
Data msg (1KB) 1024 32 1056 3.03%
Data msg
(1MB) 1048576 32 1048608 0.0031%
Data msg
(10MB) 10485760 32 10485792 0.0003%

The processing time overhead observed is also negligible,
considering that data confidentiality and authenticity are
achieved in SECS/GEM communication. Furthermore, AES-
GCM is a block cipher algorithm widely adopted for its
performance. The experiments were conducted were on a
general-purpose computer where the encryption was software-
based. In a real industry scenario, this would be done on a
dedicated yet inexpensive hardware-based encryption module,
leading to even better performance of up to 10Gbps speeds of
encryption.

E. Security Analysis of Brute-Force Attack
The proposed mechanism encrypts the plaintext data into

ciphertext, making it meaningless to anyone monitoring the
ciphertext data. Thus, passive attacks such as eavesdropping
and reconnaissance are rendered useless as attackers will not be
able to get the plaintext data. For an attacker to obtain plaintext
data, the secret key is required for decryption. Without the key,
the attackers can only try to make an exhaustive brute force
attack to guess the key. The proposed mechanism uses a 256-
bit pseudorandom key, and thus it would require the attacker to
try at least half of the keys on average to find the correct one.
Therefore, on average, the attacker will need to try 2255
different keys.

The latest processor with special instructions for AES
operations uses about 0.16 cycles to process 1 byte of plaintext
[27]. Table IX shows the time taken in years to crack the
encryption with an exhaustive brute force attack. Equation (2)
was used to compute the time required (in years) to break AES-
GCM for various computers [28]. The results are shown in
Table IX. T is the time complexity to break AES-GCM.
Kpossibilities is the average number of keys the attacker has to try
before finding the correct key. For the proposed mechanism, it
is 2255 possibilities, as discussed previously. Csec is the number
of cycles or operations the CPU can perform in a second. Cbyte
is the number of cycles required to process one byte of
plaintext, while Bsize is the size of one block of plaintext in
bytes. Bsize, in this case, is 128 bits (16 bytes) as AES-GCM

operates on 128-bit blocks. Ysec is the total number of seconds
in a year (60 × 60 × 24 × 365.25 = 31,557,600 seconds).

T = 𝐾𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑖𝑡𝑖𝑒𝑠

�𝐶𝑠𝑒𝑐 𝐶𝑏𝑦𝑡𝑒×𝐵𝑠𝑖𝑧𝑒� �×𝑌𝑠𝑒𝑐
 (2)

TABLE IX. YEARS REQUIRED TO BREAK AES-GCM WITH 256-BIT KEY

Computer Speed Time required in years

Intel Core i7-
10870H

280
Gflop/s 1.677362236307178100432348431475e+58

Fugaku
(Japanese
supercomputer)

442
Pflop/s 1.0625824121402938192784107710701e+52

All computers in
the world

200
Gflop/s ×
2 billion

2.2932686824512200591848513711572e+55

For our security analysis of the proposed mechanism, we
calculated the time complexity of cracking AES-256-GCM on
the latest Intel Core i7 processor and Fugaku, the world’s most
powerful supercomputer at the time of this research [29] and
all the computers in the world combined. The total number of
computers in the world is around 2 billion [30]. The results
presented in Table IX show the number of years required to
successfully brute force the key is in multiples of trillions of
trillions of years. Thus, an attacker cannot decipher the
ciphertext with the technology available as of now. It remains
safe to assume that the proposed mechanism would not be
broken anytime soon.

Using AES-GCM, the proposed mechanism attains data
confidentiality. It can prevent passive attacks such as
eavesdropping and reconnaissance by attackers. The data is
encrypted, and thus, attackers are unable to read the data. As
the data authenticity is checked, the proposed mechanism
protects against MITM attacks where attackers try injecting
false data or modify the data. An attacker cannot modify the
data as it is encrypted. Even if the attacker has altered parts of
the encrypted data in the message payload, the authenticity of
the data will fail as every message has a tag to verify message
authenticity. Thus, the message's authenticity is verified.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a mechanism for SECS/GEM's

HSMS Protocol to attain data confidentiality and check data
authenticity in its data communication messages by encrypting
the data payload using the AES-GCM encryption scheme. We
also evaluated the performance of the proposed mechanism
with the standard protocol. The results indicate that AES-GCM
encryption of HSMS data messages has a slight overhead of
0.8 milliseconds and 0.37 milliseconds when sending and
receiving a message, respectively, compared to the insecure
standard HSMS protocol. However, this overhead is negligible
considering that encrypting HSMS data messages makes the
protocol secure from eavesdropping attackers seeing the data
transferred in the messages while also checking the
authenticity of messages. Thus, the proposed mechanism
achieves data authenticity and confidentiality. This will be a
step further towards Industry 4.0 for the HSMS protocol-
enabled machines.

249 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 8, 2021

The proposed mechanism aimed to protect data
confidentiality and check data authenticity. However,
SECS/GEM protocol has other shortcomings that need to be
addressed to secure it completely. The proposed mechanism
only encrypts the data payload part of a message. The header is
still visible to the network. Although it does not expose
sensitive data such as parameters, settings, or confidential data,
an entity on the network can still see the frequency of each type
of message sent on the network. Furthermore, SECS/GEM is
still vulnerable to attacks such as replay and Denial of Service
(DoS) attacks. Future research to enhance SECS/GEM security
may include investigations into the implications of these
problems and potential remedies. Future studies may
potentially look at problems such as authentication and privacy
for SECS/GEM communications in Industry 4.0 ecosystem.

REFERENCES
[1] S. Azaiez, F. Tanguy, and M. Engel, “Towards building OPC-UA

companions for semi-conductor domain,” IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA,
vol. 2019-Septe, pp. 142–149, 2019, doi: 10.1109/ETFA.2019.8869171.

[2] M. Gadre and A. Deoskar, “Industry 4 . 0 – Digital Transformation ,
Challenges and Benefits,” International Journal of Future Generation
Communication and Networking, vol. 13, no. 2, pp. 139–149, 2020.

[3] Frost & Sullivan, “Cyber Security in the Era of Industrial IoT,” A Frost
& Sullivan White paper, 2017.

[4] B. C. Ervural and B. Ervural, “Overview of Cyber Security in the
Industry 4.0 Era,” no. September 2018, pp. 267–284, 2018, doi:
10.1007/978-3-319-57870-5_16.

[5] N. Tuptuk and S. Hailes, “Security of smart manufacturing systems,”
Journal of Manufacturing Systems, vol. 47, pp. 93–106, Apr. 2018, doi:
10.1016/j.jmsy.2018.04.007.

[6] S. Morgan, “CYBERWARFARE IN THE C-SUITE CYBERCRIME
FACTS AND STATISTICS,” 2021.

[7] S. Peng, “The Real Reason Behind the TSMC Cyber Attack,”
CommonWealth Magazine, Nov. 2018.

[8] S. A. Laghari, S. Manickam, and S. Karuppayah, “A Review on
SECS/GEM: A Machine-to-Machine (M2M) Communication Protocol
for Industry 4.0,” International Journal of Electrical and Electronic
Engineering and Telecommunications, vol. 10, no. 2, pp. 105–114, 2021,
doi: 10.18178/ijeetc.10.2.105-114.

[9] S. A. Laghari, S. Manickam, S. Karuppayah, A. Al-Ani, and S. U.
Rehman, “Cyberattacks and Vociferous Implications on SECS/GEM
Communications in Industry 4.0 Ecosystem,” International Journal of
Advanced Computer Science and Applications, vol. 12, no. 7, p. 2021,
Sep. 2021, doi: 10.14569/ijacsa.2021.0120737.

[10] A. Corallo, M. Lazoi, and M. Lezzi, “Cybersecurity in the context of
industry 4.0: A structured classification of critical assets and business
impacts,” Computers in Industry, vol. 114, p. 103165, 2020, doi:
10.1016/j.compind.2019.103165.

[11] T. O. F. Contents, “SECS Messaging Primer,” pp. 1–14, 2016.
[12] “Introduction to SECS/GEM.” http://www.hume.com/secsintro.htm

(accessed Jun. 29, 2021).
[13] K. Jung, J. S. Han, Y. M. Lim, and W. S. Kim, “XML format design for

SECS-II message monitoring,” in Proceedings - ALPIT 2007 6th
International Conference on Advanced Language Processing and Web
Information Technology, 2007, pp. 548–552, doi:
10.1109/ALPIT.2007.69.

[14] K. Uriga, “Generic Equipment Model (GEM) Specification Manual :
The GEM Specification as Viewed from the Host. Technology Transfer
97093366A-XFR,” 1997. Accessed: Jun. 29, 2021. [Online]. Available:
https://www.academia.edu/27932413/Generic_Equipment_Model_GEM
_Specification_Manual_The_GEM_Specification_as_Viewed_from_the
_Host.

[15] “US8102844B1 - High-speed SECS message services (HSMS) pass-
through including bypass - Google Patents.”
https://patents.google.com/patent/US8102844B1/en (accessed Jun. 29,
2021).

[16] L. Ma, N. Zhang, and Z. Zhang, “Tool Efficiency Analysis model
research in SEMI industry,” in E3S Web of Conferences, Jun. 2018, vol.
38, p. 02027, doi: 10.1051/e3sconf/20183802027.

[17] “RFC: 793 TRANSMISSION CONTROL PROTOCOL DARPA
INTERNET PROGRAM PROTOCOL SPECIFICATION,” 1981.

[18] I. Jamai, L. Ben Azzouz, and L. A. Saidane, “Security issues in Industry
4.0,” 2020 International Wireless Communications and Mobile
Computing, IWCMC 2020, vol. 0, pp. 481–488, 2020, doi:
10.1109/IWCMC48107.2020.9148447.

[19] N. Benias and A. P. Markopoulos, “A review on the readiness level and
cyber-security challenges in Industry 4.0,” South-East Europe Design
Automation, Computer Engineering, Computer Networks and Social
Media Conference, SEEDA-CECNSM 2017, 2017, doi:
10.23919/SEEDA-CECNSM.2017.8088234.

[20] J. Prinsloo, S. Sinha, and B. von Solms, “A review of industry 4.0
manufacturing process security risks,” Applied Sciences (Switzerland),
vol. 9, no. 23, 2019, doi: 10.3390/app9235105.

[21] A. Georgiadou, S. Mouzakitis, and D. Askounis, “Working from home
during COVID-19 crisis: a cyber security culture assessment survey,”
Security Journal, pp. 1–20, Feb. 2021, doi: 10.1057/s41284-021-00286-
2.

[22] N. N. Hurrah, S. A. Parah, J. A. Sheikh, F. Al-Turjman, and K.
Muhammad, “Secure data transmission framework for confidentiality in
IoTs,” Ad Hoc Networks, vol. 95, p. 101989, 2019, doi:
10.1016/j.adhoc.2019.101989.

[23] D. A. Mcgrew and J. Viega, “The Galois/Counter Mode of Operation
(GCM),” 2005.

[24] D. Yehya and M. Joudi, “AES Encryption : Study & Evaluation,” no.
November, 2020.

[25] “GitHub - bparzella/secsgem: Simple Python SECS/GEM
implementation.” https://github.com/bparzella/secsgem (accessed Jul. 28,
2021).

[26] “GitHub - Legrandin/pycryptodome: A self-contained cryptographic
library for Python.” https://github.com/Legrandin/pycryptodome
(accessed Jul. 28, 2021).

[27] N. Drucker, S. Gueron, and V. Krasnov, “Making AES great again: The
forthcoming vectorized AES instruction,” in Advances in Intelligent
Systems and Computing, 2019, vol. 800 Part F, pp. 37–41, doi:
10.1007/978-3-030-14070-0_6.

[28] “How long would it take to brute force AES-256? | ScramBox,”
Scrambox, 2016. https://scrambox.com/article/brute-force-aes/ (accessed
Aug. 20, 2021).

[29] “Fugaku Holds Top Spot, Exascale Remains Elusive | TOP500.”
https://www.top500.org/news/fugaku-holds-top-spot-exascale-remains-
elusive/ (accessed Jul. 26, 2021).

[30] SCMO, “How many computers are there in the world? — SCMO,”
SCMO, 2019. https://www.scmo.net/faq/2019/8/9/how-many-
compaters-is-there-in-the-world (accessed Jul. 27, 2021).

250 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. SECS / GEM Protocol Standards
	A. SEMI Equipment Communications Standard-I
	B. SEMI Equipment Communications Standard-II
	C. Generic Equipment Model
	D. High-Speed SECS Message Service

	III. Security Issues
	IV. Proposed Mechanism
	A. Proposed Mechanism Design
	B. Proposed Mechanism Flow

	V. Implementation and Testbed Setup
	A. Implementation
	B. Experimental Testbed Setup

	VI. Performance Evaluation and Results
	C. Processing Time
	D. Control Overhead
	E. Security Analysis of Brute-Force Attack

	VII. Conclusion and Future Work

